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Abstract.  The efficient design of supply chains incorpo-
rating ecological objectives is a strategic task that is in-
creasingly attracting the attention of companies. This pa-
per introduces a simulation-based optimization approach 
to eco-efficiently orchestrate a supply chain with a target 
system consisting of three sub-targets: Costs, energy-effi-
ciency and service level. Regarding a use case from the 
steel processing industry, an event-discrete simulation 
model of the corresponding supply chain was configur-
ated. By interfacing the simulation model with a Nondom-
inated Sorting Genetic Algorithm new configurations of 
decision variables are generated after a set of simulation 
runs. The evaluation of the experiments and the resulting 
pareto sets led to the identification of promising eco-effi-
cient configurations and the derivation of corresponding 
decision variable assignments for the use case which con-
sist of material allocation, reorder point and replenish-
ment level. 

Introduction 
Rising global demand for energy as well as raw materials 
pose a major challenge for the manufacturing industry. 
Due to the scarcity of fossil fuels, sustainability in the in-
dustrial sector is becoming increasingly important. Nev-
ertheless, according to the German Federal Ministry of 
Economic Affairs and Energy, the energy consumption 
in this sector increases significantly [1]. Efforts at the in-
terface between research and application are necessary to 
enable companies to counter these contradictory devel-
opments. 

In the context of supply chain management, ecologi-
cal goals are increasingly being integrated into corporate 
decisions. Eco-efficient approaches represent a decisive 
strategy for the design of sustainable supply chains [2]. 
In this context, ecological goals have to be integrated into 
the target system of the value network, and, at the same 
time, economic efficiency has to be maintained or in-
creased. However, supply chains are highly dynamic and 
complex systems with multiple dynamic interdependen-
cies. Accordingly, efficient methodological tools are 
needed that can map and evaluate supply chain interde-
pendencies and achieve improvement in supply chain pa-
rameter configurations. The event-discrete material flow 
simulation is an established tool to digitally replicate and 
evaluate different control logics and parameter settings 
of individual entities. Linear optimization models as well 
as metaheuristics are, among other, suitable for the opti-
mization of value chains [3]. Due to the complexity de-
scribed above and the associated large solution space of 
possible design options for a value chain, it is difficult to 
generate exact solutions for a given modelled problem. 
Furthermore, a purely mathematical formulation of the 
model is often challenging due to the large number of ob-
jects, dependencies and stochastic uncertainties associ-
ated with these problems. 

Combining both metaheuristics and simulation uti-
lizes the advantages of both tools [4]. According to the 
VDI, this so-called simulation-based optimization can be 
implemented in four different ways [5]. In this paper, an 
integrative coupling shall be implemented to guide in the 
decision-making process. The (multi-criteria) simulation 
results serve as an objective function for a genetic algo-
rithm. According to the VDI, this corresponds to a “Cat-
egory D” approach. The three-dimensional target value 
system consists of costs, energy consumption and service 
level.  
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A genetic algorithm is used to create new configura-

tions of supply chain input parameters for the simulation 
model after a series of simulation runs. For this paper, the 
genetic algorithms used are the „Nondominated Sorting 
Genetic Algorithms (NSGA)” NSGA-II and NSGA-III.  

Through an implemented interface, newly generated 
configurations are automated and iteratively tested in 
subsequent simulation runs. Based on the state of the art 
and to differentiate the approach from previous papers, a 
specific demonstrative application from the steel pro-
cessing industry is presented. Based on a sensitivity anal-
ysis to narrow the search space to initially preclude defi-
cit solutions, the developed methodology is experimen-
tally tested and the results are evaluated. 

1 Simulation-based Optimiza-
tion for Supply Chains 

The use of simulation-based optimization for the orches-
tration and configuration of supply chains is a broad field 
of research. This chapter is dedicated to the consideration 
of current solution approaches of simulation-based opti-
mization, especially for the strategic and tactical design 
of processes in value networks. 

A methodology for a simulation-based optimization 
with an NSGA-II algorithm of the supply chain of a steel 
trading company was presented by Rabe et al. in which 
user-defined action plans, which address inventory pa-
rameters and material reallocations, can be designed [6]. 
The target system includes both cost and service-level, but 
does not integrate environmental metrics. Furthermore, be-
sides the NSGA-II algorithm a Deep Reinforcement 
Learning (DRL) approach is used instead of NSGA-III.  

Another “Category D” approach by Benyoucef and 
Xie focusses on a use case in the automotive industry, in 
which a two-dimensional target system consisting of cost 
and service level was also considered. Here, the solution 
space was restricted by limiting configurable parameters 
such as the order quantity and the reorder point with up-
per and lower limits in the potential occupancy [7].  

Other approaches exist that incorporate emission val-
ues in two-dimensional target systems [8] or elaborations 
that implement other metaheuristics, such as a Particle 
Swarm Optimization (PSO) [9]. 

An up-to-date and detailed review of the current re-
search of simulation-based optimization for value net-
works can be found in the paper by Tordecilla et al. [10]. 

 

From this, it is particularly clear that the target size 
system of the use case considered in this paper, with its 
three dimensions of cost, service level and energy effi-
ciency, represents a differentiation from previous works.  

2 Use Case Description 
The use case for this paper is a supply chain of a steel 
processing service provider with several distribution and 
processing centers. The service provider offers services 
in which standard sizes of steel products are transformed 
to customer-specific dimensions and shapes by various 
processing machines. For this purpose, a pool of pro-
cessing machines is available at various locations. The 
supply chain consists of five distribution centers and 25 
customer regions. A simplified form is shown in Figure 
1. 

   
Figure 1: Representation of the supply chain of the  

service provider. 

2.1 Procurement, Production and 
Distribution in the Use Case 

In the following the basic processes of procurement, pro-
duction, and distribution within the supply chain of the 
service provider are shown, which are integrated into the 
mechanisms of the simulation model. 

Incoming customer orders are first divided into order 
lines. Based on the stock levels in the distribution centers, 
these are checked to determine whether the order can be 
accepted. Due to individual material allocations, scenar-
ios may exist in which not all standard sizes are stocked 
in all distribution centers. In the case that several distri-
bution centers store the material of an order in sufficient 
quantity, a distance-based allocation is made so that the 
distribution center accepts the order that is geograph-
ically nearest to the customer region of the ordering cus-
tomer. If there is not enough material in the supply chain, 
the order is rejected. This must be considered accordingly 
in the service level.  
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The monitoring of the distribution centers’ stock lev-

els is thus an integral part. The service provider operates 
with an order point stock  level strategy, called ( , )-
order policy [11]. If, within the scope of this ordering pol-
icy, a stock level falls below a defined reorder level , the 
service provider triggers a purchase order with the sup-
plier, which replenishes new standard sizes to a maxi-
mum target stock level , defined individually for each 
product. 

The production process represents the customized 
processing of existing standard sizes or residual sizes 
from previous machining processes. A distinction is 
made between the sawing of profiles and beams and the 
cutting of sheets (seen in Figure 2). The times of the re-
spective sawing and cutting processes depend on the 
cross-section of the material to be cut as well as the saw-
ing or cutting speed of the machine. In addition, the feed-
ing rates as well as loading and unloading times of the 
machines are included in the total processing time. Each 
distribution center has an individual pool of machines 
with different attributes regarding processing speed, ca-
pabilities for processing specific materials and energy 
consumption. 

 
Figure 2: Example processing operations of the  

service provider. 

On the distribution side, order picking and loading is 
based on the weight and volume of the finished products 
and the maximum quantity and volume capacity of the 
transport trucks. They depend on the customer’s desired 
deadline, as well as route minimization. In addition to the 
company’s own trucks, there is also the option of calling 
a shipping agent. 

2.2 Target System of the Use Case 
An important aspect is the ability to quantify the individ-
ual components of the target system consisting of cost, 
energy consumption and service level. 

 
Costs.  As the first objective function of the target sys-
tem, the total costs are calculated, which consist of the 
sum of the transport costs, the order costs, the inventory 
costs, and the backorder costs.  

 
The objective function thus results in: = + + +  (1) 

where: 
•  :  transport costs [in €] 
•  :  order costs [in €] 
•  : inventory costs [in €] 
•  :  backorder costs [in €] 

 
The cost positions transport costs and order costs are also 
divided into a fixed and a variable portion. Fixed 
transport costs are incurred once for a transport. A dis-
tinction is made between the fixed costs for a forwarding 
agent and the fixed costs for transporting a company 
truck. This applies analogously to the variable transport 
costs. A different cost rate is used for the shipping agent 
compared to the company’s own trucks. Variable costs 
are calculated on an hourly basis depending on the dura-
tion of a tour. This stems from the total distance of the 
tour divided by the average speed of a truck.  

Ordering costs are always incurred if a stock level 
falls below a predefined reorder level and an order for the 
respective material is then placed with the supplier.  

The variable order costs of an order result from the 
multiplication of the order quantity with a variable order 
cost rate. In addition, a fixed cost rate is added for each 
purchase order. Inventory costs are always variable costs. 

For each storage unit, the individual storage period is 
the basis for calculating the inventory costs. This is mul-
tiplied by the daily inventory cost rate to determine the 
inventory costs. Finally, the shortage costs result from 
multiplying the number of the order lines, which couldn’t 
be fulfilled, by the corresponding backorder cost rate. 
The total costs are to be minimized in this optimization 
problem. 

 
Energy Consumption.  The second objective is to 
minimize the energy consumption of the sawing and cut-
ting machines (measured in megajoules [MJ]). The pro-
cessing times, feed rates and technical conditions of the 
individual machines play an essential role in the calcula-
tion. To determine the energetic power consumption of a 
saw, it is assumed that energy is only consumed by a saw 
when a workpiece is in its feed or the saw is busy ma-
chining a workpiece. For the machines, the drive powers 
of these two actuators are in the unit kilowatt [kW]. 
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Based on the process times for the feed as well as the 
machining of an order position and the drive powers of 
both actuators of a specific saw, it is possible to deter-
mine how many kilowatts are consumed for the machin-
ing of the respective order.  

By multiplying the respective machining times, the 
energy consumption can thus be determined in kilowatt 
hours. For the machining of a product of an order line, 
the following formulation is used to calculate the energy 
consumption: = 3600 × + 3600 ×  (2) 

where: 
•  :  power consumption of a saw from the 

  processing of an order line [in kWh] 
•  : total sawing time of an order line [in s] 
•  :  time for the feed of all workpieces of 

  an order line through the sawing  
  machine [in s] 

•  :  drive power of the actuator for control-
  ing the feed of the workpieces [in kW] 

•  :  drive power of the actuator for the  
  sawing process [in kW] 

 
By multiplying with the factor 3.6 MJ/kWh, the kilowatt 
hour is converted into megajoules. Since an order is di-
vided into individual order lines and these may be pro-
cessed in different distribution centers, the sum of the 
power consumed by positions ( = 1, …  ) must be used 
to determine the energy consumption for an order: 

= × 3,6  (3) 

 
Service-Level. The third dimension of the target sys-
tem is the degree of service-level and the delivery readi-
ness achieved, respectively. This is a logistical indicator 
that provides information on the average delivery capa-
bility of a company within a given period. In principle, 
there are various calculation bases for calculating the de-
gree of readiness to deliver. In the context of the use case, 
the so-called -Service-Level is sued to quantify the de-
livery capability. From a practical stand point, this is used 
as the preferred performance criterion because the amount 
of a shortfall is included in the calculation basis [11]. 
 

 
Mathematically, this is defined as follows: 

=       (4) 

The calculation of the -Service-Level implies that the 
best performance is achieved with a value of = 1, since 
in this case any period demand could be met. In terms of 
optimization, the value is to be maximized accordingly. 
Since the other two objective functions are to be mini-
mized and a combination of minimization and maximiza-
tion is more difficult to realize with multicriteria me-
taheuristics, the counter probability of the degree of read-
iness to deliver is minimized. Mathematically, the third 
objective function thus results in: = 1  (5) 

3 Decision Variables and 
Solution Space 

As described in the previous chapter, the company’s tar-
get system consists of the three components cost, energy 
consumption and service level. To optimize this mul-
ticriteria target system, variations of logistic parameters 
are investigated, which represent the decision variables 
of the system. The parameters to be studied are the reor-
der point   per product  in distribution center , the tar-
get stock  per product  in distribution center , and the 
allocation of products to specific distribution centers in 
the form of material reallocation strategies: 

•  :  target stock for product  in distribution 
 center  in days   

•  : reorder point for product  in distribution 
 center  in days   

•  :  binary material allocation for product  in 
 distribution center  [0,1] 

To address the initially shown problem of the large solu-
tion space, a sensitivity analysis of the supply chain to 
different inventory parameters was performed before 
coupling the simulation with the metaheuristic in order to 
limit the search space to promising possible combinations 
of reorder points and target inventories. This analysis tech-
nique is used to determine the sensitivity of the target func-
tions as a function of the input parameters [12].  
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For this purpose, the average demand quantities per 

product were converted into inventory ranges and all po-
tential combination possibilities up to a defined upper 
limit were evaluated iteratively in automatically trig-
gered simulation runs. For this, all combination possibil-
ities were equally distributed among the distribution cen-
ters. Figure 3 shows the total costs of the network de-
pending on the parameter settings.  

 
Figure 3: Sensitivity analysis of the total cost of the  

network as a function of the inventory  
parameters. 

The cost function takes a convex form, at least for the 
parameters tested. This is a good implication that the lo-
cal minimum found is also a global minimum. 

To achieve a better interpretation of the results re-
garding the costs achieved, the subsumed total costs are 
also broken down in Figure 3. This shows that the most 
significant differences occur in the shortage costs and the 
inventory costs.  

This finding can be attributed to a classic trade-off ef-
fect in inventory management, in which high inventories 
lead to high capital commitment costs, whereas low in-
ventories lead to shortage costs. With low reorder and 
target stocks, the risk of incurring a high sum of shortage 
costs is therefore higher. By contrast, minimizing this 
risk leads to high inventory costs. 

These sensitivity analyses were also conducted for the 
target variables energy consumption and service level. 
These analyses showed that the service level settles at a 
value close to 100% even at quite low ranges, which is 
associated with low shortfall costs. The quality of the val-
ues for energy consumption correlates strongly with the 
service level. This effect can be explained by the fact that 
for the sensitivity analysis, only the first tow decision 
variables were rudimentarily examined for the time being 
and no material reallocations are integrated. Accord-
ingly, products can only be processed, and energy con-
sumed if products are available in stock. Through this 
sensitivity analysis of the first two decision variables, a 
corresponding metaheuristic search space for the inven-
tory parameters could already be defined, which limits 
deficient solution candidates.  

The variation of the material allocation to the distri-
bution centers is now to be investigated in more detail, as 
it is suspected to be a major lever for minimizing the en-
ergy consumption. To reduce the computational calcula-
tion time a logical correlation was applied to the material 
reallocation. To investigate different assignments of 
product and distribution center, a percentage of material 
reallocations to be performed can be defined before the 
start of an optimization run. In the initial population and 
with each mutation of the genetic algorithm, a material is 
randomly reallocated to on ore more distribution centers 
according to this ratio. 

4 Description of Methodology 
and Tools 

Following the definition of the decision variables and the 
objective function, the methodological configuration 
must be designed. Two so-called “Nondominated Sorting 
Genetic Algorithms” (NSGA-II [13] and NSGA-III [14]) 
are used as metaheuristics in different experiments, 
which are based on the principle of genetic algorithms. 
According to them, the core building blocks are selection, 
recombination, and mutation.  
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In contrast to classical evolutionary methods, the two 

algorithms are particularly suitable for application to dis-
crete multicriteria optimization problems and are accord-
ingly equipped with mechanisms that enable the determi-
nation of a Pareto ranking.  

Although the NSGA-III, in contrast to NSGA-II, is 
equipped with a lot of normalization for distance calcu-
lation and a Niching mechanism, it does not provide bet-
ter results for every application. For a more detailed ex-
planation of the algorithms, it can be referred to the cor-
responding literature. 

The metaheuristics are implemented in the Python 
programming language and coupled to the Tecnomatix 
Plant Simulation software from Siemens, in which the 
simulation model was created, using the Component Ob-
ject Model (COM) interface. The interface makes it pos-
sible to control Tecnomatix Plant Simulation from other 
programs so that they can, for example, start simulation 
runs, change model parameters and record results.  

After the generation of solution candidates in the me-
taheuristic in Python, these are transferred to the simula-
tion model and then a simulation run is started from Py-
thon. The termination of the simulation is communicated 
via an event in the COM interface, after which the results 
of the simulation model are transferred to Python.  

To increase the computing speed, an additional paral-
lelization of simulation runs on several cores of the CPU 
was realized. Figure 4 shows the process flow of the sim-
ulation optimization roughly by means of a process dia-
gram. 

 
Figure 4: Process diagram of the simulation-based  

optimization. 

5 Results of the Experiments 
An experimentation plan was developed for the dif-

ferent algorithms with varying configurations. The de-
sign consists of four experiments that investigate the 
quality of the different algorithms as well as the different 
proportions of material reallocations (MR) for a given 
population size (PS). The plan can be found in Table 1. 

 

Experiment ID Algorithm MR PS Generations 

Experiment 1 EXP 01 NSGA-II 33 % 50 50 

Experiment 2 EXP 02 NSGA-II 0 % 50 50 

Experiment 3 EXP 03 NSGA-III 33 % 50 50 

Experiment 4 EXP 04 NSGA-II 66 % 50 50 

Table 1: Experimentation plan. 

In this simulation study, a metaheuristic terminates after 
50 generations. This results in 2,500 possible solutions 
from one metaheuristic. To account for stochastic signif-
icance, two replications are performed for each experi-
ment. Thus, 5,000 possible solutions need to be evaluated 
for one experiment. The simulation period is one year per 
simulation run. The results are shown in a scatter plot in 
Figure 5. 

 
Figure 5: Scatter plots of the objective function values. 

 
Especially in the experiments with a low proportion of 
material reallocations (experiments 1-3), a roughly linear 
dependency between the target variables can be seen. 
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This result can be attributed to the fact that a lower 

service-level is associated with the fact that the desired 
production quantity was not achieved and therefore the 
machines consumed less energy due to less total produc-
tion quantities. Since shortage costs are integrated into 
the cost function in addition to transportation, ordering 
and inventory costs, such candidate solutions incur cor-
respondingly high costs due to poor delivery service with 
low energy consumption.  

With a higher proportion of material reordering, 
promising solution candidates can be identified that 
achieve low costs and energy consumption with a good 
service level. This is possible because distribution centers 
vary in energy efficiency. Therefore, material realloca-
tions with efficient inventory parameters are identified so 
that the materials are produced both close to the customer 
and at energy-efficient locations. 

Furthermore, a large spread of resulting points occurs 
in the cluster for experiment 3. This can be explained by 
a different selection operator of the NSGA-III algorithm 
compared to NSGA-II. The pareto sets of the experi-
ments in Figure 6 provide an even more explicit way of 
interpreting the results. 

The most promising pareto set tends to be generated 
in Experiment 4. Compared to the pareto sets from the 
remaining experiments, several candidate solutions have 
both better delivery efficiencies, energy consumptions 
and overall costs. Many candidate solutions from the pa-
reto set in experiment 4 would dominate large portions of 
the remaining pareto sets. 

 
Figure 6: Pareto sets of the experiments. 

As anticipated, a single best solution which dominates all 
three objective functions was not found due to the various 
trade-off effects within a supply chain.  

 

Nevertheless, recommendations for a course of ac-
tions can be derived from the generated pareto sets, de-
pending on the individual weighting of the target system. 
Experiment 4 delivered solution candidates with total 
costs of about 6.5 million Euros, a power consumption of 
about 330,000 MJ and a supply readiness level of about 
99 %. Solutions with better energy consumption exist, 
but the selection of these solutions significantly worsens 
the service-level as well as the total costs.  

Unless individual preferences in the use case over-
prioritize energy consumption and perfect delivery per-
formance, this underlying combination of decision varia-
bles is an extremely eco-efficient configuration for the 
use case at hand. 

6 Summary and Conclusion 
The simulation-based optimization for the configuration 
of eco-efficient supply chains presented in this paper rep-
resents a high-performance tool for the generation of tar-
get system specific pareto sets. The integration of the tar-
get value energy efficiency into a three-dimensional tar-
get system supplemented by the dimensions cost and ser-
vice level in combination with the chosen algorithms and 
simulation tools represents an innovative approach that 
stands out from the previous state of the art. Within the 
evaluation of the experiments, promising eco-efficient 
configurations could be identified and corresponding as-
signments of the decision variables for the use case re-
garding material reallocation, order point and target in-
ventory could be derived. The experiments also made it 
clear that the NSGA-II algorithm was able to identify bet-
ter solution candidates than the NSGA-III in the consid-
eration of this use case. 

Further research needs to address other methods like 
reinforcement learning instead of metaheuristics chosen 
in this paper. Furthermore, the choice of a different sim-
ulation tool (e.g., SimPy), which completely avoids ani-
mations, could allow a more performant simulation-
based optimization. This could potentially generate faster 
solution candidates. Furthermore, it is possible to inte-
grate additional components of energy consumption, e.g., 
caused by transportation, into the target system. 
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