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Abstract. Recursive data-based modelling is needed
for making decision online in varying operating condi-
tions. Recursive algorithms are useful in adapting the
parameters within selected memory horizons. Abrupt
changes can be handled when the situation change is
approved to be drastic. The nonlinear scaling based on
generalized norms includes additional alternatives: the
norm orders adapt to the gradually changing operating
conditions. The drastic shape changes of the scaling
functions require full analyses of the orders. The orders
can also be stored for different situations and re-used
later. Fuzzy inequalities are useful in finding out if the
feasible ranges of the most recent period are different
from the current active ranges or similar with some of
previous feasible ranges. Machine learning is integrated
in the system in three levels: (1) finding the appropriate
time windows, (2) interactions of feasible levels, and (3)
finding decision support when some of feasible ranges
need to change. These decisions are supported by expert
knowledge. Other model parameters can be included in
the analysis. The solution has been tested with measure-
ment data from several application cases. The recursive
approach is beneficial in the control and maintenance in
varying operating conditions.

Introduction

Models understood as relationships between variables

are used for predicting of properties or behaviours of

the system. Variable interactions and nonlinearities are

important in extending the operation areas of control

and fault diagnosis, where the complexity is alleviated

by introducing software sensors [1]. Recursive data-

based modelling is needed in varying operating condi-

tions. In industry, where very large datasets have been

common already long time, the problem has been tack-

led by data analytics and intelligent systems, where lin-

ear regression and parametric models are used in the

recursive tuning of the interaction equations [2]. Adap-

tation of the parametric systems is essential in varying

operating conditions. Various nonlinear multivariable

systems combine statistical and intelligent methodolo-

gies with sensor fusion based on data pre-processing,

signal processing and feature extraction [3]. Dynamic

models are based on additional parametric model struc-

tures.

Artificial intelligence (AI) mimic human cognitive

functions, including e reasoning, knowledge, planning,

learning, natural language processing, perception and

the ability to move and manipulate objects. Machine
learning (ML) is a subset of AI: the iterative seeking of

solutions is done by using new architectures, techniques

and algorithms in order to perform a specific task effec-

tively without using explicit instructions, relying on pat-

terns and inference instead. artificial neural networks
have been widely used in these studies as a behavioural

model to map a systems input to its output regardless of

the nature of the system.

Fuzzy logic extends the approximate reasoning, and

the connection of fuzzy rule-based systems and expert

systems is clear. Fuzzy set systems separate meanings

and interactions which is an important key in the adap-

tation in varying operating conditions. Linguistic equa-
tion (LE) approach originates from fuzzy set systems:

rule sets are replaced with linear equations, and mean-

ings of the variables with nonlinear scaling functions

[4]. Constraints handling [5] and data-based analysis

[6], facilitate the recursive updates of the systems [7].

The nonlinear scaling revises the meanings and linear

models represent the interactions [1].
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Table 1: Adaptation level and learning.

Adaptation Smart adaptive systems Machine learning

Changing environment Recursive data analytics for Statistical techniques,

parametric solutions network tuning.

Similar setting, Computational intelligence, Data mining utilizing

not explicitly ported expertise and data analytics, previous experience

including variable selection

New or unknown application Computational intelligence, Deep learning with

expertise and data analytics, big data ideas.

including variable selection.

Statistical analysis with steady state models form

the basic elements of different intelligent models. De-

composed systems can be based on weighting the lo-

cal models with linear parameter varying (LPV) mod-
els [8]. External dynamic models provide the dynamic

behaviour for the LE models developed for a defined

sampling interval.

Smart adaptive systems (SAS) are aimed for devel-

oping successful applications in different fields by us-

ing three levels of adaptation [9]: (1) adaptation to a

changing environment, (2) adaptation to a similar set-

ting without explicitly being ported to it, and (3) adap-

tation to a new or unknown application (Table 1). The

recursive analysis is important in all these levels. The

smart adaptive data analysis and the data processing

form a five-layer advanced deep learning (ADL) plat-

form which supports levels of smart adaptive systems

and development of cyber-physical systems (CPS). [2]

Machine learning (ML) is focusing on algorithmic

data-based analyses which provide promises for auto-

matic modelling. Performance is good in small scale

systems and interesting interactions are found in big

data analysis where the previous knowledge is limited.

Additional levels bring more challenges for explana-

tions. How far we can go in complex systems? How

can we guide the automatic analysis? Different mea-

surements have specific processing requirements [2].

Therefore, the recursive adaptation has application spe-

cific requirements.

This article focuses on the possibilities of applying

machine learning in data-based modelling. Data anal-

ysis (Section 1) is the key part of the modelling. The

resulting parametric systems are recursively updated

(Section 2) and the solutions are analysed in four dif-

ferent applications (Section 3). The overall system is

analysed in Section 4 and conclusions about the appli-

cability of the advanced machine learning in these ap-

plications are drawn in Section 5.

1 Data analysis

The main part of the data analysis is variable specific

extended with parametric models.

1.1 Variable specific analysis

Machine learning is suitable for the variable specific

analysis: features, parameters of the nonlinear scaling

functions and intelligent indicators are obtained by us-

ing a set of algorithms. Several measurements and sets

of features can be analysed in parallel.

Features The arithmetic means and medians are

suitable for recursive tuning, but the resulting scaling

functions are narrow and sensitive to outliers. More

flexible solutions can be obtained with generalized

norms defined by

||τ Mp
j ||p = (Mp

j )
1/p = [

1

N

N

∑
i=1

(x j)
p
i ]

1/p, (1)

where the order of the moment p ∈ R is non-zero,

and N is the number of data values obtained in each

sample time τ . The norm (1) calculated for variables

x j, j = 1, . . . ,n, have the same dimensions as the corre-

sponding variables [10]. These norms can be extended

to variables including negative values [7]. The norm

values are monotonously increasing with the norm or-

der.

The norm values are updated by including new equal

sized sub-blocks in calculations since the computation

of the norms can be done from the norms obtained for

the equal sized sub-blocks, i.e. the norm for several

samples can be obtained as the norm of the norms of
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the individual samples:

||Ksτ Mp
j ||p{

1

Ks

Ks

∑
i=1

[(τ Mp
j )

1/p
i ]p}1/p = [

1

Ks

Ks

∑
i=1

[(τ Mp
j )i]

1/p,

(2)

where Ks is the number of samples {x j}N
i=1. [10] In

automation and data collection systems, the sub-blocks

are normally used for arithmetic mean (p = 1).

Nonlinear scaling Meanings of the feature or mea-

surement values are represented by using monotonously

increasing functions x j = f (Xj) where x j is the variable

and Xj the corresponding scaled variable. The function

f () consist of two second order polynomials, one for

the negative values of Xj and one for the positive val-

ues, respectively. The corresponding inverse functions

x j = f−1(Xj) based on square root functions are used

for scaling to the range [-2, 2]. Both functions, f () and

f−1(), are monotonously increasing. [4, 5]

The parameters of these scaling functions are ex-

tracted from measurements by using generalized norms

and moments. The support area is defined by the min-

imum and maximum values of the variable, i.e. the

support area is [min(x j),max(x j)] for each variable

j, j = 1, . . . ,m. The central tendency value, c j, di-

vides the support area into two parts, and the core area

is defined by the central tendency values of the lower

and the upper part, (cl) j and (ch) j, correspondingly.

This means that the core area of the variable j defined

by [(cl) j,(ch) j] is within the support area. [6] Mono-

tonicity constraints and special requirements are used if

needed [5].

The scaling is defined by five parameters which al-

low highly asymmetric functions, i.e. different shapes

for upper and lower parts of the functions. The range

[-2, 2] provides a good basis for natural language repre-

sentations [11]

Intelligent indicators All features and measure-

ments processed with the nonlinear scaling can be used

as intelligent indicators. Several indicators can com-

bined and additional indicators, including trends and

fluctuations, can be constructed with temporal analysis

[12]. Trend indices,

IT
j (k) =

1

nS +1

k

∑
i=k−nS

Xj(i)− 1

nL +1

k

∑
i=k−nL

Xj(i), (3)

are based on the means obtained for a short and a long

time period, defined by delays nS and nL, respectively.

Time periods are variable specific. The index value

represents the strength of both the decrease and in-

crease of the variable x j. The derivative of the index

IT
j (k), denoted as ΔIT

j (k), is used for analyzing trian-

gular episodic representations. Severity of the situation

evaluated by a deviation index

ID
j (k) =

1

3
(Xj(k)+ IT

j (k)+ΔIT
j (k)). (4)

All the indicators are in the range [-2, 2], which facili-

tates the natural language representation also them [11].

Fluctuation indicators are based on the moving

range of variable values obtained as a difference of two

moving generalized norms:

ΔxF
j (k) = ||Ksτ Mph

j ||ph −||Ksτ Mpl
j ||pl , (5)

where the orders ph ∈ ℜ and pl ∈ ℜ are large positive

and negative, respectively. The moments are calculated

from the latest Ks +1 values, and an average of several

latest values of ΔxF
j (k) is used as an indicator of fluctu-

ations. [13]

1.2 Parametric models

The performance of the scaling functions can be anal-

ysed by using combinations of several indicators, e.g.

the deviation index (4) combines three indicators. The

analysis is expanded with models, which have only lin-

ear interactions between the indicators. All the scaled

variables and linear combinations of them are in the

same range [-2, 2] where integer numbers correspond

labels, e.g. {very low, low, normal, high, very high}.

[11]

2 Recursive analysis
Recursive data analysis facilitates the adaptation of the

scaling functions to changing operating conditions, also

the orders of the norms are re-analyzed if needed. The

existing scaling functions provide a basis for assessing

the quality of new data: outliers should be excluded,

but the suspicious values may mean that the operating

conditions are changing. The scaling functions are ex-

tended for analysing outliers and suspicious values to

select data for the adaptive scaling. The borders repre-

sent the data distribution for different shape factors α+
j

(Figure 1).
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Figure 1: Limits for the core, support, suspicious and outlier areas as a function of shape factor α+
j ∈ [ 3

3 , 3] [14]

The parameters of the nonlinear scaling functions

can be recursively updated with (2) by including new

equal sized sub-blocks in calculations. The number of

samples Ks can be increasing or fixed with some for-

getting, and weighting of the individual samples can be

used in the analysis. If the definitions should cover all

the operating areas, also suspicious values are included

as extensions of the support area. In each adaptation

step, the acceptable ranges of the shape factors α−
j and

α+
j are checked and corrected if needed. The analysis

has two levels: the parameters of the scaling functions

and the corresponding orders of the norms. [15]

Outliers Clear outliers need to be excluded in both

the first analysis and the subsequent recursive steps. In

linear scaling, the z-score values outside the range [-3,

3] are often considered as an indication of an outlier

(Figure 1). The scaled values are in the range [-2, 2],

and this is also the range for the monotonous increase

if the minimum and maximum points are obtained from

the derivatives of the scaling functions.

Recursive adaptation The parameter of the scal-

ing functions can be recursively updated by using the

norms (1) with five defined orders, (pmin) j, (pl) j, (p0) j,

(ph) j and (pmax) j, which correspond the corner points

of the scaling function. A highly negative and highly

positive orders are used instead of min and max, respec-

tively. Calculations are done in two windows: short and

long. If the corner points are not drastically different,

the new blocks are included in the calculation of the pa-

rameters.

Drastic changes are needed for the corner points if

the smooth adaptation does not provide suitable param-

eters for the new data distribution, i.e. the distribu-

tion is changing considerably with new measurements.

The orders of the corresponding norms need to be re-

analysed. The new situation may require a totally new

set of parameters.

Change detectors and decision making Intel-

ligent trend analysis may provide an early indication of

the coming changes [12]. Generalised statistical pro-

cess control (GSPC) notifies if the limits are exceeded

more often [16].

3 Applications
The solution has been tested with measurement data

from application cases.

3.1 Solar thermal collectors

Solar power plants should collect any available ther-

mal energy in a usable form at the desired temperature

range. Irradiation varies considerably between days

and on cloudy periods, the variations are very fast and

strong variations (Figure 2). The efficient collection re-

quires a fast start-up and reliable operation in the vary-

ing cloudy conditions without unnecessary shutdowns

and start-ups.
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Figure 2: Varying irradiation on a solar collector field: measurements are from 65 hours in 12 days.

The irradiation measurements shown in Figure 2 in-

clude typical operating periods. In the first normal pe-

riod, the feasible area expands until the solar noon is

achieved and scaling functions are only slightly modi-

fied in the afternoon. The second normal period after

cloudy conditions continues from the scaling functions

of the first period. The fast dropping single values are

considered as outliers which do not affect on the recur-

sive updates of the parameters. This period is followed

by a short cloudy situation.

Cloudy periods are detected with the fluctuation in-

dicator (5). The norms are calculated, but they are not

used for the recursive updating. In the long cloudy pe-

riod, the irradiation is fluctuating and the level is go-

ing down. The controller limits the acceptable range of

control actions by changing the working point in these

situations.

After recovering from the cloudy conditions, the sit-

uation is compared with the active set of scaling func-

tions which were updated during the second normal pe-

riod. A new situation is detected: the irradiation is

lower than during the previous normal operating con-

ditions. The new set of scaling functions are activated

and gradually refined. The parameters of the previous

functions are stored for future use. Short cloudy periods

disturb operation in this period as well.

The parameters of the first normal period were re-

covered for the last day of the measurement period.

Trend indices (3) and deviation indices (4) are used

for the early detection of changes for adaptive control

[17]. For example, the decrease of the irradiation during

the long cloudy period.

This research analysed the irradiation measure-

ments. The same methodologies can be used e.g. for

the energy demand, temperature difference over the col-

lector field, and properties of the field devices and en-

vironment. The machine learning will be used for this

extended problem.

3.2 Prognostics

In the prognostics, the range of the scaling functions

need to be expanded when new phenomena activate.

This is quite typical when wearing progresses. Re-

cursive data analysis has been demonstrated by using

root mean square (rms) velocity, vrms, measurements

collected from a paper machine: resin problems of a

press roll in the felt washer. The scaling functions were

recursively updated three times (Figure 3(a)) after ex-

panding the data set by using spline interpolation to get

sufficiently long data sets for the recursive predictions

(Figure 3(b)) [18]. The system clearly shows the point

when decisions are needed. Domain expertise is needed

to assess the situation. There are three alternatives: (1)

update the scaling functions, (2) change control actions

or (3) start maintenance.
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(a) Updating of the parameters. (b) Forecasting of the failure.

Figure 3: Recursively scaled values of vrms for a press roll of the washer, modified from [18]
.

The decision is based on the assessment of condi-

tion, remaining useful time and alternative schedules of

maintenance. The control actions to reduce the speed

of wearing are good options. In this case, the operation

time was extended and the maintenance was postponed

to a better time period. The analysis was extended to

uncertainty processing and natural language in [19].

3.3 Wastewater treatment

Biological water treatment depends strongly on the in-

let water quality. Load and nutrient should be bal-

anced since both an exceptionally high load and ex-

cess nutrients cause problems. The operating condi-

tions are modified by oxygen, temperature and flow.

Much slower changes in the biological state drastically

influence the purification result and subsequent process

phases. Scaled values are used together with intelligent

trend indices. [20]

The recursive updates of the scaling functions are

important for modelling in different situations. Also,

the interaction coefficients can depend on operating

conditions. Therefore, the early indications of changes

provided by the temporal analysis are beneficial in get-

ting warnings and avoiding alarming situations.

3.4 Fatigue

Fatigue is caused by repeated loading and unload-

ing. The mechanism proceeds through cracks formed

when the load exceeded certain thresholds. Struc-

tures fracture suddenly when a crack reaches a critical

size. Stress-cycle (S-N) curves, also known as Wöhler

curves, are represented by a linguistic equation

IS(k) = log10(NC(k)), (6)

where the stress index IS(k) is obtained the stress based

on the torque measurements [21]. The scaling of the

logarithmic values of the number of cycles, NC(k) , is

linear. As the LE model is nonlinear, the LE based S-N

curve covers a wide operating range. The continuous

model (6) extends the principle of the Palmgren-Miner

linear damage hypothesis. In each sample time, τ , the

cycles NC(k) obtained from IS(k) by (6), and the result-

ing contribution τ/NC(k) is summarised to the previous

contributions in the risk analysis. Since the stress is not

constant for the whole cycle, the sample time is taken

as a fraction of the cycle time. The previous history can

be updated whenever the scaling functions are changed.

[22]

4 Discussions
Compact linear models enhanced with the nonlinear

scaling are used in the selected application cases. Re-

cursive data-based modelling is needed for making de-

cision online in varying operating conditions (Table

2): disturbances, activation of new phenomena, dif-

ferent operating conditions and material properties are

taken into account. Recursive algorithms are useful in

adapting the parameters within selected memory hori-

zons. Abrupt changes can be handled when the situa-

tion change is approved to be drastic.
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Table 2: Recursive adaptation in applications.

Application Phenomena Recursive analysis

Solar thermal collectors Daily and seasonal variations Temporal analysis

Cloudy conditions Fluctuations

Prognostics New phenomena activation Smoothly extending

scaling range

Wastewater treatment Several operating conditions Early detection with

temporal analysis

Fatigue Stress scaling Tuning of risk analysis

Temporal analysis provides early indications in slow

processes. Risk analysis is needed to set appropriate

labels for the calculation results.

Machine learning is integrated in the system in three

levels: (1) finding the appropriate time windows, (2)

interactions of the feasible levels, and (3) finding deci-

sion support when some feasible ranges need to change.

Selecting the time windows, sample times, frequencies

and the weights of different indicators are supported by

expert knowledge.

In applications, linear interactions can be widely

used together with the nonlinear scaling. This does not

need to be taken as a limitation, since the approach can

be understood as a data pre-processing for any type of

nonlinear models, including fuzzy and neural models.

Dynamic models are based dynamic structures. All the

variables, features and indicators are represented with

natural language.

5 Conclusions
The machine learning can focus on the variable spe-

cific analysis: algorithms for extracting features, tun-

ing parameters of the nonlinear scaling functions and

developing intelligent indicators can be integrated in

the machine learning approach. Several measurements

and sets of features can be analysed in parallel. The

decision-making required in the recursive analysis and

the adaptation solutions can be performed within the

machine learning. The algorithmic solutions can be im-

proved by using domain expertise and feedback infor-

mation through other methodologies of computational

intelligence.
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