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Abstract. In this paper we present a method for model
order reduction of microscopic models, i.e. models that
consist of a high number of entities that can interact and
cooperate with each other. Due to this high numbers
of entities such models are often highly computationally
expensive. But classic model order reduction techniques
often use the equations the models are based on to sim-
plify the model and make it more performant. These ap-
proaches are not applicable for microscopic models. We
present a data-based approach for model order reduc-
tion using radial basis functions and analyze the specifics
and opportunities of model reduction for microscopic
models. As a case study Conway’s Game Of Life is used.

Introduction

Microscopic models are typically comprised of a high

number of entities that interact with each other in a cer-

tain way. In contrast to macroscopic models where the

global behavior of the system is described, the dynam-

ics of a microscopic model emerge through the defini-

tion of the single entities and their interaction. On the

one hand the high number of entities results in com-

putationally expensive simulations on the other hand

this usually leads to a high number of parameters that

define the behavior of the model. Different modeling

approaches lead to microscopic models, for example

cellular automata (CA) or agent based modeling ap-

proaches (ABM). For this paper we chose to study CAs,

specifically Conway’s Game of Life.

Parametrized model order reduction (PMOR) aims

at reducing the computation time of a parametrized

models. Application fields include control theory, op-

timization or statistical analysis. There are many differ-

ent approaches that use the underlying model equations

(for example see [1], [2], or [3]), which is not suitable

for microscopic models as the underlying equations are

not available directly. The most promising approaches

that are based on interpolation and are independent of

the availability of model equations are techniques that

use radial basis functions (RBF) [4]. This approach is

based on already available simulation results at other

parameter constellations and uses interpolation to ap-

proximate the simulation result at a given parameter set.

In this paper the different possibilities of applying

RBF interpolation on data generated from microscopic

models is investigated. Conway’s game of life is used as

a stand-in for a population model. The analysis focuses

on different possibilities to use the generated simulation

results in order to create a suitable interpolant and the

results are compared to each other.

1 RBF Interpolation

A closer view of the theory of radial basis functions can

be found in [5] or [6]. We summarise some important

results.

A function ψ :Rd →R is called radial, if there exists

a univariate function ϕ : R→ R with

ψ(x) = ϕ(‖x‖) ∀x ∈ R
d (1)

where ‖ ·‖ is a norm on R
d , usually the euclidian norm.

An interpolation problem using radial basis func-

tions can be formulated as follows:

Given a set of points {x1, . . . ,xn} (called centers)

and a function f : Rd →R, for which the function eval-

uations f (xk), k = 1, . . . ,n at the centers are known, an
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interpolant s f of f is given by

s f (x) :=
n

∑
k=1

ak ·ϕ(‖x− xk‖). (2)

s f must fulfill the interpolation conditions s f (xk) =
f (xk), k = 1, ...,n

The problem leads to a linear system for ak:

Aϕ ·

⎛
⎜⎝

a1

...

an

⎞
⎟⎠=

⎛
⎜⎝

f (x1)
...

f (xn)

⎞
⎟⎠ (3)

with

Aϕ :=

⎛
⎜⎝

ϕ(‖x1 − x1‖) · · · ϕ(‖x1 − xn‖)
...

. . .
...

ϕ(‖xn − x1‖) · · · ϕ(‖xn − xn‖)

⎞
⎟⎠ (4)

Obviously Aϕ is symmetric. It can be shown that

the matrix is positive definite for arbitrary, distinct

x1, . . . ,xn ∈ R
d for a certain group of functions. These

functions are called (conditionally) positive definite, ex-

amples include:

• Linear:

ϕ(‖x‖) = ‖x‖ (5)

• Gaussian:

ϕ(‖x‖) = e−
‖x‖2

ε2 (6)

• Multiquadric:

ϕ(‖x‖) =
√

1− ‖x‖2

ε2
(7)

While gaussian functions are positive definite i.e.

c�Aϕ c > 0 (8)

for arbitrary c �= 0 ∈ R
n, linear and multiquadric func-

tions are conditionally positive definite of order 1. This

means that c has to additionally fulfill

n

∑
k=1

ck = 0. (9)

This can be directly incorporated in (3) by adding an

extra equation, which leads to

(
Aϕ 1n×1

11×n 0

)
·

⎛
⎜⎜⎜⎝

a1

...

an
d

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

f (x1)
...

f (xn)
0

⎞
⎟⎟⎟⎠ (10)

.

The shape parameter ε for the gaussian and multi-

quadric functions has to be chosen carefully, because

the quality of the approximation is highly dependent on

this parameter.

2 Case Study
Conway’s Game of Life [7] is one of the most famous

cellular automata. It is defined on a rectangular grid

with 2 possible states {dead, alive}. The update rules

are defined as follows:

• A cell that is alive stays alive if 2 or 3 neighboring

cells are alive otherwise it dies.

• A cell that is dead is brought to life if there are ex-

actly 3 living cells in its neighborhood. Otherwise

it stays dead.

As neighborhood the Moore-neighborhood (8 neighbor-

ing cells, the 4 directly adjacent and the 4 diagonal ad-

jacent cells) is used. The behavior of the model is de-

pendent on the initial states of the cells and it could be

called very chaotic as a change of the initial state in

a single cell can lead to huge differences after several

time steps.

Typically the results of the game of life model are

analysed based on the spatial distribution of the living

cells over time. But the model can also be viewed as a

population model, where the number of living entities is

of interest. So the analysis of simulation results can be

performed on an aggregated level by counting the living

cells in every time step, a similar look at the game of life

was done in [8]. For the experiments the game of life

is simulated on a 50× 50 grid. The time evolution is

observed over 50 time steps. For the initial conditions

each cell is given a probability of 0.3 to be alive at t = 0,

an overview is given in Table 1.

Figure 1 depicts the time evolution of the number

of living cells for various simulation runs using the pa-

rameters given in Table 1. While the chaotic behavior

of the game of life is evident in the evolution as well,

it can be seen that the basic behavior of the evolution is
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grid (m×n) 50×50

time steps (tend) 50

init. prob. living (p) 0.3

Table 1: Basic parameters for game of life.

similar for most runs. Throughout the paper the evolu-

tion (pop) will be given as relative frequency of living

cells against the number of total cells in the cellular au-

tomaton (m ·n= 2500). It can be seen as timeseries with

51 entries corresponding to times t = 0, . . . ,50.
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Figure 1: Time evolution of living cells for various simulation

runs.

As a measure for the distance between simulation

runs s1,s2 the Frobenius norm is used:

d(s1,s2) = ‖IC1 − IC2‖F (11)

where IC1, IC2 ∈ {0,1}50×50 are the initial condition

matrices of the respective simulation runs.

3 Experiments
During the experiments two aspects were investigated:

• influence of number of used interpolation points

• influence of minimal distance between an evalua-

tion point and an interpolation point.

A single experiment was built the following way:

1. Fix the minimal distance between an evalua-

tion point and an interpolation point (dmin ∈
{1, . . . ,20}).

2. Randomly create 10 evaluation points (epi) and the

evolution of the number of living cells popi(t) as

reference.

3. Create an interpolation point (ipi, j) for each epi
and add them, as well as their corresponding evo-

lutions popi, j(t), to the set of interpolation points.

4. Perform the interpolation on the current set of in-

terpolation points and calculate the errors between

the interpolated population evolution (popi(t)) and

its reference popi(t).

5. Repeat steps 1-4 20 times.

The presented experiment setup results in a se-

quence of interpolations that use more and more simu-

lation results as interpolation points (10 in the first iter-

ation and 200 in the last one). Additionally, it is ensured

that for each evaluation point exactly one simulation re-

sult with the given distance is added at every iteration.

The error at an evaluation point is calculated as

erri =
∑tend

t=0 ‖popi(t)− popi(t)‖2

tend +1
(12)

and the error of an iteration of the experiment is given

as the mean error over all evaluation points.

3.1 Direct Interpolation

For direct interpolation, i.e. directly calculating the re-

sulting evolutions at the given evaluation points, 2 ap-

proaches can be distinguished:

• The first idea is to directly interpolate the popu-

lation evolutions. This means to directly take the

initial conditions of the simulation runs as input of

the interpolation and the evolutions as the output.

s f : {0,1}50×50 → R
51 (13)

• The second idea is to take the initial conditions and

the points in time as input for the interpolation and

getting the population size (number of living cells)

at a specific point in time as an output.

s f : {0,1}50×50 ×N→ R (14)

For the direct interpolation the use of linear func-

tions and multiquadric functions yielded the best re-

sults. So they are presented here. For the multiquadric

function ε = 1 was chosen.
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Figure 2: Interpolated time series of a single evaluation point using interpolation data with dmin = 1 and linear function.
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Figure 3: Error of interpolation over used simulation results

for dmin = 1.

Figures 3 and 4 show the errors of the presented ap-

proaches using linear and multiquadric RBF-functions.

While the errors for the time series approach are basi-

cally the same for the different used functions, the er-

rors for the multiquadric pointwise approach are higher

than for the linear pointwise approach. It is also more

dependent on the minimal distance to the next interpo-

lation point. In order to gain a closer look at the emer-

gence of the errors Figure 2 shows the results of a sin-

gle interpolation using the linear function. Addition-

ally, the results of using different numbers of interpo-

lation points are depicted, as the minimal neighboring

distance dmin = 1, i.e. the best possible data, was used.

It can be seen that the time series interpolation follows

the chaotic behavior of the underlying evolution much
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Figure 4: Error of interpolation over minimal neighboring

distance for 200 used interpolation points.

more closely than the pointwise interpolation. One pos-

sible explanation is that if all points in time are used as

interpolation points separately they have a much higher

impact on the interpolation result, especially if the dis-

tance to the other data points is relatively high.

It is to note, that the pointwise approach results in

much more interpolation points as input data. This

leads to a significantly bigger interpolation matrix Aϕ
for which the solution of (3) and (10), respectively, are

much more computationally expensive. So even in the

case where the pointwise interpolation results in better

approximations than the time series approach it has to

be assessed if the higher accuracy outweighs the signif-

icantly higher computational costs.

SNE 32(2) – 6/2022



83

Rößler and Popper Model Order Reduction of Deterministic Microscopic Models

Figure 5: Iteratively interpolated time series of a single evaluation point using interpolation data with dmin = 1.
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Figure 6: Error of iterative interpolation over used

simulation results for dmin = 1.

3.2 Iterative Interpolation

Another possible ansatz is to not directly interpolate the

time evolution of the living cells, but to interpolate a

single time step of the game of life, i.e. interpolate ev-

ery single resulting state on the grid separately:

s f : {0,1}50×50 →{0,1}50×50 (15)

The time evolution results from the repeated evaluation

of the interpolation at the result of the previous inter-
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Figure 7: Error of iterative interpolation over minimal
neighboring distance for 200 used interpolation
points.

polation and adding up the states of the resulting state

matrix. Again it can be differentiated between differ-

ent approaches. x(t) ∈ {0,1}50×50 is used as the state

matrix at time t = 1, . . . ,50

• Using the output of the interpolation directly.

x(t) = s f (x(t −1)) (16)
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• Projecting the result to the interval [0,1].

x(t) = max{min{s f (x(t −1)),1},0} (17)

• Rounding the result to 0 or 1. ([·] stands for the

rounding operator)

x(t) =
[
max{min{s f (x(t −1)),1},0}] (18)

For the iterative interpolation the use of linear func-

tions and gaussian functions yielded the best results.

For the gaussian function ε = 5 was chosen.

Figures 6 and 7 show the error curves for the pre-

sented approaches. The graphs show that there is no

convergent behavior for the error. Even worse espe-

cially the use of more simulation results for the inter-

polation can lead to worse results. There are two ex-

planations for this. First RBF-interpolation often leads

to ill-conditioned problems, and second the present in-

terpolation is very sensitive to single data points. This

results, in addition to the previously mentioned chaotic

behavior of the game of life, to the observed behavior

of the error. Generally the magnitude of error is about 2

orders higher than the error of the direct interpolation.

Despite these discouraging results, Figure 5 shows

that the gaussian results that are projected to [0,1] are

oscillating and don’t predict the population evolution of

the game of life. The rest of the results, on the other

hand, can indeed approximate the trajectory of the sim-

ulation result.

Reference Iterated linear interpolation

Figure 8: Spatial distribution of living cells at t = 50 for the
reference simulation (left) and the linear
interpolation with rounding (right).

Another characteristic of this approach is, that the

spatial distribution of the living cells is approximately

preserved during interpolation as can be seen in Figure

8. This characteristic could lead to new ways how mi-

croscopic models could be analysed.

4 Conclusion
We presented different approaches to interpolate sim-

ulation results of microscopic population models. As

a test case Conway’s Game of Life was used. The re-

sults show, that each of the presented approaches has its

own perks and problems, but the overall conclusion is

that the methods lead to promising results that should

be further investigated.

Especially the iterative approach, that interpolates

every state separately, seems promising as it not only

approximates the time evolution of the population but

can also approximate the spatial distribution within the

model.

Future work will focus on error prediction and on

ways to automatically adjust the shape parameter ε .
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