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Abstract. In this study a method for uncovering con-
sciousness in complete locked-in syndrome (CLIS) pa-
tients is proposed. The main characteristic of CLIS pa-
tients is sufficiently intact cognition, but complete paral-
ysis. It is, thus, vital to develop alternative means of
communicating with CLIS patients, and brain-computer
interfaces offer a possible platform to do so. A major is-
sue in the study of consciousness in CLIS patients is that
there is no certitude regarding their actual state of con-
sciousness. Existing methods provide only a probability
of what the states of the patients might be at each mo-
ment. This paper proposes a hybrid system based on the
combination of complex coherence, sample entropy and
Granger causality to uncover the underlying state of con-
sciousness in a CLIS patient from electrocorticography
signals. The contribution of each method to the system
is determined using machine learning techniques. The
aim of the research is to increase the probability of cor-
rectly detecting the patients’ consciousness states and,
ultimately, use that to develop a reliable brain-computer
interface-based communication tool.

Introduction

Locked-in syndrome (LIS) is a state where patients are

fully conscious but are unable to produce any speech

or perform any muscle movements. Although it is not

a disorder of consciousness, LIS is frequently misdiag-

nosed as one. One such a case was a patient who was

considered in an unresponsive wakefulness syndrome

(UWS) for 20 years [1]. Patients in a LIS state may still

be able to move their eye muscles and can, thus, com-

municate using eye movements. However, even this

limited communication becomes impossible when pa-

tients enter a complete locked-in state (CLIS) [2], dur-

ing which it is thought that cognitive function and con-

sciousness are maintained, but all muscle control is lost.

Even though no means of communication is available to

interact with CLIS patients, some attempts have been

made using electroencephalography (EEG) and Near

Infrared Spectroscopy (NIRS) [3], but not without con-

troversy [4]. The most important limitation in any such

approach is the lack of “ground truth”. It is not pos-

sible to ascertain the “true” level of consciousness as

the patients cannot express their will or answer in any

manner.

We present here a general approach that combines

different approaches to uncover the state of conscious-

ness in a CLIS patient from continuously recorded elec-

trocorticography (ECoG). The key advantage of this

study is that the all-important “ground truth” is acces-

sible and can provide objective means of detecting the

presence of consciousness in such patients. We were

able to obtain such a “ground truth” from a CLIS pa-

tient, who successfully communicated and answered

patient-specific questions asked by an investigator us-

ing a brain-computer interface system. To the best of

our knowledge, there is no other such dataset in exis-

tence. Our ultimate goal is to develop a method in order

to detect consciousness in CLIS patients to re-establish

communication during the time they are conscious.

The paper is organized as follows. The idea behind

the general approach is first presented using a modus

operandi. The methods that have initially been inves-

tigated as part of this approach, namely complex co-
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herence, multiscale entropy and Granger causality, are

then described. Preliminary results are presented and

discussed, with considerations regarding future devel-

opment of the proposed approach.

1 Modus Operandi
To uncover the state of consciousness in a CLIS pa-

tient from continuously recorded electrocorticography

(ECoG) and with a priori knowledge of the “ground

truth”, we propose the use of a hybrid system incor-

porating a combination of feature extraction method-

ologies (in these initial investigations we use complex

coherence, multiscale entropy and Granger causality)

and machine learning (e.g. reinforcement learning to

capture inter-subject variability) to detect the level of

consciousness (Figure 1). The proposed system is mod-

ular and can, thus, incorporate additional combinations

of consciousness detection algorithms to augment de-

tection accuracy.

Figure 1: Scheme for the hybrid approach using three
different processing systems.

2 Methods
2.1 Dataset

The data was obtained from a 40-year-old male in a

complete locked-in state (CLIS). The patient was first

diagnosed with amyotrophic lateral sclerosis (ALS) in

1997 and entered CLIS 11 years later [5]. The dataset

comprises 24 consecutive one-hour recordings (i.e. 24

hours) of the patient’s intracranial brain activity (elec-

trocorticogram - ECoG), acquired with a 64-channel

amplifier (BrainAmp from Brainproducts GmbH, Mu-

nich, Germany) at a sampling rate of 500 Hz. The

ECoG grid electrodes were surgically placed on the pa-

tient’s left frontal and parietal lobes [1, 6], as shown

in Figure 2. The specific channel locations, as well as

the locations of the ground and reference electrodes, are

also shown in Figure 2.

(a)

(b)

Figure 2: Channel positions. (a) Channel names, with
functional recording channels shown in green, and
ground and references channels in yellow.
(b) Spatial location of surgically implanted ECoG
grid electrodes.

An auditory paradigm similar to [3] was performed

from 14:50 to 17:00, in which the patient was asked

open questions requiring a "yes" or "no" answer. The

questions covered a range of topics such as his mood

and feelings and his physiological status, for example:

"You feel good today?"/"You feel bad today?" or "Are

you German?"/"Are you Dutch?". During the session, a

pre-trained classifier was used to give feedback on the

predicted answer.
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2.2 Feature extraction: Complex coherence

Complex coherence, Cxy, at frequency f , of two signals,

x and y, is defined as the ratio [7]:

Cxy( f ) =
Sxy ( f )

√
Sxx ( f ) ·Syy ( f )

(1)

where Sxy( f ) is the cross power spectral density of the

signals, and Sxx( f ) and Syy( f ) is the auto power spectral

density of x and y respectively. Coherence is defined as

|Cxy( f )|2 and is typically used to measure the degree

of association between two time series at a specific fre-

quency f . Coherence ranges between 0 and 1.

Coherence has many applications in neuroscience,

such as measuring functional relationships between

pairs of brain regions. An increased functional interac-

tion between the underlying neuronal networks leads to

a higher value of coherence. The complex coherency

is to reduce the effects of volume conduction in the

brain [8]. Previous researches suggest that the brain

waves of locked-in syndrome patients are nearly sim-

ilar as those of healthy subjects [1]. For that reason, we

hypothesize that patients brain rhythms would to some

extent behave like the healthy subject’s ones.

The data was analysed using MATLAB R2018b

(The MathWorks, Natick MA, USA) and custom writ-

ten codes. Prior to any other processing, the data was

re-referenced to the mean and band pass filtered at fre-

quencies 0.5 to 50 Hz using a third order Butterworth

filter [9]. The signals were down-sampled to 100 Hz

afterwards to reduce the computation time. The signal

was subsequently partitioned into segments of 1-second

length. Finally, for each frequency band (delta: 0.5-

4 Hz, theta: 4-8 Hz, alpha: 8-12 Hz, beta: 12-30 Hz

and gamma: 30-50 Hz) and for each time segment, co-

herency values were computed according to equation

(1). A series of coherence matrices were, thus, ob-

tained, each matrix representing the coherence between

all pairs of electrodes at each time point. For each of

the frequency bands of interest, these sequences were

combined to produce a video file, thus facilitating vi-

sual inspection of any changes in the coherence over

time.

2.3 Feature extraction: Entropy

Entropy is a physical concept, which is related to the

total amount of disorder within a system. It can be

used for nonlinear dynamic analysis in both the time

and frequency domain to quantify the regularity (pre-

dictability) of a time series. The family of entropy-

based methods is frequently used in neuroscience ap-

plications [10, 11, 12].

Sample entropy. Sample Entropy (SampEn) is a

modification of Approximate Entropy (ApEn) proposed

by Richman and Moorman [13] to address some of the

limitations of ApEn. Specifically, the advantages of

SampEn over ApEn are data length independence and

non-inclusion of self-matches in the estimation (inclu-

sion of self-matches in ApEn result in an interpretation

of the signals as more regular than they are). SampEn
has been used in a number of neuroscience applica-

tions, including applications relating to consciousness,

such as evaluation of the patient’s depth of anaesthesia

(DOA) in surgery.

Consider a time series X = [x(1),x(2), . . . ,x(N)],
with a total of N samples. To estimate the SampEn,

the time series is divided into a group of m-

dimensional vectors (where m is the embedding dimen-

sion), um(1), . . . ,um(N −m), with um(i) = [x(i),x(i+
1), . . . ,x(i+m−1)], i = 1 . . .N−m+1. Define the dis-

tance, d[um(i),um( j)], between um(i) and um( j):

d[um(i),um( j)] =max |x(i+ k)− x( j+ k)| : 0 ≤ k ≤ m−1

(2)

A threshold, R = r ∗ SD, where SD is the standard

deviation of the time series X and r is the tolerance, is

set for the distance. SampEn(N,m,r) is then estimated

as

SampEn(N,m,r) =− log
Am(r)
Bm(r)

(3)

where:

Bm(r) = (N −m)−1
N−m

∑
i=1

Bm
i (r) (4)

Am(r) = (N −m−1)−1
N−m

∑
i=1

Am
i (r) (5)

Bm
i be the number of vectors for which

d[um(i),um( j)] < R, and Am
i the number of vec-

tors for which d[um+1(i),um+1( j)] < R. Larger

values of SampEn indicate reduced self-similarity of

the series and increased time series complexity. In

contrast, smaller SampEn values indicate increased

self-similarity and lower complexity. Thus, we are

expecting that during periods of increased conscious-
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ness the SampEn values will be higher. The variables

m and r need to be set in advance. Commonly used

values for neuroscience applications are m = 1, ...,3
and r = 0.1,0.2 [13, 14].

Figure 3: Multiscale Entropy: the coarse-graining procedure
for scale 4.

Multiscale entropy. The method of Multiscale En-

tropy (MSE) analysis is useful for investigating com-

plexity, in contrast to regularity, in signals that have

correlations at multiple (time) scales. MSE is an exten-

sion of SampEn that was proposed by Costa et al. as a

way of reducing the effect of white noise that is present

in SampEn estimations [15, 16]. This is achieved by,

first, obtaining a coarse-graining of the data by averag-

ing the data points in non-overlapping windows of in-

creasing length (scale). SampEn is then estimated for

each coarse-grained series to obtain an index of com-

plexity over multiple time scales. An example of the

coarse graining for a scale of 4 is shown in Figure 3.

For the specific dataset, in order to reduce the com-

putation time the original ECoG signals were, first,

down-sampled to 125 Hz. Secondly, the down-sampled

signals were band pass filtered by a sixth order Butter-

worth Filter in 1-45 Hz. Finally, the multiscale entropy

algorithm is applied to obtain a level of consciousness.

For SampEn we have set m = 3 and r = 0.2, and for

MSE we have set the scale to 4. Similarly to SampEn,

higher (lower) values of MSE indicate higher (lower)

time series complexity. Thus, we are expecting that pe-

riods of consciousness will be characterised by higher

MSE values.

We applied sample entropy algorithm and accord-

ing to the relationship between parameters N and m, the

value of N between minimum 10m and maximum 30m

(when m = 3) is chosen [13, 14].

2.4 Granger causality

The concept of causality was first introduced by

Wiener [20], as a means of quantifying cause-effect in-

teractions between variables through modelling, predic-

Figure 4: Channels for frontal (blue) and posterior (maroon)
aggregate areas.

tion and assessment of the goodness-of-fit of models

that incorporate the past information from one variable

(cause) into the prediction of another variable (effect).

Wiener’s definition of causality is as follows: for two
simultaneously measured signals, if one can predict the
first signal better by incorporating the past informa-
tion from the second signal than using only informa-
tion from the first one, then the second signal can be
called causal to the first one. Causality was given a

formal mathematical framework by Granger, whereby

the goodness-of-fit was assessed through the variance

of the residual error of the fitted univariate and bivari-

ate models, i.e. the smaller the residual error variance,

the better the fit [21]. The common models of choice

for Granger causality are Autoregressive models (AR).

For a time series, Xj = [x1,x2, . . . ,xT ], a univariate AR

model is described by

x j(t) =
p

∑
i=1

aix j x j(t − i)+ ex j(t) (6)

where aix j are the estimated univariate AR coefficients

for an AR model of order p, and ex j is the residual (pre-

diction error) of the AR process. Similarly, a bivariate
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AR model is given by

x j(t) =
p

∑
i=1

aix jxk x j(t − i)+
p

∑
i=1

bix jxk xk(t − i)+ ex jxk(t)

(7)

where aix jxk , bix jxk , and ex jxk are the corresponding bi-

variate AR coefficients and residuals for the bivariate

AR model of order p.

By comparing the error variances of the univariate

and bivariate AR model residuals, one can then deduce

the causality as follows:

GC (Xj → Xk) = ln
σ2

Xj/Xj

σXj/(Xj ,Xk)
(8)

where GC(Xj → Xk) is the Granger causality from Xj
to Xk, while σ2

Xj/Xj
and σ2

Xj/(Xj ,Xk)
are the residual error

variances from the univariate and bivariate AR models

respectively. By definition, GC = 0 when the time series

are independent, and GC > 0 otherwise. From equation

(8) it can be seen that if the univariate AR model is a

better fit, then GC will be close to zero. In contrast, if

the bivariate model is a better fit, then GC will increase.

If GC is high in one direction, this signifies a unidirec-

tional causal relationship; if, however, GC is high in

both directions, then a bidirectional causal relationship

is inferred.

Causality has been widely applied in the field of

neuroscience [22], with a number of applications relat-

ing to the study of consciousness. More specifically,

it was found that the direction and strength of causal

relationships displays distinct changes between wake-

fulness and lack thereof, induced by either physiolog-

ical or pharmacological interventions and as captured

by EEG activity, with fronto-posterior causal interac-

tions identified as being of paramount importance [22,

23, 24]. The coupling between frontal and posterior

areas appears to be an important mechanism for loss

of consciousness, as a number of additional functional

measures, such as transfer entropy (TE) [25], coherence

and cross-dependence also indicate the breakdown of

functional connectivity between frontal and posterior

structures [26]. Coupling between anterior and poste-

rior brain regions and propagation of EEG activity from

fronto-central to posterior regions was also found dur-

ing deep sleep [27], and breakdown of effective connec-

tivity among specialized thalamocortical modules may

underlie the fading of consciousness in deep sleep [28].

Even though GC is traditionally defined for pair-

wise relationships, there are some limitations that must

be considered (see Bressler and Seth for a detailed re-

view [29]). For example, it is not possible to distin-

guish between direct and indirect causal relationships

when performing pairwise GC analysis. This is related

to the issue of spurious causality that can appear be-

tween two processes when both are influenced by exter-

nal sources that are not taken into account [30]. In order

to infer a more precise structural causality, in theory one

must include all sources of influence into the estima-

tion. However, in practice this is unfeasible and even

though multivariate versions of causality exist, these

minimise the effects rather than eliminate them com-

pletely. Wang and colleagues have shown that both pair-

wise and blockwise approaches to GC estimation give

consistent results [23]. As such, pairwise time-domain

GC analysis still remains a valid methodology, partic-

ularly when a blockwise approach is taken (i.e. the

two time series are aggregate activity from a number

of individual time series or the GC is itself an aggre-

gate of a number of pairwise GC estimates). An ad-

ditional consideration relating to AR modelling is the

issue of stationarity. Given that AR models assume a

stationary process, nonstationary EEG signals must be

analyzed in windows of short duration. It is widely ac-

cepted that EEG exhibits stationary properties for seg-

ments less than 20 seconds [31]. Therefore, common

practice involves EEG analysis in short segments.

Taking into account the above considerations and re-

lated studies, the EEG was analysed in 4-s windows,

overlapping by 2-s. For each 4-s segment, GC was esti-

mated for aggregate activity from “frontal” and “poste-

rior” areas, consisting of the channels indicated in Fig-

ure 4.

3 Results

The main purpose of the investigations was to com-

pare and contrast the ability of different methods, which

have commonly been applied in neuroscience appli-

cations, to correctly indicate periods of consciousness

in a CLIS patient corresponding to the "ground truth"

known a priori.

3.1 Imaginary coherence

Figure 5 shows an example coherence matrix obtained

for all combinations of the 64 ECoG channels. A visual

inspection of the resulting coherence matrices videos
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(a)

(b)

Figure 5: Coherence matrices of theta rhythms (a) during
unconsciousness; (b) during consciousness.

indicates changes in coherence in distinct directions.

To assess these direction changes further analysis was

performed using artificial neural networks [32]. These

changes across time are shown in Figure 6. On the

other hand, analysis on the coherence value between

each pair of channels across time revealed interesting

variations in the higher frequencies in some channels

(cf. Figure 6). The combination of the obtained results

suggests an interesting change of state around 15:15-

15:30 to 16:00-16:10. This corresponds to the time win-

dow during which the CLIS patient was consciously re-

sponding to the investigator’s questions, as reported by

the investigator.

3.2 Sample entropy

Multiscale sample entropy applied to analyze the cogni-

tion state in time domain. The higher multiscale sample

Figure 6: Motion direction changes in the theta bands.The
x-axis represents the time and the y-axis represent
the direction changes.

Figure 7: Coherence between one frontal and one parietal
channel. There is a distinguished decrease of value
between 15:10 and 16:10, and from 16:30 to
around 16:45.

entropy means more indicated for consciousness. Fig-

ure 8 shows the result is the average from all usable

channels, shows that the value of multiscale sample en-

tropy relative high in the period between 15:24-16:14.

This period coincides with the time window during the

experiment in which the investigators receive feedback

from CLIS patients.
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Figure 8: The result of Multiscale Entropy.

3.3 Granger causality

Figure 9 shows the estimated fronto-posterior GC in the

evaluation of the state of the locked-in patient based on

the recorded brain activity. Findings reported in the lit-

erature regarding the patterns of GC during wakeful-

ness and unconsciousness suggest that a unidirectional

increase in fronto-posterior GC is indicative of loss of

consciousness. Based on these findings, the GC pattern

observed during the period of 15:34 – 16:14 pm sug-

gests that the patient is awake during this period. This

period matches the period during which the CLIS pa-

tient was reported to have been communicating with

the investigator. Similar patterns of reduced fronto-

posterior GC can also be seen at various time points in

Figure 9, which seems suggestive of additional transient

periods of awareness.

4 Discussion

The methods presented here suggest a measurable

change of the consciousness level occurring approxi-

mately between 15:15-16:45. This coincides with the

period during which the CLIS patient was reported to

have been communicating with the investigator via a

brain-computer interface [5]. The probability of detect-

ing changes in the consciousness level of the CLIS pa-

tient can, thus, be increased by combining the results

of these methods. Such combination will reduce the

uncertainty that is inherent to characterisation of the

level of consciousness of CLIS patients, for which the

"ground truth" is rarely available.

Figure 9: Fronto-posterior GC. A pattern of increased
unidirectional fronto-posterior GC suggests
unconsciousness, while a reduced bidirectional
fronto-posterior GC suggests wakefulness. A long
period of wakefulness, as well as several periods of
transient wakefulness, can be identified.

5 Conclusion
In this paper, three approaches to detect conscious state

in a complete locked-in patient were presented. These

approaches will be combined in a hybrid approach with

machine learning in a brain-computer interface system

to ultimate establish a means of communication with

CLIS patients. The combination of the different ap-

proaches should increase the probability of correctly

detecting the patient’s state. Based on the data set used

in this paper, it has not only been shown even though

different methods reporting different time slice each,

but all around the same time slice the experimenter con-

firmed consciousness of the patient, the certainty of cor-

rectness of consciousness can be augmented by comb-

ing these three systems into one answer leading to the

whole time slice reported by the experimenter judging

the CLIS patient conscious.
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