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Abstract.  Modern sensorization, communication and 
computational technologies provide collecting and storing 
huge amounts of raw data from large cyber-physical sys-
tems. These data should serve as the basis to take better 
decisions at all levels (from the design to operation and 
management). Nevertheless, raw data need to be trans-
formed in useful information, usually in the form of predic-
tion models. Machine learning plays a key role in this task. 
Process industry is not alien to this digital transformation, 
although large processing plants present particularities 
that differentiate them from other systems. These differ-
ences, if neglected, can make machine learning for gen-
eral purpose fail in extracting the right information from 
data, leading thus to unreliable process models. As such 
models are the basis on which the ideas towards the cog-
nitive plant rely, this issue is of major importance for a 
successful full digitalization of the process industry. In this 
paper the authors discuss these aspects, as well as some 
suitable machine-learning approaches, through their ex-
perience gained from applying advanced engineering in 
an industrial case study. 

Introduction 
In the digital era, the impressing amount of data that can 
be stored, as well as the speed at which they can be 
stored, are expected to significantly impact the decision-
making procedures at all levels of a factory: from the pro-
cess design, through the operation and maintenance, to 
production scheduling and supply chain. Coordinating 
actions at all levels is the work towards reaching the full 
digitalized, cognitive and, ultimately, autonomous plant. 

However, in the process industries (those that process 
bulk materials or resources to transform them into products),  

these expected advances will not come alone by just col-
lecting huge amounts of data and presenting them in a 
nice view: data treatment and analytics is necessary to 
ensure the data quality. Moreover, models for reliable 
predictions need to be built upon such data, in order to be 
later used in advanced control, optimization and planning 
routines [1]. 

Once data quality is ensured, models are to be build, 
and the current trends from the big-data revolution seem 
to impose the wide set of machine-learning (ML) tech-
niques in all sectors. However, as the authors will illus-
trate in this paper, the direct application of an ML ap-
proach to a modelling problem in the process industry 
needs to be evaluated carefully. 

In this particular sector, production takes place in a 
set of complex (and expensive) process units, linking 
flows of materials and energy at large scale. Nonetheless, 
the process industry is not characterized by a scarce 
knowledge on the involved processes: researchers on 
Process Systems Engineering (PSE) [2] have been devel-
oping physical models (e.g., distillation columns) for de-
sign, simulation and decision-support solutions during 
several years. Although these models have limitations for 
use in real-time applications (computational complexity 
and/or fitness to actual plants), it is not sensible to throw 
out all this deep knowledge and replace it by deep learning 
machines [3]. Thus, one of the key challenges of ML to 
successfully penetrate in the process industry is develop-
ing methods and tools that are able to naturally embed the 
existing physical knowledge on the underlying processes. 

Researchers in PSE have already taken some steps 
forward in this path:  
a) developing hybrid or grey-box models (combination of 

first-principles laws and regression equations) which 
get a high matching level with the actual plant [4];  

b) proposing methodologies for robust data analysis/ 
 reconciliation [5]; and  

c) presenting approaches/tools for data-driven modeling that 
are tailored to the features of the process industry [6], [7]. 
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In the following sections, the authors discuss the 

above-mentioned issues with ML through an industrial 
case study that consists of building a prediction model for 
the fouling accumulation in the heat exchangers of a mul-
tiple effect evaporation plant. Some of the recently pro-
posed methodologies and software are tested on this case 
study, trying to give the reader a clearer vision on the po-
tential advantages as well as the existing limitations. 

1 Description of the Case Study 
and Motivation 
The case study is an evaporation plant in a cellulose 

fiber production factory, whose objective is to continu-
ously remove certain amount of water from an acid liquid 
inlet (called spinbath hereinafter) that comes from spin-
ning machines, the place where cellulose pulp is recov-
ered into fibers of desired properties.  

The plant layout, simplified in Figure 1, makes use of 
several heat exchangers in serial connection to heat the 
spinbath up to a temperature suitable to start the evapo-
ration by pressure drop. This pressure drop is first created 
in the evaporation chambers by induced vacuum, and 
later by further condensation in an attached surface con-
denser, creating thus a multiple-effect evaporation. The 
efficiency of these type of plants (live-steam consump-
tion per amount of evaporated water) is mainly deter-
mined by: 1) the performance of the cooling system and 
2) the fouling state in the heat exchangers (due to depo-
sition of organic residues present in the spinbath) [8]. 
Therefore, representative, but of limited complexity, 
models of these systems are needed to predict online the 
impact that the operation will have on the plant perfor-
mance over time. 

For such a task, a set of experiments were performed 
running the plant and the cooling system in different op-
erating conditions (setting different values for the main 
control variables: spinbath flow, temperature set point, 
cooling water flow). Moreover, in order to get infor-
mation on the fouling degradation in the exchangers over 
time, an extensive dataset corresponding to several 
months of operation (including stops for cleaning) has 
been also recovered from the collected plant historian. 

In this way, the modeler may be tempted to directly try 
to find black-box models which relate the live-steam con-
sumption with the input variables through raw measure-
ments. This involves some risks and limitations, as we 
will see later on. 

 
Figure 1: Schema of the evaporation plant with attached 

surface condenser as cooling system. 

2 Data Conditioning and 
Variable Estimation 

Everybody in the machine learning and data-analytics re-
search community claims that ensuring the quality of data 
is essential to extract sensible information: process meas-
urements need to be coherent and reliable. In industrial 
practice, however, it is not common to go beyond the 
standard filters to exclude faulty instrumentation (out of 
range sensors, communication loss, etc.) and to average 
data with the aim of mitigating the effect of noise to ac-
count for steady state in large-scale systems. 

A systematic method to detect and assign the quality 
of process data can be proposed from the Spanish 
AENOR-UNE norm 500540 [9], used to analyze data in 
meteorological stations. This method is based on several 
progressive levels of tests where each datum is associated 
to the highest quality level being passed, see Figure 2. 
Note that the more restrictive tests (thus, the ones ensur-
ing higher confidence data) are model based. 

 
Figure 2: Data quality and validation levels. 

Each level depicted in Figure 2 corresponds to the fol-
lowing quality tests: 
• Level 0: Communications. Check whether the data 

are recorded or not at the expected sampling time 
(problems in the sensor or in communications). 

• Level 1: Limits. Check that the datum is within in-
strument span and/or physical range. E.g., the maxi-
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mum values expected of the flowmeters will be de-
termined by a simple analysis of the flow capacity 
limit of the pipes. 

• Level 2: Trends. Consider the time changes of the 
data in consecutive sampling times. E.g., the level in 
a big tank cannot change faster than several centime-
tres by minute. 

• Level 3: Data reconciliation. With a basic first-
principle model of the plant, apply methods of (dy-
namic) data reconciliation (DR) and gross-error de-
tection [5]. This provides a reliable set of measure-
ments as well as estimations of unmeasured varia-
bles and parameters that are coherent with the pro-
cess physics. E.g., mass balances need to be fulfilled 
in each time instant. 

• Level 4: Time series & correlations. Consider the 
time series of the collected values for each variable 
[10]. E.g., a time-series model can be derived by an-
alyzing the historical data of the flows in a pipe, re-
lating them with valves, and the model output is later 
used to compare and validate newly recorded data. 

Fuzzy logic and set theory can be used to develop fil-
ters for the three first levels, based on comparison rules 
which are able to remove inconsistent data [11]. Different 
strategies and rules can be used, such as range and speed 
of change of the measurements, etc. Nevertheless, what 
really makes the difference in the authors’ opinion are the 
model-based tests, because they include process 
knowledge in the data processing. Of course, these in-
volve higher engineering effort for implementation, as 
relatively complex models of the plant/process (either 
first principles or time series) need to be previously build.  

After these quality tests, resource and key efficiency 
indicators can be defined upon reliable sets of measure-
ments to monitor the plant efficiency in real time [12]. 

2.1 Instrumentation Issues and DR in the 
Evaporation Plant 

When retrieving sensor data from the historian, the first 
issues usually arise: many of the collected flow measure-
ments were either “upper bounded” by the instrument 
range (span-related issue) or they were showing values 
higher than the actual flow, see Figure 3. In particular, 
this last problem was not caused by a biased instrument, 
but because of the improper location of the instrument 
itself: there was a bypass valve in the pipe after the flow-
meter, so a (non-constant) undetermined part of the spin-
bath was sent to another equipment. Hence, the actual 
flow was usually lower. 

 
a) Wrong measurement due to wrong sensor placement. 

 
b) Actual values exceeding the instrument range. 

Figure 3: Flow-measurement issues. Orange line:  
sensor values. Blue line: actual values. 

Realizing of such wrong values and the explanation took 
the authors a significant amount of time and several 
failed modeling attempts. However, most of these data 
passed the tests of range-based filters. Here we highlight 
the importance of the model-based tests, because suitable 
DR of these wrong measurements with mass-balance 
equations plus the rest of plant measurements provided 
the corrected values depicted in blue in Figure 3.  

Moreover, back to the end goal of predicting the foul-
ing in the evaporation plant, we already encounter an ad-
ditional issue: the long-term loss of efficiency, only re-
flected on a single output (the increase of live-steam con-
sumption) is masked with the cooling system perfor-
mance and the plant operation conditions (spinbath flow). 
Hence, the fouling effect is hardly identifiable by a direct 
ML approach with the available measurements. 

To overcome this issue, we also recalled dynamic DR 
[5], including the energy balances in the plant model, to 
estimate the lumped heat-transfer coefficient  in 
the exchangers over time [7]. ML techniques can be now 
applied to “discover” models upon these coherent estima-
tions, also called virtual measurements in the soft-sensors 
related literature. Details provided in the next section. 

3 Prediction Models and 
Constrained Regression 

Once reliable values for all process variables (states , 
outputs  and inputs ) are available, including coherent 
estimates of time-varying parameters and / or process un- 
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known inputs , any ML approach (e.g., artificial neural 
networks [4], canonical partial least squares [13], support 
vector machines [14], etc.) can be, in principle, a good 
candidate to build plant surrogate models in the general 
form = ; , , ,  regression parameters, (1) 

or submodels (equations being part of a larger model) re-
lating some variables  = ; , , ,  regression parameters, (2) 

At this point, there is a fundamental question to discuss: 
Even having reliable datasets for regression, are “stand-
ard” ML approaches enough to guarantee black-box 
models whose response is coherent with the process 
physics? Thinking on it, the answer to that question is in 
general NO, and the reason is given next. If one outlooks 
the training methods used by common ML tools, you will 
find that most of them rely exclusively on data, and that 
the performance of the black-box model to train is basi-
cally defined by the fitness to such data (plus suitable reg-
ularization to avoid overfitting, of course). In this way, 
although the data are coherent with the process physics 
(passing the tests in Section 3) and the model achieves a 
perfect fit to such data, there is no guarantee that its re-
sponse (even with regularized smooth models) takes val-
ues that do not violate basic physical principles at input 
values not contained in the training dataset. Indeed, a 
model can show good statistics (R2, RMSE, etc.) in val-
idation datasets, but it may still “predict” negative flows 
out of the training region (extrapolation issues) or a non-
monotonic response between consecutive inputs (inter-
polation issues). 

As the end purpose of surrogate or grey-box models 
is to be used for decision support in (economic) control 
and optimization routines (hence, mainly for interpola-
tion and extrapolation), the data-driven parts must be in 
accordance with the process physics [6], [15]. Therefore, 
some properties on the model response, such as bounds 
on the outputs and/or in their derivatives (monotony, cur-
vature, convexity, etc.) would like to be ensured, not only 
over the regression data but in the entire expected region 
of operation. Therefore, ML in the PSE framework needs 
to be extended to include additional constraints on the 
model. Constraints which ideally need to be enforced on 
infinitely many points belonging to the (usually local) 
plant operating region. Here is where the concept of con-
strained regression plays a key role. 

3.1 Constrained Regression 
Assume that a dataset of  samples over time for some 
outputs  (or, equivalently, estimations of those  in (2)) 
and some inputs , ,  is available. Then, a candidate 
model for regression  is sought such that a -measure 
of the error (e.g., -regularized or least squares) w.r.t. 
the data is minimized over a set of constraints : min ; , ,s. t. : ; , , 0  , ,           (3) 

Note that the additional constraints  specifying some 
desired features on the model response are locally en-
forced in a compact region  of the input 
space variables. These constraints may range from the 
simpler bounds on  ensuring, for instance, non-negativ-
ity, to the more complex bounds on the model derivatives 
(slope, curvature, convexity, etc.). Defined this way, (3) 
is a semi-infinite constrained nonlinear optimization prob-
lem, but it can be computationally tractable under some as-
sumptions [16]. Next, the authors briefly present two ap-
proaches and software available to handle (3), jointly with 
a discussion on their advantages and limitations. 

Symbolic regression.  In this approach, the functional 
form of the candidate model is assumed to be unknown a 
priori. Instead, the algorithm seeks to construct it from a 
set of predefined basis functions , e.g. 1, , , , log , . Once this set is specified, the 
lowest complexity function  that accurately fits the 
data is found from the selection of the more suitable basis 
in  via mixed-integer programming (MIP). The idea is 
to split the resolution of (3) in two stages: first, solving a 
data-driven constrained regression (i.e.,  is only 
checked on the points in the dataset) and, subsequently, 
testing the fulfillment of constraints  by solving a 
maximum-violation problem with the model already 
fixed from stage 1. Hence, if a point on the input space is 
found to violate  with the initially proposed model, 
such point is virtually added to the inputs dataset and the 
procedure repeats until no violation of the constraints is 
found in stage 2 [6]. 

If the basis functions are chosen such that they are 
affine in decision variables; note that this is a strong lim-
itation for the selection of some nonlinear basis functions 
in practice, like  (its time constant  needs to be fixed 
a priori, i.e., cannot be identified by the fitting algorithm); 
typically they are coefficients of a linear combination.  
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In this case, the problem to solve in stage 1 is compu-

tationally tractable (MIQP or MILP depending on the cho-
sen norm for the regression error, i.e., = 1 or = 2). 
For example, for input variables , problem (3) may be-
come: 

min, ( ( + + + +                                                  log + ))  s. t. :                         log 0  = 1, … ,             = 0, … ,5;           + + + + + ;  0,1  

(4) 

In this way, the basis functions are active when the cor-
responding binary variable =  1 and inactive other-
wise. Model complexity is specified by a parameter  
that is increased until a goodness-of-fit measure worsens. 
Afterwards, in step 2 an adaptive sampling methodology 
based on derivative-free global optimization techniques 
is used to identify points where the model is inaccurate 
and/or does not fulfill constraints - for the above case: max  + + + + log( ) +s. t. :  (5) 

Note importantly that this problem is in general nonlinear 
and nonconvex. 

This procedure is what the software ALAMO imple-
ments [18]. Although this approach involves iterations 
between MIP and NLP problems to global optimality 
(time consuming). 

Sum-Of-Squares (SOS) regression.  An alternative ap-
proach is casting problem (3) as a polynomial SOS opti-
mization one [20] under mild assumptions. Of course, the 
main limitation of this approach is that the candidate 
models ( ) need to be polynomial in their arguments, 
i.e., the “potential set of basis functions” would be 
formed only by monomials in the input variables up to a 
predefined degree (the approach is recently extended in 
[19] to allow including some “smooth” non-polynomial 
basis via polytopic bounding). Nonetheless, paying this 
price worth it, because the resulting (single) optimization 
problem is convex, and the extra constraints on the model 
response and/or in its derivatives are naturally enforced 
(either globally, or locally in a region  defined by poly-
nomial boundaries) with full guarantee of satisfaction, no 

matter how many samples are to be fitted, or which re-
gion was covered by the experiments. In this way, high-
order polynomial regressors can be used with guarantees 
of well-behaved resulting function approximators, com-
pared to most options in prior literature. For instance, a 
SOS version of the above (4)-(5) could be: min, ,     s. t.:  + + + +( ) 1 0 = 1, … , ;     + + + +                             ( ; ) (5 ) is SOS     = 0, … ,5;  ( ; ) + + , , is SOS   

(6) 

Here, well-known Schur complement and Positivstellen-
satz results (see [7] for details) have been used to cast the 
quadratic objective function (with extra decision varia-
bles ) and the local enforcement of the constraint in a 
region : | | 5  (with extra decision variables 

), respectively. Note that the highest degree of the pol-
ynomial SOS multipliers ( ) is chosen such that deg ( ; ) (5 ) , being  the degree of the 
candidate polynomial model to fit. 

In this case, although no automatic selection of the 
suitable monomials among a potential set is done via 
MIP, note that standard regularization on the model co-
efficients  can be trivially included in the objective 
function, for instance with a metaparameter  that pro-
gressively weights the coefficients corresponding to 
high-degree monomials. 

3.2 Application to the Case Study 
Recall from Section 2 that the aim is to get data-driven 
prediction models of limited complexity for the cooling 
power and the fouling evolution in the plant. 

Modeling the cooling power provided by the sur-
face condensers.  The actual cooling power can be 
computed from the data collected by the temperature sen-
sors at the water inlet ( ) and outlet ( ) of the SC, 
and by the flowmeter measuring the volumetric water 
flow ( ) send through the SC, as follows: = 4.183600 ( ) (7) 
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Thus, what is missing to fully predict the cooling 

power is a model that relates the outlet temperature  
with the water flow  and the inlet temperature .  

To model that, a polynomial candidate function up to 
degree 3 in  was proposed to experimentally fit the rec-
orded temperature difference  [21]: = + + +  (8) 

The fitting of (8) to the experimental data was done first 
by standard LS unconstrained regression, obtaining the 
resulting blue curves depicted in Figure 4. As it can be 
seen, when computing the cooling power with the ob-
tained model, it shows a behaviour incoherent with the 
physics at high flows (region highlighted in the dashed 
box), i.e. the cooling power cannot decrease at higher 
flows. However, the model fitted the measured outlet 
temperature quite well (  was nearly constant during 
the experiments), with a monotonic response in fact, but 
this didn’t avoid the wrong response in . 

 
Figure 4: Fitting the cooling power developed by the SC  

at different water flows. 

Then, SOS constrained regression was recalled in a sec-
ond attempt, adding the constraint  d d > 0  to 
enforce the known physical knowledge on the response. 
Note that derivatives of polynomials are also polynomi-
als that can be directly checked for SOS. Now, the ob-
tained model (red curves in Figure 4) behaves as ex-
pected, without showing any significant fitting degrada-
tion w.r.t the obtained by standard LS. 
Modeling the heat transfer in exchangers.  The goal 
here is to build up a model to predict both the influence 

of the spinbath flow  and the operation time since last 
cleaning task  on the lumped heat-transfer coefficient 

 (i.e. the fouling effect). Here the authors made use of 
the  estimations provided by DR, already mentioned 
in Section 3 (omitted for brevity, see [7]). 

The first issue arose when selecting sets for training 
and validation: although the recorded dataset looked 
huge (plant historian of 7-months length at 5-min. sam-
pling time), the plant was usually running at high flows. 
Therefore, significant information of the convection and 
fouling behaviours at medium/low flows was missing. 

In order to palliate this issue, a few experiments were 
executed on purpose when possible (normally it is not 
possible to “play” with an industrial plant in continuous 
production). Consequently, as often happens in the pro-
cess industry, the authors thought that they will be facing 
“big-data stuff” in principle, but they ended up working 
with subsets of 22 samples for training plus 20 for vali-
dation, depicted in the figures below. This is nearly all 
the information available in the region of operation. 

With this material, if no additional information about 
the process physics is included in the fitting problem, 
standard ML techniques fail in obtaining reliable black-
box models in the regions where there is a lack of data to 
fit. See for instance problems of overfitting with standard 
LS in Fig. 5a, and problems of abrupt-falling responses 
(even going negative) where data is missing in Fig. 5b, 
despite using regularization techniques. 

On the contrary, constrained regression in Section 4.1 
fixed these modeling issues. We tested symbolic regres-
sion using the software ALAMO, with a large set of basis 
functions including monomials up to degree 4, rational 
powers, square roots, logarithms and exponentials. We 
also set up the additional constraint ; , > 200 
in the local-input region . Thus, choosing the Akaike’s 
criterion to avoid overfitting, we got the model (Fig. 6a): = 2.27 0.9095 + 84.978 log( )42.525  

(9) 

Going by the way of SOS constrained regression, pro-
posing a candidate polynomial model of degree = 4 
and setting (local) bounds on its partial derivatives 0 < ; , < ,   < ; , <0  ,   

(10)

to enforce a smooth and physically-coherent response, 
the model of Figure 6b is got [7]. 
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a) Least-squares fitting 

 
b) Least squares with regularization 

Figure 5: Fitting the heat-transmission coefficient by 
standard procedures. 

Note that such model (11), got by SOS-constrained 
regression, keeps the desired physical features without 
incurring in significant fitness deterioration w.r.t. “the 
best” obtained by unconstrained LS regression with 
regularization, see the Table 1. = 7.06e + 2.95e +1.63e 2.42e + 1e  2e 1.585e  + 5.1e0.0138 + 0.089 + 0.232 + 0.62710.87 22.78 + 1000  

(11) 

4 Final Remarks 
Digitalization in industrial sites is not just smart sensors, 
huge databases, and nice monitoring tools. In the authors’ 
opinion, the step beyond current practice is to really ex-
tract and combine all the available process information to 
take better decisions in real time. 

  
a) Fitting using software ALAMO 

 
b) Fitting by SOS regression 

Figure 6: Fitting the heat-transmission coefficient by con-
strained regression methods. 

 

Method Train. 
Err

. 
Val. Err. Total 

Decay 

LS 14.452 15.226 29.719 7.17% 
LS reg. 13.448 14.282 27.730 - 
ALAMO 18.061 18.402 36.463 31.5% 
SOS CR 14.751 13.362 28.113 1.38% 

 
Table 1: Absolute least squared error to data accumulated  

 by the presented models. 

In this paper, the authors discussed how essential is in-
corporating process knowledge with sampled data in or-
der to really extract sensible information, which can be 
later use for decision support in the process industry. For 
this task, model-based tests to detect (and improve) the 
data quality (robust DR methods in particular) as well as 
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constrained-regression approaches proven to be quite ef-
fective in our case study. 

Constrained regression is especially relevant/useful 
when data is scarce, or when there are lots of samples but 
containing nearly the same information about the pro-
cess. It is also worth to remark that incoherent model re-
sponses could be detected (and corrected ad-hoc perhaps) 
in two- or three-dimensional models, but this would be 
impossible in larger multidimensional systems. 

 
Acknowledgement. This research received funding 
from the EU Horizon 2020 research and innovation pro-
gramme under Grant No. 723575 (CoPro), and from the 
Spanish MICINN with FEDER funds via the research 
project InCO4In (PGC2018-099312-B-C31). 

References 
[1] Krämer S, Engell S (editors). Resource efficiency of pro-

cessing plants: monitoring and improvement. Weinheim: 
Wiley-VCH, 2018, 504 p. 

[2] Grossmann IE, Harjunkoski I. Process systems Engineer-
ing: Academic and industrial perspectives. Computers 
 & Chemical Eng. 2019; 126: 474–484.  
doi: 10.1016/j.compchemeng.2019.04.028. 

[3] Witten IH, Frank E, Hall MA. Data mining: practical 
machine learning tools and techniques. 3rd ed.  
Burlington, MA: Morgan Kaufmann, 2011, 629 p.  

[4] Zorzetto LFM, Filho RM, Wolf-Maciel MR. Processing 
modelling development through artificial neural net-
works and hybrid models. Computers. & Chemical  
Eng. 2000; 24(2-7): 1355–1360.  
doi: 10.1016/S0098-1354(00)00419-1. 

[5] de Prada C, Sarabia D. Data Pre-treatment. In: Krämer 
S., Engell S., editors. Resource efficiency of processing 
plants: monitoring and improvement.  
Weinheim: Wiley-VCH, 2018, p 181-210. 

[6] Cozad A, Sahinidis V, Miller DC A combined first-prin-
ciples and data-driven approach to model building.  
Computers. & Chemical Eng. 2015; 73: 116–127.  
doi: 10.1016/j.compchemeng.2014.11.010. 

[7] Pitarch JL, Sala S, de Prada C. A Systematic Grey-Box 
Modeling Methodology via Data Reconciliation and SOS 
Constrained Regression. Processes. 2019; 7(3): 170. 
doi:10.3390/pr7030170. 

[8] Marcos MP., Pitarch JL, de Prada C. Integrated Process 
Re-Design with Operation in the Digital Era: Illustration 
through an Industrial Case Study.  
Processes 2021; 9(7):1203.  
doi:10.3390/pr9071203. 

[9] AENOR. Automatic weather stations networks: Guid-
ance for the validation of the weather data from the sta-
tion networks. Real time validation. UNE 500540:2004. 

 
 

[10] Blanch J, Puig V, Saludes J, Quevedo J. ARIMA Models 
for Data Consistency of Flowmeters in Water  
Distribution Networks. IFAC Proc. Vol. 2009;  
42(8): 480–485.  
doi: 10.3182/20090630-4-ES-2003.00080. 

[11] Last M, Kandel A. Automated Detection of Outliers in 
Real-World Data. In Proc. of the second inter. conf on 
intelligent technologies. 2001 Nov; Bangkok. 292-301. 

[12] Kujanpää M, Hakala J, Pajula T, Beisheim B, Krämer S, 
Ackerschott D, Kalliski M, Engell S, Enste U, Pitarch JL. 
Successful Resource Efficiency Indicators for process in-
dustries: Step-by-step guidebook. Espoo: VTT Technical 
Research Centre of Finland, 2017, 78 p. 

[13] Indahl UG, Liland KH, Naes T. Canonical partial least 
squares-a unified PLS approach to classification and  
regression problems. J. of Chemometrics. 2009;  
23(9): 495-504. doi:10.1002/cem.1243. 

[14] Yan W, Shao H, Wang X. Soft sensing modeling based 
on support vector machine and Bayesian model  
selection. Computers. & Chemical Eng. 2004;  
28(8): 1489–1498.  
doi: 0.1016/j.compchemeng.2003.11.004. 

[15] Tulleken HJAF. Grey-box modelling and identification 
using physical knowledge and bayesian techniques.  
Automatica. 1993; 29(2): 285-308.  
doi: 10.1016/0005-1098(93)90124-C. 

[16] Stein O. Bi-Level Strategies in Semi-Infinite Program-
ming. In: Pardalos P., editor, Nonconvex Optimization 
and Its Applications, vol. 71. Boston, MA: Springer US, 
2003, 202 p. 

[17] Hurvich CM, Tsai C. A corrected Akaike information 
criterion for vector autoregressive model selection. 
J. of Time Series Analysis. 1993; 14(3): 271-279.  
doi: 10.1111/j.1467-9892.1993.tb00144.x. 

[18] Wilson ZT, Sahinidis NV. The ALAMO approach to 
machine learning. Computers. & Chemical Eng. 2017; 
106: 785–795. doi: 10.1016/j.compchemeng.2017.02.010 

[19] Pitarch JL, Montes DA, de Prada C, Sala A. Application 
of SOS-constrained regression to model unknown reac-
tion kinetics. IFAC-PapersOnLine. 2021;  
54(3): 395-400.  
doi: 10.1016/j.ifacol.2021.08.274. 

[20] Papachristodoulou A, Anderson J, Valmorbida G, Prajna S, 
Seiler P, Parrilo P, Peet MM, Jagt D. SOSTOOLS:  
Sum of squares optimization toolbox for MATLAB. 2013. 
http://arxiv.org/abs/1310.4716 

[21] Marcos MP, Pitarch JL, de Prada C, Jasch C. Modelling 
and real-time optimisation of an industrial cooling-water 
network. In 22nd Inter. Conf. on System Theory, Control 
and Computing. IEEE: 2018 Oct; Sinaia. 591–596.  
doi: 10.1109/ICSTCC.2018.8540655. 


