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Abstract. Due to extensive usage of stochastic simula-
tion models correct execution of Monte Carlo simulation
has become more and more important. Hereby the un-
known real mean of the simulation result is estimated
by the sample mean of a large number of simulation
evaluations. Unfortunately, this procedure is often done
carelessly. Modellers commonly use replication counts
without scientific justification and sometimes underesti-
mate the consequences of a bad or even wrong choice:
if it is chosen too small, the sample mean is not a repre-
sentative approximation for the regarded mean, and not
only the simulation output, but also any kind of simula-
tion analysis will not be representative at all. If the num-
ber is chosen too high, the Monte Carlo experiment will
consume unnecessary computation time, which could,
exemplarily, be invested into deeper model analysis in-
stead. In this work, we present four methods that al-
low calculating an optimal replication number for Monte
Carlo simulation and getting an image about the error
between the estimated and the real mean value. The
methods are furthermore evaluated on a simple case
study, a stochastic cellular automaton model for simu-
lation of an infectious disease.

Introduction

During the last decades stochastic microscopic simu-

lation methods like agent-based modelling or discrete

event simulation established as standard tools for de-

cision support. Even though the actual distribution of

the simulation results of such models carries extremely

valuable information, usually the mean value of the

simulation’s state variable is regarded as the simula-

tion output and approximated using the sample mean

of Monte Carlo (MC) experiments with the simulation.

Unfortunately, this extremely important procedure

is often regarded as trivial and therefore sidelined.

Modellers often feel so annoyed by waiting for dozens

of simulation runs to be finished and calculating the

sample mean that they do not want to spend any effort

on carefully choosing the only parameter of this proce-

dure, namely the number of repetitions. Sentences like

“We repeated the simulation M times to flatten stochas-
tic effects” are often found in literature without any

scientific justification, why M should be a meaningful

number of repetitions. Some examples:

• [1] Ten replications . . . were performed
. . . Increasing the number of replications shows no
significant effect on this error.

• [2] The averaging . . . was carried out on 500 MC
runs.

• [3] To reflect randomness 10 replicate runs
were undertaken for each scenario, where the
. . . Random Seed parameter is changed in each
replicate.

It seems as if modellers are not really conscious about

the consequences of a bad or even wrong choice: if M is

chosen too small, the sample mean is not a representa-

tive approximation for the regarded mean, and not only

the simulation output, but also any kind of simulation

analysis (parameter variations, scenario tests, etc.) is

not representative at all.
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If the number is chosen too high, the Monte

Carlo experiment will consume unnecessary compu-

tation time, which could, exemplary, be invested into

deeper model analysis instead.

Summarising, modellers use highly sophisticated

methods for identification, optimisation or calibration

of model parameters, but still use a more or less arbi-

trary repetition count, probably some suitable power of

ten, to perform the Monte Carlo experiment with the

simulation. To overcome this imbalance, this work cen-

ters around the question: How many times do I really
need to repeat the simulation to make sure, the mean-
value estimator lies within a certain tolerance from the
real mean?

Interpreting the single simulation-run results in a

Monte Carlo simulation as a sequence of i.i.d. ran-

dom numbers, the problem turns into a solely theoretic

one. Hereby, the research question can be viewed com-

pletely detached from the process of Monte Carlo sim-

ulation and, on the first glance, appears like a prob-

lem that mathematicians should have solved long time

ago: How well does the sample mean approximate the

real one? Indeed a lot of researchers have success-

fully worked on it and found a lot of different formulas

that describe the difference between those two quanti-

ties (see [4, 5, 6, 7, 8, 9]). What seems positive at first,

contains one large disadvantage: there is no unique an-
swer to this problem!

Consequently, modellers who start taking care about

the correct number of replications for their simulation,

not only have to search for a possibly very complicated

formula, they also have to evaluate which of the derived

concepts is the “best” or most “correct”. In the course

of this work, we take a closer look at the two most fun-

damental concepts to answer the research question and

evaluated their value when applied to a Monte Carlo

simulation case study.

1 Methods
Before going into details of the two mentioned methods,

we clarify some notation which we will use henceforth.

First of all, we will consider the output of the simula-

tion as a random variable X ∈ R and define Xi, i ∈ N as

i.i.d. copies of it. Clearly, this restricts the simulation

output to be a scalar number, but most of the ideas can

be extended to time-series or multidimensional output

as well. As X is defined as the output of a simulation

it is fair to assume that μ := E(X) and σ2 := V(X) are

finite real numbers.

All methods in this work consider the empiric mean

XM :=
1

M

M

∑
i=1

. (1)

and the corresponding error |XM− μ|, which itself is a

random variable. Therefore, we cannot ask for a useful

upper and lower bound for it, but seek for a confidence

interval with predefined width δabs and confidence level

p so that

P
(|XM−μ| ≤ δabs

)≥ p. (2)

Suppose, we are able to find a formula that describes

the relation between sample size M, probability p and

allowed absolute error δabs, we are able stop the Monte

Carlo simulation whenever the allowed error δabs and

the failure probability (1− p) are sufficiently small. We

combined these thoughts in a so called stopping rule:

Definition 1 (Stopping Rule). A real-valued function

f : R+× (0,1)×N→R : (δabs, p,M) �→ f (δabs, p,M, ·)

is called stopping rule for the Monte Carlo simulation
if

f (δabs, p,M, ·)≥ 0⇒P(μ ∈ [XM−δabs,XM+δabs])≥ p.
(3)

We will call the smallest positive integer M for which
f (δabs, p,M, ·) ≥ 0 the stopping index of the stopping
rule and use the label

Mstop = Mstop(·). (4)

The · notation indicates, that it is possible, that stop-
ping index and stopping rule may depend on additional
parameters, like (sample-) moments of the distribution
(see later).

As mentioned, there are several approaches how

such a stopping rule can be derived. We will take a look

at the two fundamental ones.

1.1 Chebyshev Inequality Stopping Rule
The Chebyshev inequality or Bienaymé–Chebyshev in-

equality [10] was applied for determination of replica-

tion numbers in, exemplary, [11]. This inequality has

become a standard tool in stochastics and gives a con-

nection between a random number’s variance and its ex-

pected value:

P(|X−E(X)| ≥ k)≤ V(X)

k2
. (5)
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This inequality is valid for any random number X
with finite expected value and variance and is indepen-

dent of the distribution. Therefore it can be applied

for the sample mean of independent simulation experi-

ments. As V(X) = V(X)
M = σ2

M and E(X) = E(X) = μ ,

we get

P(|XM−μ| ≥ k)≤ σ2

Mk2
⇒P(|XM−μ|< k)≥ 1− σ2

Mk2
.

(6)

With k = δabs and 1− σ2

Mk2 = p we get, that

Corollary 1 (Chebyshev Stopping Rule).

f (δabs, p,M,σ2) = (1− p)− σ2

Mδ 2
abs

, (7)

is a stopping rule for the Monte Carlo simulation, if X
has a bounded first and second moment.

Unfortunately, the Chebyshev inequality is only

sharp in very rare cases. Hence, we expect that the rule

usually overestimates the iteration count.

1.2 Gauss-Distribution Stopping Rule

The second and even more frequently used stopping

rule (e.g. [12] p. 119) is based on the Central Limit

Theorem (CLT)

XM−μ√
Mσ

P−−−→
M→∞

Y ∼N (1,0). (8)

Consequently, in case M is large enough, XM can be

imagined as normally- (Gaussian-) distributed with pa-

rameters μ and σ/
√

M. Hence, we may use the per-

centiles of the standard normal distribution to estimate

the probability. Let

Φ(x) =
1√
2π

∫ x

−∞
e−s2/2ds (9)

stand for the probability function of the normal distri-

bution, then

P

(
XM−E(XM)√

V(XM)
≤ k

)
=P

(√
M(XM−μ)

σ
≤ k

)
≈Φ(k).

(10)

and thus

P
(
|XM−μ| ≤ kσ√

M

)
≈Φ(k)−Φ(−k) = 1−2Φ(−k).

(11)

We conclude that

Corollary 2 (Gaussian Stopping Rule).

f (δabs, p,M,σ2) = (1− p)−2Φ

(
−
√

Mδabs√
σ2

)
(12)

is an asymptotic stopping rule for the Monte Carlo sim-
ulation, in case X has a bounded first and second mo-
ment and M is sufficiently large.

Interestingly, the speed of convergence of the sam-

ple mean quantiles towards the quantiles of the Normal

distribution depends on the skewness of the distribution

of X (see Edgeworth Extension, [13] p. 538) and specif-

ically if the distribution is symmetric or not. Conse-

quently, the Gaussian estimator needs to be used with

care if

• the number of samples M is small (e.g. if the al-

lowed error is comparably large), and

• the distribution of X is skewed.

In these cases the Gaussian stopping rule might eventu-

ally underestimate the iteration count.

1.3 Estimation of the Variance

At this stage, neither of the two stopping rules can be

applied directly as both depend on the unknown vari-

ance σ2 of the random number, i.e. the fluctuations

of the simulation output. Essential to overcome this

problem is, that we do not necessarily need to know

these quantities precisely, but need a feasible approxi-

mation for it. We need to make sure that ∀p,δabs,M :

(δabs, p,M,σ2) ≤ 0 ⇒ f (δabs, p,M,s2) ≤ 0 for a vari-

ance estimator s2. In this case, the function remains

a stopping rule and Mstop(σ2) ≤ Mstop(s2). This is

achieved if either

(a) s2 ≥ σ2 as the variance occurs in the denominator

of both stopping rules, or

(b) |s2 − σ2| is small enough to make sure that

Mstop(s2) = Mstop(σ2).

Ad (a) In case X ∈ [a,b] for some known a,b, it

is possible to state a crude upper bound for the vari-

ance. Knowing that the expected value μ minimises the

mean-quadratic error f (t) = E(X− t)2, we get
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V(X) = E(X−μ)2 ≤ E

(
X− b+a

2

)2

≤ E

(
b− b+a

2

)2

=
(b−a)2

4
=: s2

c . (13)

Unfortunately s2
c might overestimate the real variance

by a large margin. Therefore the iteration count might

also be overestimated. Moreover, if we cannot find an

upper or lower bound for the simulation result, we can-

not state a suitable upper bound for the variance as well

which only leaves variant (b).

Ad (b) The most reliable estimator for the real vari-

ance is, of course, the sample variance

s2
N :=

1

N−1

N

∑
i=1

(
Xi−XN

)2
, (14)

which can be determined by N individual simulation

replications. It makes sense including the evaluation

of the sample variance into the Monte Carlo simulation

itself, i.e. using N = M. Unfortunately, the sample vari-

ance gives no guarantee that the real variance is not un-

derestimated, even if the iteration count is very large,

which essentially makes every stopping rule an asymp-

totic one.

1.4 Application of Stopping Rules

Using crude variance bound s2
c mentioned above makes

it possible to apply any of the two defined stopping rules

(7) and (12) in advance. It is presented as pseudo-code

in Algorithm 1.

Algorithm 1 Monte Carlo Simulation with A-Priori Vari-

ance Estimate

Require: p ∈ [0,1],δabs > 0,X ∈ [a,b]

s2
c ← (b−a)2

4

Mstop ← argminM∈N{ f (δabs, p,M,s2
c)≥ 0}

X ′ ← 0

for i ∈ [1, . . . ,Mstop] do
Xi ← Simulation()
X ′ ← X ′+Xi

end for
return X ′/Mstop

Before stating the corresponding algorithm for ap-

plying stopping rules with sample moments, we need to

mention, that both, sample mean and sample variance

can be update dynamically. Clearly,

XM+1 =
M

M+1
XM +

1

M+1
Xi+1. (15)

Hence, XM+1 can be calculated from XM with reason-

able effort. Unfortunately this strategy can only be ap-

plied indirectly to the estimator of the sample variance.

With X2M = 1
M ∑M

i=1 X2
i ,

s2M =
1

M−1

M

∑
i=1

(Xi−XM)2 =
M

M−1

(
X2M−X2

M

)
.

(16)

As both, X and X2 can be updated on-the-fly using (15),

also s2 can be updated dynamically.

We conclude Algorithm 2 which is also proposed

exemplarily in [12].

Algorithm 2 Monte Carlo Simulation with Dynamic

Variance Estimate

Require: p ∈ [0,1],δabs > 0,M0 ∈ N

X0 ← 0

X2
0 ← 0

for i ∈ N do
Xi ← Simulation()
Xi ← i−1

i X i−1 +
1
i Xi

X2i ← i−1
i X2i−1 +

1
i X2

i
if i > M0 then

s2
i ← i

i−1

(
X2i−X2

i

)
if f (δabs, p,M,s2

M)≥ 0 then
return Xi

end if
end if

end for

The initial guard M0 ≥ 1 prevents that the algorithm

terminates prematurely. Quick analysis makes clear that

the loop will run through three phases.

1. For i < M0, the loop runs through a warm-up phase

and is not allowed to stop. It prevents premature

termination of the algorithm by a gross underes-

timation of the sample variance, caused by a few

simulation results that lie very close together.

2. For M0 ≤ i�Mstop(σ2) the sample variance si has

stopped fluctuating and represents a feasible ap-

proximation for σ2. Therefore, i�Mstop(s2
i ) holds

as well.

3. For i close to Mstop(σ2) the sample variance ap-

proximates the real variance really well. There-

fore, Mstop(σ2) �= Mstop(s2
i ) only in very rare cases.
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Consequently, the choice of M0 is not too critical

and its main purpose is preventing “accidents” like

X1 ≈ X2 ⇒ σ2 � s2
2 ≈ 0⇒ f (p,δabs,2,s2

2)≥ 0

⇒Mstop(s2) = 2. (17)

Ross [12] proposes M0 ≥ 100.

Algorithm 2 is sometimes found in a slightly differ-

ent version wherein the sample moments are not up-

dated continuously, but in batches of predefined size

(see [14]). What seems like an insignificant mathemat-

ical detail at first, is relevant for parallel computing.

2 Case Study
In order to test both algorithms and both stopping

rules, we decided to use a simple, academic, yet

for this purpose quite representative cellular automata

(CA) model for simulation of a susceptible-infectious-

recovered (SIR) epidemic. It brings the classic SIR dif-

ferential equation model by Kermack and McKendrick

[15] into a spatial context and can be thought of depict-

ing a bacterial infection that spreads on a rectangular

Petri-dish. It unites ideas of typical agent-based SIR

models like [16] and models of bacteria growth on a

homogeneous surface like [17]

• The cell space of the CA is chosen as a rectangular

grid with m×n cells.

• The state mapping of the CA maps each cell onto

any of three states: 0∼= susceptible, 1∼= infectious,

2∼= recovered. For the sake of readability we say, a

cell is in e.g. the infectious-state, if the state map-

ping currently maps it onto 1.

• The simulation starts with one randomly chosen

cell in the infectious state, while all other m ·n−1

cells are susceptible.

• The CA uses the Von Neumann neighbourhood,

i.e. a cell’s neighbourhood consists of the four

cells directly above, below, left and right of it. The

neighbourhood is restricted at the borders.

• The CA is updated synchronously using the fol-

lowing two stochastic rules:

– A cell in the susceptible state becomes in-

fected with probability α , if it has at least one

infectious neighbour.

– A cell in the infectious state recovers with

probability β .

• The time-update terminates as soon as the num-

ber of infectious cells in the CA reaches zero. We

regard the maximum number of infectious cells ob-

served during the iteration as the outcome of the

model.

Figure 1 shows snapshots of the CA at three different

times during the execution. The infection spreads radi-

ally from the point of initial infection and leaves inter-

esting patterns. Figure 2 shows the number of infected

cells as a function of time for twenty different simula-

tion runs. Easily seen, the outcome X of the simulation

run is highly irregular and has an unusual distribution.

In particular, about every twelfth simulation run the dis-

ease did not break out at all, leading to X = 1.

t=0 t=20 t=70

Figure 1: Three snapshots of the CA for different times
during execution with α = β = 0.2 and 20×20 cells.
Infectious cells are marked red, susceptible blue
and recovered ones yellow.

0 20 40 60 80 100 120 140

time

0

20

40

in
fe
ct
io
u
s

Figure 2: Results of twenty simulation runs with α = β = 0.2

and 20×20 cells. The outcome value of every run,
i.e. point with the highest value of infectious cells,
is marked.

We chose this model for our test scenario as it is both

simple and to some extent realistic. Hereby we do not

mean, that the stated model is a realistic model for dis-

ease spread, but that the distribution of the model’s out-

come could be something we would also receive from

a fully validated model. This feature distinguishes this

study from tests found in standard literature about stop-

ping of Monte Carlo experiments.

SNE 32(1) – 3/2022



6

Bicher et al. Review on Monte Carlo Simulation Stopping Rules

They use either classic, theoretical distributions (e.g.

Exponential-, Pareto-, Uniform, Normal-inv. Gaussian-

distribution are compared in [6]) or test the methods in

the context of Monte Carlos integration (e.g. [8]).

3 Testing of Algorithms and
Stopping Rules

3.1 Test Definition

As test scenario, α = β = 0.2 as well as N = M = 20

were fixed. Both Monte Carlo algorithms and both stop-

ping rules were applied in a Monte Carlos setting them-

selves with 10000 replications each.

In order to evaluate the failures of the algorithms,

knowledge about the real mean value would be neces-

sary. As the distribution of the simulation result cannot

be determined analytically, we executed the simulation

one million times and used the results of this procedure

for bootstrapping. As this ridiculously large number is

definitely large enough to approximate the distribution

of X accurately, we replace the original simulation by

drawing from a sampled list. This procedure has two

key advantages:

• In contrast to the actual simulation, we know the

moments of the distribution. They are precisely the

empiric mean and variance of the huge data sam-

ple.

• Randomly drawing from the list executes much

faster than evaluating the simulation. As we need

to run each Monte Carlo test 10000 times, this is

an essential feature.

0 10 20 30 40 50 60 70 80
0.00

0.02

0.04

0.06

0.08

μ ≈17.696301

Figure 3: Histogram of the maximum number of infectious
cells of one million simulation runs. The mean
value is marked red.

The resulting distribution is seen in Figure 3. It has

μ = X106 = 17.696301,

σ2 = s2
106 = 186.49197791739908. (18)

To use Algorithm 1 and evaluate the stopping index

Mstop in advance it is necessary to calculate an upper

bound of the variance. As described this is only possi-

ble, if lower and upper bounds for the random number

are available. Clearly, 1 poses for a lower bound of X
as the maximum number of infectious cells cannot be

smaller than its initial value. The total number of cells

m× n = 400 is a very pessimistic upper bound for X .

Yet, in advance, it might be the only one available. We

get

s2
c =

(400−1)2

4
= 39800.25. (19)

3.2 Test Results

Table 1 shows the results of tests with different val-

ues for p and δabs. The third column shows the sam-

ple mean of the stopping index Mstop and its sample

standard deviation gained from 10000 reruns of the

Monte Carlo algorithm with different random number

settings. Note, that Mstop is deterministic in Algorithm

1, while it varies in Algorithm 2 depending on the value

of the sample variance. The fourth column shows,

how many of the 10000 algorithm executions failed to

satisfy
∣∣∣XMstop −μ

∣∣∣ ≤ δabs. As the confidence inter-

val is supposed to make sure that the probability for

such a failure is smaller than 1− p, we define that the

algorithm/stopping-rule failed as a whole, if the number

of failures exceeded (1− p)cot10000.

The results of the case study are fascinating and al-

low highly interesting conclusions. First of all, the huge

difference between the forecasted values for Mstop is re-

markable. We find that the value for Mstop predicted by

Algorithm 1 with the Chebyshev stopping rule is more

than 1000 times higher than the average value gained

from Algorithm 2 with the Gauss rule. In general, stop-

ping indices predicted by Algorithm 1 are more than

200 times larger than those of Algorithm 2 which is,

of course, a consequence of the crude variance bound

being more than 200 times larger than the real variance.

In terms of comparing the two stopping rules we

find that the stopping indices of the Chebyshev stopping

rule are 5 to 8 times higher than the ones predicted by

the Gauss stopping rule. This results from the general

weakness of the Chebyshev inequality.
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testcase algorithm stopping rule Mstop (± std) failures

lowed)

failed?

p = 0.95

δabs = 2

Algorithm 1 Chebyshev 199002 0 (500) No

Algorithm 1 Gauss 38223 0 (500) No

Algorithm 2 Chebyshev 931.67(±31.56) 1 (500) No

Algorithm 2 Gauss 178.49(±14.11) 548 (500) Yes

p= 0.975

δabs = 2

Algorithm 1 Chebyshev 398003 0(250) No

Algorithm 1 Gauss 49988 0(250) No

Algorithm 2 Chebyshev 1864.37(±45.57) 0(250) No

Algorithm 2 Gauss 233.72(±16.18) 273(250) Yes

p = 0.95

δabs = 1

Algorithm 1 Chebyshev 796005 0 (500) No

Algorithm 1 Gauss 152892 0 (500) No

Algorithm 2 Chebyshev 3729.72(±64.13) 0 (500) No

Algorithm 2 Gauss 715.76(±28.12) 510 (500) Yes

Table 1: Test results of 10000 Monte Carlo simulations stopped with the specified algorithm and stopping rule.

Finally, Algorithm 2 applied with the Gauss stop-

ping rule failed in all three cases. Although they almost

matched with the predicted ones, the resulting failure

counts were slightly too high in all three test cases in-

dicating that P(|XMstop − μ| ≤ δabs) is actually smaller

than p. Therefore, the confidence level of the interval is

not as high as required.

In summary, having a really non-asymptotic stop-

ping algorithm for a Monte Carlo simulation comes at a

price which is by far too high. On the one hand, per-

forming hundreds of thousands of simulation runs is

simply not necessary and too costly. Hence, the pro-

posed dynamic algorithm with the sample variance is

more practicable. On the other hand, asymptotic stop-

ping rules may lead to an unreliable confidence interval.

4 Conclusion
In this work we presented and performed basic tests for

the two most popular stopping rules for Monte Carlo

simulation and investigated them in the context of two

stopping algorithms. Considering the results presented

in the last section, all four investigated methods essen-

tially failed either by requiring too many or too little

simulation runs. While the Gaussian approach needs to

be corrected to become non-asymptotic, the Chebyshev

concept needs to be made sharper. We found several

attempts for both ideas in literature [9, 4, 6], yet the

evaluation of the corresponding stopping strategies is

work-in-progress.

We demonstrated that the seemingly simple problem

of stopping Monte Carlo simulation at the right time

is still not solved satisfactorily. Although the methods

presented in this work are surely not optimal, we would

yet still recommend using one of them in favour of just

“guessing” a feasible iteration count.
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