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Abstract. The ARGESIM Benchmark ‘C7 Constrained Pen-
dulum’ is based on the dynamics of a pendulum which hits
a pin: hit and release of the pin is a state event, which has
to be managed properly. This Educational Benchmark
Note, a detailed Benchmark Study, presents four issues
for this benchmark. First, the study describes classical ap-
proaches, implementation and results for the requested
benchmark tasks in MATLAB, Simulink and Stateflow, put-
ting emphasis on the quality of event finding. Second, the
study investigates in detail the possibilities of the linear
pendulum model for event management: ODE approach,
state space approach with exponential matrix, approach
with analytical solution, and approach with symbolic com-
putation. Third, the study sketches sensitivity analysis for
the model, and fourth, the study presents the implemen-
tation of the model into TU Vienna's MMT E-Learning
Server for education in modelling and simulation (MMT -
Mathematics — Modelling — Tools).

Introduction - Modelling

ARGESIM Benchmark ‘C7 Constrained Pendulum’
is based on the dynamics of apendulum which hitsapin:
hit and release of the pin is a state event, which has to be
managed properly ([1]). At Hit and Release, the pendu-
lum changesits pivot point (Figure 1), so that the dynam-
ics is composed of the movement of a ‘long’ pendulum
and of a ‘short’ pendulum. Both movements are de-
scribed by the classical nonlinear pendulum equation:

m-l-¢=—m-g-sinp(t)—d-L ¢(t)

Figure 1: Sketch of the constrained pendulum.

For small angles, also the linear pendulum model is suf-
ficient accurate. The classical linearization around the
operating point ¢ = 0 is independent from angular ve-
locity ¢ asthe model works with linear damping:

m-l-¢g=-m-g-o—d-L-¢(t)

The parameters pendulum length [, short pendulum
length [, damping factor d, point mass m, angular pin
position ¢,,;,,, pin distance from pivot [,,, and initial val-
ues characterize the system.

The system is a so-called structural dynamic system
([2]), ascaused by state events (Hit or Release) the dynam-
ics change — in this case only a parameter, the pendulum
length changes, and the equations remain unchanged.

The events Hit and Release obey a simple Event
Function e(t), whose zeros t, determine the time in-

stants of the events:
!
e(t) = (P(t) — Qpin = 0 - e((p(t)) =@ = Ppin = 0
+
Herethefirst equation isthe mathematical description, the
second the algorithmic: azero search algorithm with either

positive, negative, or both-sided crossing of zero.
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For adynamic system 2(t) = £ (%, B, 4, t) with event
function e(%, p, t), event handling generally requires the
following steps within an ODE solver’s integration step
fromt; tot;,,

e Event Detection by sign of event function:
sign(e(t;)) # sign(e(ti+1))
e Event Localisation and stop of ODE solving
by zero search of e(¥(t)) = 0 at [t;,t;r1] — te
e EventActionatt,
e Renitialisation and re-start of ODE solving

Event actions may be simple to complex:
e Output Event: no event action, only time output
e Parameter Change Event: p — p*
e Input Change Event: synchronisation of input
jumps with stepsize
e SateChangeEvent: x(t,) — x*(t.)
e Derivative Change Event: f(x,t) — f*(x,t)
Model Change Event: % = f() - Z = §(2)

The constrained pendulum system with events Hit and
Release involves Parameter Change Events and Sate
Change Events. At event e(t,) = @i, — @(t.) =0,
e the pendulum length changes: [ - [, or [ — [,
e and due to conservation of momentum, the
angular velocity changes discontinuously:

Pt =9 (t) o @t) > 97 (t).
Indeed it is strange, that the angular velocity, a state var-
iable, changes discontinuously — this cannot happen in
reality, it is result of simplification in modelling. This
drawback can be eliminated by a ssmple transformation
of the state, using instead of the angular velocity ¢ (t) the
tangential velocity v(t) = [ - ¢(t), which does not change
in case of Hit or Release:

~| P

: . : d
==V v=g-smgo—a-v
1 MATLAB Model Approaches

MATLAB’s ODE-solvers generaly need a state space
description of the model with coupled first-order differ-
ential equations, best choice for the constrained pendu-
lumis

X1=¢@Q xX=v

; , . d
X1 =7%2 x2:—g-sm(x1)—g-x2,

resulting in nonlinear state space description:
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1
#(0) = (’.‘1) = L
.xz .
—g -sin(x;) — m X3
The classically linearized model — needed later - is

\/ :& 7). — —( - _i.
Y1 I Y2 g Y1 m V2,

" Xy

= (& t)

and reformulated as LTI state space system:
' y=C-%4+D-1U

1
1 —

a=l o la]B=(Q e=6 D 2=()
- -2

1.1 TASK A: MATLAB Nonlinear Model with
Event Handling

The first task of the benchmark is to solve the pendulum
problem with an ODE-solver and to find pin touch and
release with events functions.

MATLAB’s ODE solvers provide event detection,
but no event action handling. For events, additionally to

the model derivative function f (%,t) the event function
e(x,t) can be provided.

This solution works with the classical Runge-Kutta
ODEA45 solver, with stepsize control. Before calling the
solver, options define accuracy for step size control - 'Rel-
Tol', 1e-4, — and event specification - 'Event’, @hitrelease.
The solver call needs as inputs the derivative function -
@pend_func - and simulation interval, initial values, and
the reference to further options:

options=odeset('RelTol',1e-5,'Event’,@hitrelease)
ode45(@pend_func, [tstart, tend], xstart, options)

The ODE solver can detect an event, and he can localize
an event by iteration within the integration interval
[t:,tix1] — t. (using the Regula Falsi method, a com-
bination of bisection method and secant method), result-
ing inareduced integration interval [t;, t, = t;,,]. There
is no possibility to force Event Actions at event time t,,
(except Output Events). Now the solver either re-starts
the integration at [t, = t;;, ti+2] and continues, or he
terminates the ODE solving at t, state with state X(t,).

The second option, the termination at the event, isba-
sis of the implementation for the implementation of the
constrained pendulum model: a loop switches between
solving the ‘long’ pendulum model and the ‘short’ pen-
dulum model, each terminated by the Hit or Release
events.
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The implementation itself is quite straightforward
with awhile-loop, which stopsif the time reaches the de-
fined simulation end time (10 sec).

Inside the loop an if-el seif-el se clause decides whether
the long or the short pendulum system is used and ap-
pended the overall solution. The decision logic works for
arbitrary initial valuesand pin positions, but becomesmore
complex for a possible special case: in case the Hit or Re-
lease event is around at pin position (within a certain nu-
merical accuracy, the tangential velocity at event time
must decide about further model selection. The following
code snippet shows details of this implementation, which
isaclassical hybrid decomposition of the constrained pen-
dulum model into a controlled sequence of ‘long’ pendu-
lum modd and ‘short’ pendulum mode.

if y_start(1) > phi_p % calculating with long pendulum
sol = ode45(dydt1, [tstart, tend], y_start, options);
t=1t, sol.x]; y = [y, sol.y]; t_events = [t_events, sol.xe];
elseif y_start(1) < phi_p % calculating with short pendulum
sol = ode45(dydt2, [tstart, tend], y_start, options);
t=1t, sol.x]; y = [y, sol.y]; t_events = [t_events, sol.xe];
else
if y_start(1) > phi_p % calculating with long pendulum
sol = ode45(dydt1, [tstart, tend], y_start, options);
t=[t, sol.x]; y = [y, sol.y]; t_events = [t_events, sol.xe];
elseif y_start(1) < phi_p % calculating with short pendulum
sol = ode45(dydt2, [tstart, tend], y_start, options);
t=[t, sol.x]; y = [y, sol.y]; t_events = [t_events, sol.xe];
else
ify_start(2) <0 % calculate with short pendulum
sol = ode45(dydt2, [tstart, tend], y_start, options);
t=1t, sol.x]; y = [y, sol.y]; t_events = [t_events, sol.xe];
else % calculate with long pendulum
sol = ode45(dydt1, [tstart, tend], y_start, options);
t=1t, sol.x]; y = [y, sol.y]; t_events = [t_events, sol.xe];
end; end

The modd derivative functions can be defined as inline
function by
dydtl = @(t.y)ly(2)/1; -g*sin(y(1))-d/m*y(2)];
dydt2 = @(t,y)ly(2)/ls; -g*sin(y(1))-d/m*y(2)];
The agorithmic event function has as parameters the
event function ‘value' itself, the stopping flag ‘is terminal=1'
to stop ODE solving at the event, and ‘direction=0' to detect
Hit and Release:
function [value,isterminal,direction] = hitrelease(~,y)
value = y(1)-phi_p;
isterminal = 1; direction = 0;
end
Figure 2 showstheresultsfor the*standard’ initial values
@y =1/6, g =0, @,, = —m/12. Event times are:

0.7035 1.1518 2.5904 2.9905 4.5427 4.8675 6.6487 6.7204

Obviously the fourth contact (7™ event)results in a very
short window for the ‘short’ pendulum, and may cause
‘event vanished’ for too big stepsizes.
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Figure 2: ODE45 solutions for ¢(t) and v(t) for ‘standard’

initial values with detail for last two events
rel. tolerance 1e-4, max. stepsize 0.15.

Important for the accuracy of event finding isthe stepsize
control of the ODE solver. ODE45 estimates the local er-
ror by the difference of a 4™ order step and a 5" from ¢;
to t;;4 = t; + h: exceeding the given relative tolerance,
the stepsize decreases to h~, t;,; = t; + h~, atoo big
undercut increasesthe stepsizeto h*, t;.; =t; + h™.

After the choice of aproper stepsize the event finding
starts - with an accuracy depending on ODE solver accu-
racy and general accuracy eps. A small stepsize brackets
asmall interval for fast event finding, but may result in
slow ODE solving. A too big stepsize may cause prob-
lems: events may vanish, asin this case with theforth pin
contact: here the bracketed interval for event finding may
be too large, so that both events are within the window
and will therefore not be detected.

1.2 TASK B: MATLAB Linear Model -
ODE Solver with Event Handling

Task is to compare the nonlinear model with the linear
model. For the linear model also the event finding fea
tures of the ODE solver can be used, so that the imple-
mentation simply replaces the nonlinear model from
Task A with the linear one:

For graphical comparison, both linear and nonlinear
solutions are plotted into one graphic window. Figure 3
displays both results for the ‘standard’ initial values,
showing only slight differencesin the event times. Event
times are summarizes in Table 3, Section 5, for better
comparison.

Of course the implementation works also for the
‘origina’ smaller initial values foreseen for this task,
resulting in even
smaller differences of nonlinear/linear event times.

@ =7/12, (g = 0, @pip, = —1/24,
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Figure 3: ODE45 solution for linear and nonlinear system
in MATLAB with event finding ( rel.tol 1e-5).

It is to be noted, that smulation of nonlinear and linear
system results in different time bases, because of differ-
ences in the step size control. For a numerical compari-
son, e.g. difference of the angles ¢(t) and ¢, (t), the
time bases must be interpolated after the simulation. One
could force the ODE solvers to a given (output) time
base, but then problems with the event times occur.

For areal precise comparison of the full time courses,
both models must run in paralel with state vector

(v, 9, v.)" = (x1, %2, x3,%4)", with an extended
event control of the linear and of the nonlinear system
using avector event function:;

e(p®), 0. () = ((t) = Ppin @1L(t) = Ppin)”
The model becomes ajoint model implemented as

dydtl = @(t,y)[y(2)/Inlakt; -g*sin(y(1))-d/m*y(2)];

dydt2 = @(t,y)[y(2)/Inlakt; -g*sin(y(1))-d/m*y(2)];

dydt3 = @(t,y)[y(4)/llakt; -g*y(3)-d/m*y(4)];

dydt2 = @(t,y)[y(2)/llakt; -g*y(3)-d/m*y(4)];
Now the loop, switching, and concatenating of the se-
guence of models becomes more complex: in each event
the next actual length can be any combination, as events
arelinear long —linear short & nonlinear long —nonlinear
long, ... The agorithmic event function must work with

two event entries:
function [value,isterminal,direction] = hitrelease(~,x)
value(1) = x(1)-phi_p; value(2) = x(3)-phi_p
isterminal(1) = 1, direction(1) = O;
isterminal(2) = 1; direction(2) = 0O;
end
This procedure seems complicated, but it is the genera
event handling strategy used in Simulink, and therefore
useful to study.
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1.3 MATLAB Nonlinear Model without Event
Handling

The loop, switching, and concatenation of ‘long’ pendu-
lum and ‘short’ pendulum is indeed laborious — why not
to change the length directly in the algorithmic pendulum
function, depending on angle position ?

This quick and ‘dirty’ approach has ‘strange’ results.
The model function for both models, using MATLAB’s
effective abbreviations for if-then-el se clauses, becomes

function dxdt = pend_noev_fun(~,x)

lakt = (x(1) >= phi_p)*| +(x(1) <= phi_p)*Is

dxdt(1) = x(2)/lakt;

dxdt(2) = -g*sin(x(1))-d/m*x(2); end;
sol = ode45(@pend_noev_func, [tstart, tend], xstart, options),
and the simulation call consist only of one call of the ODE
solver. The results are astonishing close to the simulation
with events handling, shown in Table 1 (event times for
the ‘standard’ initial values), with unexpected results.

Event Times

Phase . -
Start Event Finder No Event Finder

rtol le-4 rtol 1e-5 rtol le-4
Longl | 0.0 0.0 0.0
Short 1 | 0.703459556 0.702954406
Long2 | 1.151778788
Short 2 | 2.590418102 | 2.590358975 | 2.583773000
Long 3 | 2.990527098 | 2.990509554
Short 3 | 4.542743634 | 4.542667578 | 4.535188672
Long4 | 4.867485452 | 4.867455379
Short 4 | 6.648742768
Long5 | 6.720351405

Table 1: Event times with and without event detection —
with vanishing events and unexpected event sequence.

What results are to be expected? Generally, without event
finder, the ODE solver recognizes the necessary change
of the length at the next integration time instant, i.e. at
t;+1 definitively too late - it should have happened at un-
knownt,,t; < t, < ti41

Figure 4 explains the situation, showing both solu-
tions around an event time, taking into account the dif-
ferent stepsizes of ODE solver with event handling
t?, ty ., and without event handling t;_,, t}}, ti2, . Obvi-
ously the solver without event finding chooses for the
same given tolerances shorter stepsizes around the event.

The reason is a numerical problem: the jump of the
length makes the ODE function discontinuous, and the
ODE solver tries to keep the tolerances, decreasing the
stepsize — in vain: he ends up with t;},, = tZ, violating
the tolerances (hidden warnings).
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Figure 4: Operation of ODE solver with and without event
detection, expected event sequence.

But interestingly the results seem plausible, because the
comparisons of time instants

L <y <R <t <l =tF<th
shows the expected behaviour, ‘correct’ event before
‘faked’ event: t§ < tj,, =tI.

Table 1 — event times () with and without (t7') event
detection and different ODE tolerances — shows expected
numerical values, but only for some event times (denoted
in green). Some other event timest} without event detec-
tion take place before the correct event (7' < t¢, denoted
in red). This unexpected result is caused by the ‘failing’
stepsize control, which for higher tolerances takes ‘too
small’ stepsizes, so that the ‘correct’ event lies after the
‘faked’ event (Figure 5):

tf <t <t <ty = td <8 <tip, <t
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Figure 5: Operation of ODE solver with and without event
detection, unexpected event sequence.
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Which event timeisnow the correct one — t¢, or t}?
Indeed the ‘exact’ event time t¢ is not exact, it is a
numerical approximation. Curiously the quick and
“dirty’ implementation with the discontinously chang-
ing length can give a better result t7 < t£, misapply-
ing the failing stepsize control as ‘pseudo-event-
finder’. But Table1 shows for low tolerances defi-
nitely wrong results, with vanishing events for this
strategy. But this strategy must be used, if no event de-
tection is available (as in case of EXCEL, [3]), but
only with extreme care. As conseguence, event finding
is necessary, but it has to be ‘ synchronised’ carefully
with tolerance parameters of the ODE solver.

1.4 MATLAB Linear Model with LTI Solving

The linear model is appropriate for small angles, and for
time analysis an ODE solver is not the best approach
(only approximating the time course). The linear pendu-
lumisan LTI system, and therefore the linear theory with
the exponential matrix provides apowerful tool, whichis
exact with respect to the algorithmic error:

The classically linearized model with reformulation as
LTI state space system is

. _ V2 . d
3’1—7 YZ—_g‘y1_E‘}’2:
1
R S| 0
XxX=A-x+B-u, A= d B=(0)
—g -

Linear theory derives a solution using the exponential
matrix

t
() = 4t 3y + f 4 . B y(z)dr
0
The properties of the exponential matrix alow to calcu-

late a solution recursively on atime grid by

X(tpsr) = X = 4" %y, h =ty —t

MATLAB offerswith the LSIM solver an integrated tool
for solving LTI systems by
sol=Isim( A, B, C ,D, timegrid )

using the state update with the exponential matrix, but
without event finding capabilities. So it isnow thetask to
combine the linear exact method with event finding.

Trying to use LSIM, one possibility would be to sim-
ulate only one single time step per iteration. After each
one-timestep simulation with LSIM, the resulting angle
gets checked for crossing the pin angle, before it gets

SNE 31(4) - 12/2021
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written into a consistent result vector or the event gets
estimated with one Newton-algorithm step.

However, thismethod is very inefficient. Each call of
the LSIM forcesanew calculation of the exponential ma-
trix for every time step.

Another possibility isto simulate with LSIM longer
time periodsin awhile-loop, and run through the solution
vector to check for the event. If the angle crosses the pin
angle within the solution vector a Newton-algorithm step
gives the estimated event time and only the part of the
solution vector until the event gets used — and the while
loop continues. This method however can easily get a bit
confusing or chunky to implement.

The best method — and presented here - is indeed to
calculate only one timestep and check for the event per
loop iteration, but not by means of LSIM, but by direct use
of the recursion with the exponential matrix - this makesa
clearer implementation and reduces unnecessary evalua
tions and recalculations of the exponential matrix. The
event finding isa heuristic Newton implementation: it per-
forms only oneiteration, but with exact derivative calcula-
tion: ¢(t*) = v(t*)/1 isgenericaly given by the ODE.

The implementation with while-loop and decision
logic for choice of the next pendulum length issimilar to
the ODE approach with event finder; additionally the
event finding is done by the Newton heuristics:

% calculate the exponential matrices

A_expm = expm(A*tstep);
A _red_expm = expm(A_red*tstep);

while sol.t(end) < tend % rewrite initial conditions
y_start = sol.y(:,end);t_start = sol.t(end);
if y_start(1) < phi_p % calculate with short pendulum
[t,y_new] = expsolve(y_start, t_start, A_red_expm); |_ind = Is;
elseif y_start(1) > phi_p % calculate with long pendulum
[t,y_new] = expsolve(y_start, t_start, A_expm); |_ind = 1;
else % consider velocity direction
ify_start(2) <0 % calculate with short pendulum
[t,y_new] = expsolve(y_start, t_start, A_red_expm); |_ind = Is;
else % calculate with long pendulum
[t,y_new] = expsolve(y_start, t_start, A_expm); |_ind = 1;
end; end

% detect event and perform Newton approximation
if (sol.y(1,end)-phi_p)*(y_new(1)-phi_p) <0
t_event = sol.t(end) + (phi_p - sol.y(1,end))/...
(sol.y(2,end)/I_ind);
y_event = [phi_p; (y_new(2)-sol.y(2,end))/(y_new(1)-
sol.y(1,end))*(phi_p-sol.y(1,end)) + sol.y(2,end)];
sol.y = [sol.y, y_event]; sol.t = [sol.t, t_event];
event_times = [event_times, t_event];
else % no event happening
sol.y = [sol.y, y_new]; sol.t = [sol.t, t];
end; end

function [t,y] = expsolve(y_start, t_start, exp_matrix)
y = [exp_matrix*y_start];
t =t_start+tstep; end
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The results for the ‘standard’ initial values are very
close to those of the results from the ODE solution of the
linear model, time events are:

0.6920 1.1205 2.5409 2.9318 4.4659 4.7909 6.5325 6.6528

Itisto be noted, that the LTI approach with the expo-
nential matrix is a numerical exact method — so these
event times may be morereliable as results with the ODE
solver. Also the exponentia matrix can be computed nu-
merical exact via eigenvalues, etc. MATLAB operates
with avery sophisticated environment for calculation of
the experimental matrix — see ‘ Nineteen dubious ways to
compute the matrix exponential’ —[4].

1.5 MATLAB Analytical Model Approach

The linear model is indeed appropriate for small an-
gles, and for time analysisthe LTI algorithm with the ex-
ponential matrix is very useful in applications. But the
pendulum system isa small one, so another approach can
make use of the analytical solution, in combination with
an appropriate event finding algorithm. Thistask requires
symbolical and numerical computations, and the follow-
ing investigations deal with three approaches.

Analytic-Numeric Approach

This approach makesdirectly use of the known analytical
solution, a closed formula to be evaluated at arbitrary
time instants:

(psym(t) = (psym(tr l, Do, UO) =
= e~ @D+, cos(wy & - t) + ¢, SiN(w,.6 - t)]

d-w v
c1=<p0,a)0=\/%D: 0 5=y1-D2, = 2

2m lrwy-6
and with related tangential velocity vsy,,(t, [, @¢, vo)-

The analytical (symbolic) solution depends on the
pendulum length, and on theinitial values, which change
in case of event Hit or Release: gy (t, le, @¢,, v, )-

Again the event function e(t) = @(t) — ¢, IS used,
but now inserting the analytical symbolic solution valid
sincethe previousevent t, ,, with actual length [, ,, chosen
at previous event:

e(t) = DPsym (t, lep: (pfe.p’ Ute_,,) — Ppin

Starting now with an appropriate guess téEO,]l for the next

event time, a Newton iteration recursively tries to deter-
mine the zero of the event function:

(k]
el — (k] _ e(te’") —
en T ‘en L[ [k] -
e(e0)
. (k]
_ le,p (fﬂsym (te,nv le‘px (pte‘pv vte,p) - <Ppl-n)
- k
v (tE’,‘r]lr le,pv (pteypv Utevp)




Againthe necessary derivativeisgenerically given by
the tangential velocity, and the resulting MATLAB im-
plementation is simpler than the iteration formula. Again
awhile-loop performstheiteration, and interestingly four
iterations are sufficient to result in event times as accu-
rate as calculated by other methods:

while iterations<4
newton_time=before-((part_sol_phi-phi_p)/part_sol_v);
part_sol_phi = exp(-alpha_red*newton_time)*...
((C1*cos(w_red*newton_time))+...
(C2_red*sin(w_red*newton_time)));
part_sol_v = exp(-alpha_red*newton_time)*...
((((w_red*C2_red)-(alpha_red*C1))*...
cos(w_red*newton_time))-...
(sin(w_red*newton_time)*((w_red*C1)+...
(alpha_red*C2_red))));
before=newton_time;
iterations=iterations+1;
end
Theiteration loop runsin awhile-loop switching between
‘long’ and ‘short’ pendulum: asimple binary counter de-
cides which pendulum length isto be used.

Analytic-Symbolic Approach

This approach again makes directly use of the known an-
alytical solution, a closed formula to be evaluated at ar-
bitrary time instants:

Dsym ) = Psym (t, 1, 0, ), vsym(t) = vsym(ty L Do VO)

Task isto determine the events, i.e. the zeros of the event
function by means of the event function valid since the
previous event t, ,, with actual length [, ,,, chosen at previous
event:

e(t) = Dsym (t, leps (pte‘p’ Vte‘p) — Ppin
But now the symbolic solution isinserted directly, so that
anonlinear equation for the next event time ¢, ,, arises:

e(te,n) = Dsym (te,nr le,pr (pteypv Utevp) — Ppin =0
e~ D tc, cos(wg 8- t,y,) +
+c, Sin(wo -5 te,n)] — @Qpin =0

€1 = @, Wy Zﬁ,D =d27(::0,6=m,62 :l-(zz-6
It is laborious to solve this equation with respect to ¢t ,,
‘manually’, but MATLAB provides with the Symbolic
Toolbox an adequate tool. Defining the event time'¢t, ,, as
symbolic variable, and the error function as symbolic
equation, MATLAB’s vpasolve tool indeed masters this
task. After solution, the symbolic event time can be nu-
merically evaluated. The implementation is quite short,
and results in almost equivalent results with other ap-
proaches — see Table 3, Section 5.
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symst equa

C1=phi0; C2=(vO+(alpha*phiO*))/(w*l); %constants

equa=exp(-alpha*t)*((C1l*cos(w*t))...
+(C2*sin(w*t)))==phi_p;  %equation for phi=phi_p

te_sym = vpasolve( equa , t); te = double(te_sym)

Full Symbolic Approach

For this approach the Symbolic Toolbox also sets up the
analytical solutions ¢s,,,,(t) and vs,,,(t) by solving the
ODEs analytically. Therefore, the state variables must be
implemented as symbolic functions, aswell asthe differ-
ential equations. The following implementation docu-
ments the symbolic automatized operations:

syms phi(t) v(t) %work with symbolic variables
%(differential equations with symbolic values
egns = [diff(phi,t) == v/l, diff(v,t) == -g*phi-d*v/m];
egns_red=[diff(phi,t) == v/ls, diff(v,t) == -g*phi-d*v/m];
cond=[phi(0)==solution_phi(end),v(0)==solution_v(end)];
%solve differential equations
if n==0 structure=dsolve(eqns,cond); n=1;
else structure=dsolve(eqns_red,cond); n=0; end

The ODEs are solved with the dsolve tool which returns
a symbolic time-dependent solution. Asin the Analytic-
Symbolic Approach, the symboalic vpasolve tool allowsto
determine the event times, using now the symbolic ODE
solutions, and not the ‘manually’ derived solutions—very
comfortable. With afor-loop the symbolic ODE solutions
are evaluated till the event time with a defined time step
and transformed to a numerical value.

But because every evauation step includes a transfor-
mation from symbolic to numeric value, this approach
takes much longer timein MATLAB.

Comparison of Analytic Approaches

All analytic approaches provide the ‘exact’ same results
for the event times (within rounding tolerances):

0.6920 1.1205 2.5409 2.9318 4.4658 4.7908 6.5321 6.6530

But the calculation time duration differs significantly:
e the Analytic-Numeric Approach has the shortest
calculation time (0.1-0.25 seconds),
e the Analytic-Symbolic Approach takes 10 times
longer (2-5 seconds),
e and the Full Symbolic Approach has the longest
time (15-17 seconds).
For the used ‘standard’ initial values ¢, = n/6, @, =
—n/12, the event times are close to the event times of the
nonlinear system. For smaller initial values ¢, = n/12,
@pin = —m/24 they get very close (Task B).
An interesting alternative for getting generally closer
to the nonlinear behaviour would be the use linear affine
systems with different linearization points.
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1.6 TASK C: Boundary Value Problem

The benchmark defines as third task the solution of a
boundary value problem: which initia angular velocity
¢o with initial angle ¢, =n/6 and pin angle ¢,;, =
—m/12 is necessary to reach after one Hit event exactly
(ptarget = _T[/Z (I nclud% (ptarget = 0) ’)

The classic approach is an iteration of ¢, or v,, resp.,
each with a simulation run with ‘sufficient’ time length.
A charming easier alternativeisto view the problem from
the target values: starting with the (short) pendulum at
angle ¢,qrger = —1/2 and velocity @4y gec = 0 backwards
in time, the pendulum will reach after one Release event

as long pendulum at a certain time t/™® the angle

¢ (£5") = n/6 with wanted velocity (e[™").

The dynamics backwards in time can be derived by a
time transformation T = —t yielding dt = —dt and
Lo =7 9@ 0@ = ~g-sing(@ + = v(r)
As consequence, the boundary value problem changes to
a simulation backwards in time, with Release event and
with aTarget event at t(E"/ ¢l The event function becomes
avector event function:

é(e®) = () = @pin  @(t) —/6)"
The implementation for the nonlinear model with event
handling can be re-used, changing only the signs in the
model function and adding the Target event:

function [value,isterminal,direction] = hitrelease(~,y)

value =[y(1)-phi_p y(1)-pi/6];
isterminal = [1 0]; direction = [0 -1]; end

Note, that the Target event does not terminate the simu-
lation, it stores only the state target values (Figure 6,
events Release (green cross) and Target (red cross).

3

phi

v
2F \ backtarget pi/6 | -

1t N g

3 L .
-15 -1 -0.5 0
time backward

Figure 6: Simulation backwards in time for determining
wanted angular velocity ¢.
The numerical results are quite accurate:

£l = 0,601299, (¢l = v (¢l°1) = —2.184514

e e
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2 Simulink Model with and
without Event Handling

Simulink is MATLAB'’s graphical modelling environ-
ment based on directed signal flow and classic block-ori-
ented modelling. Basis is the Integrator Block — denoted

by [ ori , Which ‘integrates’ the input, the ODE. In prin-

ciple, Simulink makes use of the integral notation of
ODEs, in case of the pendulum of

=) v om0

The Simulink model of the constrained pendulum is based
on the pendulum ODEs using two integrator blocks.

\q »[}' — phi
‘ e ha 1
et : " “ phil ot 1
Integrator of 4_dat L
>_. L Integrator of phi_dat
Switch to change the lengih of the penduulum
< |
o —
0
phi_p | 4|

i
phi_pin
phi_pin
»

Figure 7: Simulink model for the constrained pendulum
with switch block for changing length.

Due to continuous differentiability of the states ¢ and v,
only the length of the pendulum must be changed, de-
pending on the angle ¢. There, Simulink offers a Switch
block, which compares whether the current angle ¢ is
greater than pin angle ¢, (the threshold is defined in the
switch block), and which therefore models the event
function (Figure 7).

Compare
To Constant

[ hi
| >=phip |-1 e
> 1.l'|/\'/'
phi_dot

1]
M oS

~— - — Integrator of phi_dot
s = Switch

phi

Figure 8: Simulink model for the constrained pendulum
with compare block and switch block for
changing length; detail.

A more detailed approach for the event function isthe use
of a Compare to Constant block in addition to a switch
block. Since the output of this block is Boolean, the
threshold of the consecutive switch is set to O (Figure 8).
However, both switching options deliver the same results.



Simulink offers state event handling by means of the
Zero Crossing options in many blocks (23 blocks !), as
e.g. in the Hit Crossing block (for general event func-
tions), and in Compare and Switch blocks (for simple
event functions).

Itispossibleto activate and deactivate the zero-cross-
ing detection (Figure 9, switch block), so simulation can
run with and without event detection.

@ Block Parameters: Switch to change the length of the penduulum X
Switch
Pass through input 1 when input 2 satisfies the selected criterion; otherwise,
pass through input 3. The inputs are numbered top to bottom (or left to
right). The first and third input ports are data ports, and the second input
port is the control port. The criteria for control port 2 are u2 >= Threshold,
u2 > Threshold or u2 ~= 0.
Main  Signal Attributes
Criteria for passing first input: |u2 >= Threshold =
Threshold:
a |ph|' _p | :

Enable zero-crossing detection

Figure 9: Configuration menu for switch block with
threshold definition and zero crossing
enabling and disabling.

Simulink parses the graphic model and compiles it into
state space model #(t) = f(f, t). For simulation it makes
use of the MATLAB ODE solver suite, quite similar to
the use in MATLAB, but with extended possibilities for
events, triggered or enabled/disabled submodels, and
some other special tasks.

Indeed Simulink does state event handling, and offers
—in contrary to MATLAB — aso possihilities to imple-
ment Event Actions. Generally, for this purpose there are
two possibilities:

e Parameter Change Events and State Change Events
can be directly described in one model by switches
and re-initialisation of integrator blocks, triggered by
blocks capable of zero crossing detection.

e Derivative Change Events and Model Change Events
need another technique: original and changed deriv-
atives or original and changed modelsresp., are both
put into different Simulink submodels, which can be
enabled or disabled. The ‘root'model handles via
events the switching between the submodels by ena-
bling or disabling them.

The above submodel approach for structural-dynamic

systems is the so-called Monolithic State Space Ap-

proach ([2]), the dternative to the Hybrid Decomposition

Approach, used also in MATLAB (see Section 1.1).
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The term monolithic refers to the fact that the state
space is amaximal one and not consecutively split into
smaller state spaces: during simulation, in disabled sub-
models the states are ‘frozen’, and re-activated, as soon
as the submodel is enabled.

In this Simulink model for the constrained pendulum
the ‘one model’ approach is chosen, a generic simple ap-
proach with state vector (¢(t) v(t))T and switching
length. The more genera alternative would work with a
monolithic overall state

T
(0:(®) w(®) 9,(®) v,(®))
—used in the Stateflow modelling approach, Section 3.

State Event Detection - Zero Crossing

Simulink alows to enable or disable event handling.
Simulink’ s event detection is more sophisticates than the
MATLAB algorithm. Again for event detection the Reg-
ula Falsi method, a combination of bisection method and
secant method, is used, with a‘hard’ accuracy limit —in
case of the non-adaptive strategy; recent Simulink ver-
sions offer an adaptive strategy, which instead of the
‘hard’ limit works with an appropriate threshold around
zero, stopping the detection algorithm.

The investigations here refer to enabled (non-adap-
tive) zero crossing and disabled zero crossing (no event
detection), and show as with MATLAB astonishing but
different results. Key parameters for localisation and ac-
curacy are again the parameters for the ODE45 solver,
the tolerances and the maximal stepsize.

Generally, theresults are very closeto the MATLAB
results — time courses as well as event times — with and
without event handling.

-0.2595 e o without zero-cri letection
\
-0.26 -
-0.2605 -
-0.261

-0.2615 \\

-0.262

n rad

<

©

-0.2625

-0.263 -

2586 2587 2588 2589 259 2591 2592 2593

time in 8
Figure 10: Solution with and without zero crossing near
event: blue cross - detected event time,
red cross - ‘accepted’ late event time.
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Thereare small, but crucial influences of the algorith-
mic parameters, yielding astonishing results. Figure 10
displaysin detail the ODE45 calculations around an event
time, with enabled/disabled zero crossing:

e Without event detection: ODEA45 varies the step-
size, and close to reaching the angle ¢,,;,,,
the solver reduces the step size because the state
forecast with switched length exceeds the given
tolerance;
after some tries (more solution points before event),
the solver ends up with an internal error warning
and accepts the ‘next’ time instant as event time
tl = t,41 (theoretically after the event).

e With event detection: the ODE45 solver approaches
the event with bigger stepsizes. After detection of
the event, event localisation starts and resultsin
‘exact’ event time t¢ (theoretically before the time
instant cal culated without zero crossing algorithm:
té < th).

e Comparison: with fixed stepsizes, the event time se-
guence must obey t¢ < tZ;
with step size control, without zero crossing
algorithm, the stepsize control decreases the step-
sizes, so that the ‘accepted’ event time t =t
may be before (1) the exact time: t7 < tg;
for further details, see discussion in Section 1.4).

Indeed the stepsize control based on tolerances and step-
size limits yields this astonishing results. From another
viewpoint, stepsize control could be seen as competitive
event handling, searching for a stepsize which tolerance
reaching event. Some observations:

e Using the ODE45 solver with maximal stepsize set
to automatic, only three hits of the pin are found.
The amount of touches found depends on the cho-
sen maximum stepsize and the tolerances.

e For the ODE45 with enabled zero-cross-detection
with amaximum step size smaller than 0.154 and a
relative tolerance of 10~* the pendulum hits the pin
four times (Figure 11).

e Incontrast to this, for the ODE45 without zero-
cross-detection, sinceit is not as accurate, the maxi-
mum step size needs to be smaller than 0.145 to ob-
serve four hits.

Further results, especially a comparison between the dif-
ferent approaches and resulting ecent times, see Sec-
tion 5, Table 3.
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& without. zero-crossing detection

P inrad/s

0 2 4 6 8 10
time in s

 with zero-crossing detection

¢ in rad/s

i) 2 4 5 5 10
time in s
Figure 11: Angular velocity with disabled and enabled zero
crossing, solver option maximum stepsize set to 0.154,
rel. tolerance 107*; disabled zero crossing lets 7%
and 8™ event vanish.

3 Simulink Stateflow Model with
and without Event Handling

Sateflow is a Simulink extension offering control
schemes of signals and submodels by automata. Recent
versions of Stateflow allow not only logic states in the
automata, but also hybrid continuous states.

Use of Stateflow for the constrained pendulum model
could on the one side simply replace the switch block of
the Simulink implementation in Section 2 by one state
chart ‘actual’ length’ alternatively switched viafeedback
with switch of length. On the *advanced’ side, Stateflow
allowsto implement the constrained pendulum system as
structural-dynamic system by the monolithic state space
approach ([2]) using indeed the maximal state space

T

(00 w(®) 9, (®) v,(®))
The implementation is based on two amost identical
Simulink submodels (Figure 13, @) and b)) with the pen-
dulum system. Stateflow (Figure 12) switches between
these two models, one with length [ and one with length L.

p
B v
@ P
@ phdal
long 'short T Tom
@ shont

Figure 12: Overall Stateflow model with two hybrid states
‘long’ and ‘short'.



|>

.D phi_dot
I egrator of phi_dot pf@)

. ”
i Phi
Integrator of v_dot  State Wiler of v RO

vdot | 1
5
State Writer of phi

Figure 13: Model of the long pendulum (a) in the hybrid
state ‘long’, and of short pendulum (b) in hybrid
state ‘short'. StateWriter blocks transfer the system
states ¢ and v between the hybrid states.

The Stateflow model (Figure 12) includes the hybrid
states‘long’ and ‘short’. The arrowsin between mark the
switch between the hybrid states: the conditions, when to
switch (event function zero crossing) are given abovethe
arrows in the squared brackets. The two hybrid states
consist of Simulink submodels with the continuous dy-
namics (Figure 13, @) and b)).

Thetransition conditionisgiven by the change of sign
in the event function. The transition condition from the
long pendulum to the short oneis @ png < Ppin- ASSOON
as the inequation is satisfied, the computation is done in
the model of the short pendulum, and the system states of
the long pendulum are frozen. To switch from the short
pendulum to the long pendulum model, the inequation
Psnort > Ppin NEEds to be fulfilled.

To start with the correct initial values after changing
the model, a StateWriter block is used transferring the
values at event time. Although the default model is the
long pendulum (defined by the root arrow to state ‘long’,
the simulation still works if the initial angle ¢ < @pin-
This is based by the order of work steps in Simulink
Stateflow: if a new hybrid state, in this case a dynamic
model, is entered, Simulink checks if a transition condi-
tion is fulfilled, in which case the transition is done be-
fore the calculation in this hybrid state starts.

An important tool in Stateflow is the Symbols Panel,
(Figure 12, at right). In this pand the variables used in
the Stateflow model can be defined as ‘constant data,
‘parameter data, ‘local data, etc. In case of the con-
strained pendulum ‘phi_p’ isdefined asa’ parameter datal
and‘V’, ‘phi’ and ‘phi_dot” are defined as ‘ output datal .

As the Stateflow implementation clearly makes use of
the same zero crossing asin the Simulink implementation,
the results—time courses and event times— are very close.
Further results, especially the comparison between the dif-
ferent approaches can be found in Table 3, Section 5.

-‘.H._.Q'-:_
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4 System Sensitivity

Time domain analysisis the primary tool for anaysis of
dynamic systems %(t) = f(%,t). But as systems depend
also on parameters p, so systems and solutions are also
functions of the parameters: x(t, 5) = f (%, B, t), x(t, B).

Sensitivity Analysis is a method, which qualifies and
guantifies the change of the solutions (or key measures
of the solution) with respect to change of the parameters
— and the two method groups are analytical methods and
stochastic methods.

4.1 Parameter Sensitivity Functions

The so-called Parameter Sensitivity Functions with the
Parameter Sensitivity Equations are a classical tool for
analysing the dynamics of an ODE system #(t) =
f (X, B, t) with respect to change of parameters .

The sensitivity functions are generally the partial de-
rivatives of the states x; (t) with respect to the parameters
Px, 0beying the sensitivity equations, ODEs coupled with
the system equations and derived by valid change of the
derivation sequence:

a a
xlpk(t) pkxl(t) xlpk(t) x(t)
B0 = 20 = 5 () = 5 G0
Xip, (t) = a—pkfi(f, t) X, (0)=0

While the sensitivity function x; ,,, (t) is ageneral meas-
ure for the change of state x;(t) with respect to parameter
Pk the Normalized Sensitivity Function 4; ,,, (t) measures
quantitatively the change of the state x;(¢t) due to a 1%
relative change of the parameter p:
i, (&) = X, (£) - m

The nonlinear pendulum with two states and four param-
eters deduces eight sensitivity functions and ODE sensi-
tivity equations @4, Vg, @1, Vi, @m, Um, @g, vy With €.9.:

.1 _ d
p=7v v =—g-sing —v
. 1 ) d 1
§0d=7'vd de_g'COS(P'q’d_E'Ud_E'U
) 1 1 d
=7 iR v = g eospr g =t

Figure 14 showsall sensitivity functionsfor alonger time
horizon, showing interesting oscillatory behaviour espe-
cialy for the length sensitivity ¢;.
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Figure 14: Sensitivity functions as ODE solutions of the
sensitivity equations with additional oscillation.

The MATLAB implementation of the sensitivity system
is straightforward:

x0=[phiOvO0O0000000];
[t, X] = ode45(@(t,x) pend_sens(t,x,rl,r12,dm,rm,dmm,g),...
[0, tend], x0);
function dxdt = pend_sens(t,x,rl,r12,dm,rm,dmm,qg)
dxdt=zeros(10,1);

dxdt = [ rI*x(2); -g*sin(x(1)) - dm*x(2);
r*x(4); -g*cos(x(1))*x(3) - dm*x(4) - rm*x(2)
r*x(6)-rI2*x(2); -g*cos(x(1))*x(5) - dm*x(6);
r*x(8); -g*cos(x(1))*x(7) - dm*x(8) + dmm*x(2)
rI*x(10); -g*cos(x(1))*x(9) - dm*x(10) - sin(x(1))];
end

Of interest for the constrained pendulum are shorter pe-
riods of the oscillationsin between the events Hit and Re-
lease. Figure 15 shows the normalized sensitivity func-
tions for length and damping: a length change is domi-
nating:

d
Apa(t) = @q(t) 100 Ao (t) = @q(t) - 100

002

norm.phld

0.015 |- norm.phi, | |

0.01

0.005 -

norm. sensitivities

-0.005 -

-0.01

5015 ‘ \ : . .
4 05 1 1.5 2 25 3
time
Figure 15: Normalized sensitivity functions for damping

(smooth) and length (dominating).
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Of coursethe sensitivity functions can be continued after
an event, starting with nonzero initial values (fina values of
previous segment).

Already the small pendulum system shows that deri-
vation of the sensitivity functions is voluminous and er-
ror-prone. Symbolic computation in combination with
appropriate function handling automatizes the derivation
and simulation of sensitivity equations, e.g. with the
MATLAB Symbolic Toolbox:

e Definition of the symbolic system ODE function
with symbolic states and parameters

e Definition of symboalic sensitivity states, symbolic
derivation of the sensitivity ODE functions

e Composing system ODE functions and sensitivity
ODE functions to complete symbolic function set

e Transformation of symbolic sensitivity ODEsto nu-
merical ODE (vector) function for ODE smulation

Nevertheless, the sensitivity analysis with sensitivity
functions and sensitivity ODE system is based on contin-
uous dependency of the parameters — which is not the
case for the parameter pin position @,;y.

4.2 Sensitivity by Monte-Carlo Method

Partly simpler is another method for sensitivity analysis,
the Monte-Carlo Method (used also for other tasks, as
simulation itself). Generally, Monte-Carlo technique
works with multiple random disturbances of inputs, cal-
culating the multiple system responses, and finally calcu-
lating mean and standard deviation of the responses.

For the constrained pendulum this technique could be
used for the pendulum parameters d,[,m,g and time
courses ¢(t; d) and ¢(t; 1) as system response — without
benefit compared to sensitivity functions. But the tech-
nique offers itself for analyzing the sensitivity of the
event timest, , with respect to the pin angle ¢,,;,,.

Starting with a sufficient big sample of disturbed pin

angles <p[mnd the resulting Hit and Release event times

ter (om0
for k=1,..., ne (Hevents), i=1,...,ns (#samples) are cal cu-

lated, and then statistically evaluated with mean value and
standard deviation:

mean — rand
5 = e (o

= [T o) -

i

k—l




Setinek etal. C7 Constrained Pendulum: MATLAB Environment, Symbolic Approach & E-Learning

Sensitivity investigationswill consider now the event
times ¢S, for the nonlinear model with event detection,
the event times ¢, for the nonlinear model without event
detection, and the event time differences

e—n

ek =tox —tok
An implementation in MATLAB is very easy, because
caculation of mean vaue and standard deviation are
basic tasks. Simulation is performed in aloop with sam-
plesizen,, collecting amatrix T¢ (t_events_e_mc) withn,
event times for each event time and for each sample;

el el el
te,l te,Z te,ne
e2 e2 e2
Tee = te,l te,2 te,ne
eng eng eng
te,l te,2 te,ne

and equivalently the matrix T (t_events_n_mc) for event
times without event detection, and AS™ (t_events_dif_mc)
for the time differences, with results

emean

estd
te,k

(mean_t_events_e), t,; * (std_t_events_e)

tn,mean n,std

ok (mean_t_events_n), t;; * (std_t_events_n),

Ae—n,mean e—n,std

ok (mean_t_events_dif), Ag (std_t_events_dif).

In contrary to the symbolic vector and matrix notation the
implementation is very simple:

mean_t_events_e = mean(t_events_e_mc)
std_t_events_e = std(t_events_e_mc)
mean_t_events_n = mean(t_events_n_mc)
std_t_events_n = std(t_events_n_mc)
mean_t_events_dif = mean(t_events_dif_mc)
std_t_events_dif = std(t_events_dif _mc)

n.mean e—n,mean

gg tg,mean te,k ) Ae )
A
1 0.7034 0.7034 0.7039 0.0007
0.0022 0.0024 0.0009

2 1.1520 1.1519 1.1522 0.0005
0.0004 0.0007 0.0006

3 25901 2.5903 2.5912 0.0009
0.0057 0.0059 0.0011

4 2.9905 2.9907 2.9917 0.0010
0.0029 0.0031 0.0012

5 4.5425 4.5426 4.5423 0.0015
0.0110 0.0109 0.0019

6 4.8672 4.8676 4.8675 0.0017
0.0053 0.0056 0.0021

Table 2: Monte-Carlo sensitivity analysis for event times
with and without event detection. nonlinear model.

Table2 summarizes the results for a Monte-Carlo
study with a 5% uniformly distributed change in pin po-
sition, with a sample of n, = 500 tolerance of 1e-4. The
results indicate that event times are not very sensitive
with respect to small changesin the pin position, and that
deviations are in the same range as the deviations be-
tween event times with and without state detection (the
step size control in case of no event detection really
seems to compensate the missing event detection).

5 Comparison of Event Detection

In case of nonlinear dynamics, the quest for the ‘exact’
event time t&¥<t cannot really be determined — all ODE
solutions with (t¢) and without (t}') event algorithms are
only approximations.

Results with event detection in MATLAB, Simulink,
and Stateflow are reliable and very close, if the ODE45
parameters (tolerances, maximal stepsize) are chosen
properly (Table 3, case A, C, D). Because thelast ‘ short’
pendulum phase is very short (~0.045 sec), al ODE ap-
proaches must limit the stepsize.

The quick and ‘dirty’ approaches without event algo-
rithm cal cul ate astonishing results for the event times ¢
partly they occur before the ‘exact’ ones t¢ — contrary to
expectation (Table 3, Simulink case A vs. B, MATLAB case
D vsE & F). Responsibleisthe stepsize control: the jump
in length causes smaller stepsizes to keep the tolerances
—invain: step size control ends up with t;},; = tZ vio-
lating the tolerances (hidden warnings). The step size
control seems to replace the event algorithm, athough it
is mathematically wrong (discontinuity). Is the earlier
event time t7 more exact than the later t¢ ?—no, because
different solver parameterslet also t¢ happen earlier. Fur-
thermore, the ‘dubious’ stepsize control lets events t}
vanish, which can be corrected by new solver tuning (Ta-
ble 3, Simulink case B, MATLAB case E vs. F).

All linear model solutions are close to the nonlinear
ones. For algorithmic event detection, linear models can
make use of an ODE solver — with similar results for t¢
and t? (Table 3, case G vs. H).

Usually, linear systems are solved ‘exactly’ by the expo-
nential matrix, in a recursive loop with fixed steps. Event
detection can be implemented by a ‘cheap’ Newton step —
successful, effective and more reliable t§ event times with
ODE (Table 3, case E vs. G). Accuracy can beimproved by
smaller steps around the events. Mathematicianslike the an-
alytic solution, where event detection requires solution of
nonlinear equations, either by a partly symbolic Newton al-
gorithm, or direct symbolically, al with same ‘most’ exact
results t¢ and extremely close to solution with the exponen-
tial matrix (Table 3, case | vs J).
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1. 0703454 070228 0.703459 0.703459 0.703327 0.703427 0.692023 0.686477 0.692018 0.692023
2. 1151559 1159532 1.151763 1.151771 1.160078 1151778 1.120535 1.130859 1.120547 1.120545
3. 2590362 2585031 2.590407 2.500416 2.588979 2.500338 2.540851 2.510915 2.540911 2.540860
4. 2990219 2986587 2990503 2990514 2.998792 2.990403 2.931783 2.932346 2.931825 2.931800
5. 4542716 454376 4542743 4542752 4.543987 4.542705 4.465752 4.447178 4.465854 4.465756
6. 4.867135 4865345 4.867457 4.867471 4.874602 4.867492 4790766 4.782015 4.790856 4.790785
7. 6649999 - 6.648841  6.648860 6.648731 6532110 6.532465 6532060
8. 6710074 - 6.720245  6.720253 6.720995  6.652945 6.652801  6.652993

Table 3: Event times t¢ and t] for all presented approaches - ‘standard’ initial values.

6 Integration of Approaches
into MMT E-Learning Server

The MMT E-learning System — MMT stands for Mathe-
matics, Modelling and Tools—is atool used at the Insti-
tute of Analysis and Scientific Computing and at TU Vi-
ennafor education in modelling and simulation (and also
by other institutes dealing with education in modelling
and smulétion).
The MMT server, developed since 2006 ([5]), playsa
major role in lectures for modelling and simulation and
coursesin applied mathematics. The case studies and ex-
amples for modelling and simulation deal with different
kinds of modelling, like ODEs, cellular automata or
agent-based models, and distinct applications.
The MMT System is aweb application with
o afrontend presenting interactive examples and case
studies for modelling and simulation, as well as
related lecture notes,

e with MATLAB running as simulation engine,

e and with abackend content management system for
preparing examples, case studies etc. and lecture
note content.
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Figure 16: Entrance Webpage of the MMT Server.

When a student enters the website, he is welcomed by
Adam Ries (1492 — 1559; a German mathematician),
with login (Figure 16).

After login, all courses the student takes are listed on
theleft hand side. When the student chooses a course and
in this course an example, the web page offers experi-
mentation features (Figure 17). On the left hand side a
navigation lets select different examples, and further
course topics (here ' Pendulum Identification’).

Each course topic includes appropriate examples
(Figure 18, sdlected ‘Nonlinear Pendulum with Zero
Crossing Data’). On the right hand side thereisalink to
the source code of the example (‘view m-file'; MATLAB
m-files). Furthermore there can be other files linked,
which can be downloaded like lecture notes, tables, etc.




et Pendulum Madel Identification - Simulation Circle

Figure 18: MMT Course Example.

The availability of the source code is an important feature
of the MMT system: students can use the code for further
development. In the centre information on the selected ex-
ample is shown, and parameters for experiments can be
chosen. With a click on the "OK" button, the server com-
putes the results with the chosen parameters (Figure 19).

Figure 19: MMT Course Example — Results.

There are various aspects for choosing examples and case
studies for the MMT server: modelling topics, applica-
tions, methods, etc. The ARGESIM Benchmarks for Mod-
elling Approaches and Smulation Implementations are a
challenging mixture of modelling approaches and applica-
tion, and have therefore become also a basis for education
in modelling and simulation ([6]), using the various solu-
tions published in SNE. Consequently the benchmarks are
also interesting topics as case studies for the MMT server,
and the MMT development team has started to integrate
the some benchmarksinto the MMT server, taking awell-
elaborated MATLAB approach with the defined tasks as
examples, and extending them by further topics and tasks.

‘; Mi Setinek etal. C7 Constrained Pendulum: MATLAB Environment, Symbolic Approach & E-Learning

After C9 Two-Tank Fuzzy Control, C11 SCARA Ro-
bot, C12 Callision of Spheres, C13 Crane with Control,
C15 Kidney Clearance ldentification, and C17 SR-type
Epidemics, now C7 Constrained Pendulumisintegrated.

The C7 integration into the MMT server (Figure 20,
MMT introduction page for Constrained Pendulum) ex-
tends the benchmark tasks by topics presented in this con-
tribution: waiving event detection, event handling meth-
ods, linear system cases, linear analytic and symbolic so-
lutions, sengitivity analysis, and Monte-Carlo sensitivity.
Additionally, theteam prepares asfurther topic the approx-
imation of the nonlinear model by a sequence of linear af -
fine models with adaptive linearization points.

Constrained Pendulum

Figure 21: MMT ‘Constrained Pendulum’ — Results 1.

e B

Figure 22: MMT ‘Constrained Pendulum’ — Results 2.

Choosing for instance the experiment ‘CPend —
Events vs. No Events' offers to enter model parameters.
Pressing ‘OK’, the MATLAB engine runs, and gives
back various results, as e.g. the time courses (Figure 21),
or the event times (Figure 22).
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At present the MMT Server offers about 200 case
studies, each with various detailed examples. In winter
2021 the MMT has also extended the already integrated
C17 SR-type Epidemic by model identification, and
lockdown and vaccination strategies based on Coronaep-
idemics data from Austria (Figure 23).

]

Figure 23: MMT SIR Case Study: Spread of Infection.
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In some simulation courses, students could investi-
gate with the MMT Server strategies again pandemics
(Figure 24 and Figure 25).

And last but not least, a view into the MMT backend
with the model interface page for the constrained pendu-
lum (Figure 26). Novices need about one week to learn
how to work and develop in this backend.

Backend Adamriese

30T Madsied J021-0518 1200

Figure 26: MMT Case Study ‘Constrained Pendulum’ -
Backend with parameter interface.

Acknowledgement. The development of new MMT
case studies is aso done by students themselves — they
present their seminar work, their practical course, or parts
of their bachelor work or diplomawork alsointhe MMT
server — to be used by other students. This contribution
on the benchmark Constrained Pendulum with all exten-
sions and the MMT integration is result of a student pro-
ject work from the lecture * Continuous Simulation’, com-
posed by four students from mechatronics, and by the su-
pervising tutor and lecturer, who added theoretical topics
and MMT preparation.
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