
S N E  E D U C A T I O N  B E N C H M A R K  N O T E  

                                                                                                                                         SNE 31(4) – 12/2021    239 

ARGESIM Benchmark C7 'Constrained Pendulum' - Solution in 
MATLAB Environment and Extensions with Linear Approach, 

Symbolic Approach, Sensitivity, and Integration into  
TU Vienna’s MMT E-Learning Environment 

Marko Grujic2, Jakob Haupt2, Ypti Hossain2, Lorenz Klimon2, Paul Setinek1, Felix Breitenecker1* 
1Institute of Analysis and Scientific Computing, 2Inst. of Mechanics and Mechatronics, TU Wien,  

Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria; *felix.breitenecker@tuwien.ac.at 

 

 
 
Abstract.  The ARGESIM Benchmark ‘C7 Constrained Pen-
dulum’ is based on the dynamics of a pendulum which hits 
a pin: hit and release of the pin is a state event, which has 
to be managed properly. This Educational Benchmark 
Note, a detailed Benchmark Study, presents four issues 
for this benchmark. First, the study describes classical ap-
proaches, implementation and results for the requested 
benchmark tasks in MATLAB, Simulink and Stateflow, put-
ting emphasis on the quality of event finding. Second, the 
study investigates in detail the possibilities of the linear 
pendulum model for event management: ODE approach, 
state space approach with exponential matrix, approach 
with analytical solution, and approach with symbolic com-
putation. Third, the study sketches sensitivity analysis for 
the model, and fourth, the study presents the implemen-
tation of the model into TU Vienna’s MMT E-Learning 
Server for education in modelling and simulation (MMT – 
Mathematics – Modelling – Tools). 

Introduction - Modelling 
ARGESIM Benchmark ‘C7 Constrained Pendulum’ 

is based on the dynamics of a pendulum which hits a pin: 
hit and release of the pin is a state event, which has to be 
managed properly ([1]). At Hit and Release, the pendu-
lum changes its pivot point (Figure 1), so that the dynam-
ics is composed of the movement of a ‘long’ pendulum 
and of a ‘short’ pendulum. Both movements are de-
scribed by the classical nonlinear pendulum equation: · · =  sin ( ) 

 
Figure 1: Sketch of the constrained pendulum. 

For small angles, also the linear pendulum model is suf-
ficient accurate. The classical linearization around the 
operating point = 0 is independent from angular ve-
locity  as the model works with linear damping: · · =  ( ) 

The parameters pendulum length , short pendulum 
length , damping factor , point mass , angular pin 
position , pin distance from pivot , and initial val-
ues characterize the system. 

The system is a so-called structural dynamic system 
([2]), as caused by state events (Hit or Release) the dynam-
ics change – in this case only a parameter, the pendulum 
length changes, and the equations remain unchanged. 

The events Hit and Release obey a simple Event 
Function ( ), whose zeros    determine the time in-
stants of the events:  ( ) = ( ) = 0    ( ( )) =   !=± 0 

Here the first equation is the mathematical description, the 
second the algorithmic: a zero search algorithm with either 
positive, negative, or both-sided crossing of zero. 

SNE 31(4), 2021, 239-254,  DOI: 10.11128/sne.31.bne07.10589 
Received: 2020-12-10; Revised: 2021-07-05; 
Revised: 2021-09-10; Accepted: 2021-09-15 
SNE - Simulation Notes Europe, ARGESIM Publisher Vienna 
ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org 



Setinek et al.     C7 Constrained Pendulum: MATLAB Environment, Symbolic Approach & E-Learning 

240      SNE 31(4) – 12/2021 

B N E 

For a dynamic system ( ) = ( , , , ) with event 
function ( , , ), event handling generally requires the 
following steps within an ODE solver’s integration step 
from  to  

• Event Detection by sign of event function: ( ( ))   ( ( )) 
• Event Localisation and stop of ODE solving 

by zero search of ( ( )) = 0 at ,  
• Event Action at  
• Re-Initialisation and re-start of ODE solving 

 
Event actions may be simple to complex: 

• Output Event: no event action, only time output 
• Parameter Change Event:    
• Input Change Event: synchronisation of input 

jumps with stepsize 
• State Change Event:     ( ) ( )  
• Derivative Change Event:  ( , )   ( , )  
• Model Change Event:  = ( ) = ( ) 

The constrained pendulum system with events Hit and 
Release involves Parameter Change Events and State 
Change Events. At event ( ) = ( ) = 0, 

• the pendulum length changes:   or , 
• and due to conservation of momentum, the  

angular velocity changes discontinuously:  ( ) ( )      or    ( ) ( ). 

Indeed it is strange, that the angular velocity, a state var-
iable, changes discontinuously – this cannot happen in 
reality, it is result of simplification in modelling. This 
drawback can be eliminated by a simple transformation 
of the state, using instead of the angular velocity ( ) the 
tangential velocity ( ) = ( ), which does not change 
in case of Hit or Release:   = 1          = sin  

1 MATLAB Model Approaches 
MATLAB’s ODE-solvers generally need a state space 
description of the model with coupled first-order differ-
ential equations, best choice for the constrained pendu-
lum is  =     =  = 1     = sin( ) , 
resulting in nonlinear state space description: 

( ) = = 1
sin( ) = ( , ) 

The classically linearized model – needed later - is  =        = y , 
and reformulated as LTI state space system: =         =  

= 1 1   = 00   = 1 00 1   = 00  

1.1 TASK A: MATLAB Nonlinear Model with 
Event Handling 

The first task of the benchmark is to solve the pendulum 
problem with an ODE-solver and to find pin touch and 
release with events functions.  

MATLAB’s ODE solvers provide event detection, 
but no event action handling. For events, additionally to 
the model derivative function ( , ) the event function ( , ) can be provided. 

This solution works with the classical Runge-Kutta 
ODE45 solver, with stepsize control. Before calling the 
solver, options define accuracy for step size control - 'Rel-
Tol', 1e-4, – and event specification - ’Event’, @hitrelease. 
The solver call needs as inputs the derivative function - 
@pend_func - and simulation interval, initial values, and 
the reference to further options: 

   options=odeset('RelTol',1e-5,’Event’,@hitrelease) 
   ode45(@pend_func, [tstart, tend], xstart, options) 

The ODE solver can detect an event, and he can localize 
an event by iteration within the integration interval 

,   (using the Regula Falsi method, a com-
bination of bisection method and secant method), result-
ing in a reduced integration interval , = . There 
is no possibility to force Event Actions at event time  
(except Output Events). Now the solver either re-starts 
the integration at = ,  and continues, or he 
terminates the ODE solving at  state with state ( ). 

The second option, the termination at the event, is ba-
sis of the implementation for the implementation of the 
constrained pendulum model: a loop switches between 
solving the ‘long’ pendulum model and the ‘short’ pen-
dulum model, each terminated by the Hit or Release 
events.  



   Setinek et al.    C7 Constrained Pendulum: MATLAB Environment, Symbolic Approach & E-Learning 
 

                                                                                                                                         SNE 31(4) – 12/2021    241 

B N E 
The implementation itself is quite straightforward 

with a while-loop, which stops if the time reaches the de-
fined simulation end time (10 sec).  

Inside the loop an if-elseif-else clause decides whether 
the long or the short pendulum system is used and ap-
pended the overall solution. The decision logic works for 
arbitrary initial values and pin positions, but becomes more 
complex for a possible special case: in case the Hit or Re-
lease event is around at pin position (within a certain nu-
merical accuracy, the tangential velocity at event time 
must decide about further model selection. The following 
code snippet shows details of this implementation, which 
is a classical hybrid decomposition of the constrained pen-
dulum model into a controlled sequence of ‘long’ pendu-
lum model and ‘short’ pendulum model. 

 
  if y_start(1) > phi_p % calculating with long pendulum  
      sol = ode45(dydt1, [tstart, tend], y_start, options); 
      t = [t, sol.x]; y = [y, sol.y]; t_events = [t_events, sol.xe]; 
  elseif y_start(1) < phi_p    % calculating with short pendulum 
             sol = ode45(dydt2, [tstart, tend], y_start, options); 

          t = [t, sol.x]; y = [y, sol.y]; t_events = [t_events, sol.xe]; 
  else 
  if y_start(1) > phi_p % calculating with long pendulum  
      sol = ode45(dydt1, [tstart, tend], y_start, options); 
      t = [t, sol.x]; y = [y, sol.y]; t_events = [t_events, sol.xe]; 
  elseif y_start(1) < phi_p    % calculating with short pendulum 
        sol = ode45(dydt2, [tstart, tend], y_start, options); 

     t = [t, sol.x]; y = [y, sol.y]; t_events = [t_events, sol.xe]; 
  else 
  if y_start(2) < 0    % calculate with short pendulum 
      sol = ode45(dydt2, [tstart, tend], y_start, options); 
      t = [t, sol.x]; y = [y, sol.y]; t_events = [t_events, sol.xe]; 
  else    % calculate with long pendulum 
      sol = ode45(dydt1, [tstart, tend], y_start, options); 
      t = [t, sol.x]; y = [y, sol.y]; t_events = [t_events, sol.xe]; 
  end; end 

The model derivative functions can be defined as inline 
function by 
     dydt1 = @(t,y)[y(2)/l; -g*sin(y(1))-d/m*y(2)]; 
     dydt2 = @(t,y)[y(2)/ls; -g*sin(y(1))-d/m*y(2)]; 

The algorithmic event function has as parameters the 
event function ‘value’ itself, the stopping flag ‘is terminal=1’ 
to stop ODE solving at the event, and ‘direction=0’ to detect 
Hit and Release: 
   function [value,isterminal,direction] = hitrelease(~,y) 
      value = y(1)-phi_p; 
      isterminal = 1; direction = 0; 
   end 

Figure 2 shows the results for the ‘standard’ initial values = /6,  = 0, = /12. Event times are: 
0.7035  1.1518  2.5904   2.9905  4.5427  4.8675  6.6487  6.7204 

Obviously the fourth contact (7th event)results in a very 
short window for the ‘short’ pendulum, and may cause 
‘event vanished’ for too big stepsizes. 

 
Figure 2: ODE45  solutions for ( ) and  ( ) for ‘standard’ 

initial values with detail for last two events 
rel. tolerance 1e-4, max. stepsize 0.15.  

Important for the accuracy of event finding is the stepsize 
control of the ODE solver. ODE45 estimates the local er-
ror by the difference of a 4th order step and a 5th from   
to  = : exceeding the given relative tolerance, 
the stepsize decreases to , = , a too big 
undercut increases the stepsize to , = .  

After the choice of a proper stepsize the event finding 
starts - with an accuracy depending on ODE solver accu-
racy and general accuracy eps. A small stepsize brackets 
a small interval for fast event finding, but may result in 
slow ODE solving. A too big stepsize may cause prob-
lems: events may vanish, as in this case with the forth pin 
contact: here the bracketed interval for event finding may 
be too large, so that both events are within the window 
and will therefore not be detected. 

1.2 TASK B: MATLAB Linear Model –  
ODE Solver with Event Handling 

Task is to compare the nonlinear model with the linear 
model. For the linear model also the event finding fea-
tures of the ODE solver can be used, so that the imple-
mentation simply replaces the nonlinear model from 
Task A with the linear one: 

For graphical comparison, both linear and nonlinear 
solutions are plotted into one graphic window. Figure 3 
displays both results for the ‘standard’ initial values, 
showing only slight differences in the event times. Event 
times are summarizes in Table 3, Section 5, for better 
comparison.  

Of course the implementation works also for the 
‘original’ smaller initial values foreseen for this task, = /12,  = 0, = /24, resulting in even 
smaller differences of nonlinear/linear event times.  

0 1 2 3 4 5 6 7 8 9 10
time

-2

-1.5

-1

-0.5

0

0.5

1

1.5
phi
v
pin



Setinek et al.     C7 Constrained Pendulum: MATLAB Environment, Symbolic Approach & E-Learning 

242      SNE 31(4) – 12/2021 

B N E 

 
Figure 3: ODE45 solution for linear and nonlinear system 

in MATLAB with event finding ( rel.tol 1e-5). 

It is to be noted, that simulation of nonlinear and linear 
system results in different time bases, because of differ-
ences in the step size control. For a numerical compari-
son, e.g. difference of the angles  (t) and  ( ), the 
time bases must be interpolated after the simulation. One 
could force the ODE solvers to a given (output) time 
base, but then problems with the event times occur.  

For a real precise comparison of the full time courses, 
both models must run in parallel with state vector ( , , , ) = ( 1, 2, 3, 4) , with an extended 
event control of the linear and of the nonlinear system 
using a vector event function: ( ), ( ) = ( ( ) ( ) )  

The model becomes a joint model implemented as 

     dydt1 = @(t,y)[y(2)/lnlakt; -g*sin(y(1))-d/m*y(2)]; 
     dydt2 = @(t,y)[y(2)/lnlakt; -g*sin(y(1))-d/m*y(2)]; 
     dydt3 = @(t,y)[y(4)/llakt; -g*y(3)-d/m*y(4)]; 
     dydt2 = @(t,y)[y(2)/llakt; -g*y(3)-d/m*y(4)]; 

Now the loop, switching, and concatenating of the se-
quence of models becomes more complex: in each event 
the next actual length can be any combination, as events 
are linear long – linear short & nonlinear long – nonlinear 
long, ... The algorithmic event function must work with 
two event entries: 
   function [value,isterminal,direction] = hitrelease(~,x) 
   value(1) = x(1)-phi_p;  value(2) = x(3)-phi_p  
    isterminal(1) = 1; direction(1) = 0; 
    isterminal(2) = 1; direction(2) = 0; 
  end 

This procedure seems complicated, but it is the general 
event handling strategy used in Simulink, and therefore 
useful to study. 

1.3 MATLAB Nonlinear Model without Event 
Handling 

The loop, switching, and concatenation of ‘long’ pendu-
lum and ‘short’ pendulum is indeed laborious – why not 
to change the length directly in the algorithmic pendulum 
function, depending on angle position ? 

This quick and ‘dirty’ approach has ‘strange’ results. 
The model function for both models, using MATLAB’s 
effective abbreviations for if-then-else clauses, becomes  
    function dxdt = pend_noev_fun(~,x) 
       lakt = (x(1) >= phi_p)*l +(x(1) <= phi_p)*ls 
       dxdt(1) = x(2)/lakt; 
       dxdt(2) = -g*sin(x(1))-d/m*x(2); end; 
sol = ode45(@pend_noev_func, [tstart, tend], xstart, options), 

and the simulation call consist only of one call of the ODE 
solver. The results are astonishing close to the simulation 
with events handling, shown in Table 1 (event times for 
the ‘standard’ initial values), with unexpected results. 

Phase 
Start 

Event Times 
Event Finder No Event Finder 
rtol  1e-4 rtol  1e-5 rtol  1e-4 

Long 1 0.0 0.0 0.0 
Short 1 0.703459556 0.703459559 0.702954406 
Long 2 1.151778788 1.151778616 1.157402743 
Short 2 2.590418102 2.590358975 2.583773000 
Long 3 2.990527098 2.990509554 2.998855259 
Short 3 4.542743634 4.542667578 4.535188672 
Long 4 4.867485452 4.867455379 4.874065441 
Short 4 6.648742768 6.648572636  
Long 5 6.720351405 6.7204086952  

Table 1: Event times with and without event detection – 
with vanishing events and unexpected event sequence. 

What results are to be expected? Generally, without event 
finder, the ODE solver recognizes the necessary change 
of the length at the next integration time instant, i.e. at 

 definitively too late - it should have happened at un-
known ,   1  

Figure 4 explains the situation, showing both solu-
tions around an event time, taking into account the dif-
ferent stepsizes of ODE solver with event handling ,  and without event handling , , . Obvi-
ously the solver without event finding chooses for the 
same given tolerances shorter stepsizes around the event. 

The reason is a numerical problem: the jump of the 
length makes the ODE function discontinuous, and the 
ODE solver tries to keep the tolerances, decreasing the 
stepsize – in vain: he ends up with = , violating 
the tolerances (hidden warnings). 



   Setinek et al.    C7 Constrained Pendulum: MATLAB Environment, Symbolic Approach & E-Learning 
 

                                                                                                                                         SNE 31(4) – 12/2021    243 

B N E 

 
Figure 4: Operation of ODE solver with and without event 

detection, expected event sequence. 

But interestingly the results seem plausible, because the 
comparisons of time instants =  

shows the expected behaviour, ‘correct’ event before 
‘faked’ event: = .  

Table 1  event times ( ) with and without ( ) event 
detection and different ODE tolerances  shows expected 
numerical values, but only for some event times (denoted 
in green). Some other event times  without event detec-
tion take place before the correct event ( , denoted 
in red). This unexpected result is caused by the ‘failing’ 
stepsize control, which for higher tolerances takes ‘too 
small’ stepsizes, so that the ‘correct’ event lies after the 
‘faked’ event (Figure 5):  =  

 
Figure 5: Operation of ODE solver with and without event 

detection, unexpected event sequence. 

Which event time is now the correct one   , or ? 
Indeed the ‘exact’ event time  is not exact, it is a 
numerical approximation. Curiously the quick and 
‘dirty’ implementation with the discontinously chang-
ing length can give a better result , misapply-
ing the failing stepsize control as ‘pseudo-event-
finder’. But Table 1 shows for low tolerances defi-
nitely wrong results, with vanishing events for this 
strategy. But this strategy must be used, if no event de-
tection is available (as in case of EXCEL, [3]), but 
only with extreme care. As consequence, event finding 
is necessary, but it has to be ‘synchronised’ carefully 
with tolerance parameters of the ODE solver.  

1.4 MATLAB Linear Model with LTI Solving 
The linear model is appropriate for small angles, and for 
time analysis an ODE solver is not the best approach 
(only approximating the time course). The linear pendu-
lum is an LTI system, and therefore the linear theory with 
the exponential matrix provides a powerful tool, which is 
exact with respect to the algorithmic error: 
The classically linearized model with reformulation as 
LTI state space system is  =        = y , 

=  ,     = 1 1   = 00          
Linear theory derives a solution using the exponential 
matrix ( ) = ( ) ( )  

The properties of the exponential matrix allow to calcu-
late a solution recursively on a time grid by   ( ) = = , =   
MATLAB offers with the LSIM solver an integrated tool 
for solving LTI systems by 
           sol=lsim( A, B, C ,D, timegrid ) 

using the state update with the exponential matrix, but 
without event finding capabilities. So it is now the task to 
combine the linear exact method with event finding. 

Trying to use LSIM, one possibility would be to sim-
ulate only one single time step per iteration. After each 
one-timestep simulation with LSIM, the resulting angle 
gets checked for crossing the pin angle, before it gets 



Setinek et al.     C7 Constrained Pendulum: MATLAB Environment, Symbolic Approach & E-Learning 

244      SNE 31(4) – 12/2021 

B N E 

written into a consistent result vector or the event gets 
estimated with one Newton-algorithm step.  

However, this method is very inefficient. Each call of 
the LSIM forces a new calculation of the exponential ma-
trix for every time step.  

Another possibility is to simulate with LSIM longer 
time periods in a while-loop, and run through the solution 
vector to check for the event. If the angle crosses the pin 
angle within the solution vector a Newton-algorithm step 
gives the estimated event time and only the part of the 
solution vector until the event gets used – and the while 
loop continues. This method however can easily get a bit 
confusing or chunky to implement.  

The best method – and presented here - is indeed to 
calculate only one timestep and check for the event per 
loop iteration, but not by means of LSIM, but by direct use 
of the recursion with the exponential matrix - this makes a 
clearer implementation and reduces unnecessary evalua-
tions and recalculations of the exponential matrix. The 
event finding is a heuristic Newton implementation: it per-
forms only one iteration, but with exact derivative calcula-
tion: ( ) = ( )/  is generically given by the ODE. 

The implementation with while-loop and decision 
logic for choice of the next pendulum length is similar to 
the ODE approach with event finder; additionally the 
event finding is done by the Newton heuristics: 

% calculate the exponential matrices 
     A_expm = expm(A*tstep); 
     A_red_expm = expm(A_red*tstep); 
 
  while sol.t(end) < tend           % rewrite initial conditions 
  y_start = sol.y(:,end);t_start = sol.t(end); 
    if y_start(1) < phi_p    % calculate with short pendulum 
    [t,y_new] = expsolve(y_start, t_start, A_red_expm); l_ind = ls; 
  elseif y_start(1) > phi_p     % calculate with long pendulum 
    [t,y_new] = expsolve(y_start, t_start, A_expm); l_ind = l; 
  else    % consider velocity direction 
    if y_start(2) < 0     % calculate with short pendulum 
    [t,y_new] = expsolve(y_start, t_start, A_red_expm); l_ind = ls; 
  else     % calculate with long pendulum 
    [t,y_new] = expsolve(y_start, t_start, A_expm); l_ind = l; 
end; end 

% detect event and perform Newton approximation 
  if (sol.y(1,end)-phi_p)*(y_new(1)-phi_p) < 0 
     t_event = sol.t(end) + (phi_p - sol.y(1,end))/… 
                    (sol.y(2,end)/l_ind); 
     y_event = [phi_p; (y_new(2)-sol.y(2,end))/(y_new(1)- 
                     sol.y(1,end))*(phi_p-sol.y(1,end)) + sol.y(2,end)];  
     sol.y = [sol.y, y_event]; sol.t = [sol.t, t_event]; 
     event_times = [event_times, t_event]; 
  else % no event happening 
     sol.y = [sol.y, y_new]; sol.t = [sol.t, t]; 
end; end 

  function [t,y] = expsolve(y_start, t_start, exp_matrix) 
    y = [exp_matrix*y_start]; 
    t = t_start+tstep; end 

The results for the ‘standard’ initial values are very 
close to those of the results from the ODE solution of the 
linear model, time events are: 
0.6920  1.1205  2.5409  2.9318  4.4659  4.7909  6.5325  6.6528 

It is to be noted, that the LTI approach with the expo-
nential matrix is a numerical exact method – so these 
event times may be more reliable as results with the ODE 
solver. Also the exponential matrix can be computed nu-
merical exact via eigenvalues, etc. MATLAB operates 
with a very sophisticated environment for calculation of 
the experimental matrix – see ‘Nineteen dubious ways to 
compute the matrix exponential’ – [4].  

1.5 MATLAB Analytical Model Approach 
The linear model is indeed appropriate for small an-

gles, and for time analysis the LTI algorithm with the ex-
ponential matrix is very useful in applications. But the 
pendulum system is a small one, so another approach can 
make use of the analytical solution, in combination with 
an appropriate event finding algorithm. This task requires 
symbolical and numerical computations, and the follow-
ing investigations deal with three approaches. 

Analytic-Numeric Approach 
This approach makes directly use of the known analytical 
solution, a closed formula to be evaluated at arbitrary 
time instants: ( ) = ( , , , ) = = cos( ) sin( )  = , = , = 2 , = 1 , =  

and with related tangential velocity ( , , , ). 
The analytical (symbolic) solution depends on the 

pendulum length, and on the initial values, which change 
in case of event Hit or Release:  , , , . 

Again the event function ( ) = ( )  is used, 
but now inserting the analytical symbolic solution valid 
since the previous event ,  with actual length ,  chosen 
at previous event: ( ) = , , , , , ,  

Starting now with an appropriate guess ,  for the next 
event time, a Newton iteration recursively tries to deter-
mine the zero of the event function: 

, = , ,
, = 

= , , , , , , , ,, , , , , , ,  



   Setinek et al.    C7 Constrained Pendulum: MATLAB Environment, Symbolic Approach & E-Learning 
 

                                                                                                                                         SNE 31(4) – 12/2021    245 

B N E 
Again the necessary derivative is generically given by 

the tangential velocity, and the resulting MATLAB im-
plementation is simpler than the iteration formula. Again 
a while-loop performs the iteration, and interestingly four 
iterations are sufficient to result in event times as accu-
rate as calculated by other methods: 
  while iterations<4 
    newton_time=before-((part_sol_phi-phi_p)/part_sol_v); 
    part_sol_phi = exp(-alpha_red*newton_time)*… 
             ((C1*cos(w_red*newton_time))+… 
             (C2_red*sin(w_red*newton_time))); 
    part_sol_v = exp(-alpha_red*newton_time)*… 
              ((((w_red*C2_red)-(alpha_red*C1))*… 
              cos(w_red*newton_time))-… 
             (sin(w_red*newton_time)*((w_red*C1)+… 
             (alpha_red*C2_red)))); 
    before=newton_time; 
    iterations=iterations+1; 
  end 

The iteration loop runs in a while-loop switching between 
‘long’ and ‘short’ pendulum: a simple binary counter de-
cides which pendulum length is to be used.  

Analytic-Symbolic Approach 
This approach again makes directly use of the known an-
alytical solution, a closed formula to be evaluated at ar-
bitrary time instants: ( ) = ( , , , ),   ( ) = , , 0, 0   
Task is to determine the events, i.e. the zeros of the event 
function by means of the event function valid since the 
previous event ,  with actual length , , chosen at previous 
event: ( ) = , , , , , ,  

But now the symbolic solution is inserted directly, so that 
a nonlinear equation for the next event time ,  arises: 

, = , , , , , , , = 0 cos ,  sin , = 0 = , = , = 2 , = 1 , =  

It is laborious to solve this equation with respect to ,  
‘manually’, but MATLAB provides with the Symbolic 
Toolbox an adequate tool. Defining the event time ,  as 
symbolic variable, and the error function as symbolic 
equation, MATLAB’s vpasolve tool indeed masters this 
task. After solution, the symbolic event time can be nu-
merically evaluated. The implementation is quite short, 
and results in almost equivalent results with other ap-
proaches – see Table 3, Section 5. 

   syms t  equa 
   C1=phi0;  C2=(v0+(alpha*phi0*l))/(w*l);  %constants 
   equa=exp(-alpha*t)*((C1*cos(w*t))… 
            +(C2*sin(w*t)))==phi_p;      %equation for phi=phi_p 
   te_sym = vpasolve( equa , t);  te = double(te_sym) 

Full Symbolic Approach 
For this approach the Symbolic Toolbox also sets up the 
analytical solutions ( ) and ( ) by solving the 
ODEs analytically. Therefore, the state variables must be 
implemented as symbolic functions, as well as the differ-
ential equations. The following implementation docu-
ments the symbolic automatized operations: 
  syms phi(t) v(t)   %work with symbolic variables 
  %differential equations with symbolic values 
     eqns = [diff(phi,t) == v/l, diff(v,t) == -g*phi-d*v/m]; 
     eqns_red=[diff(phi,t) == v/ls, diff(v,t) == -g*phi-d*v/m]; 
     cond=[phi(0)==solution_phi(end),v(0)==solution_v(end)];  
  %solve differential equations 
     if n==0   structure=dsolve(eqns,cond); n=1; 
     else structure=dsolve(eqns_red,cond);  n=0; end 

The ODEs are solved with the dsolve tool which returns 
a symbolic time-dependent solution. As in the Analytic-
Symbolic Approach, the symbolic vpasolve tool allows to 
determine the event times, using now the symbolic ODE 
solutions, and not the ‘manually’ derived solutions – very 
comfortable. With a for-loop the symbolic ODE solutions 
are evaluated till the event time with a defined time step 
and transformed to a numerical value. 
But because every evaluation step includes a transfor-
mation from symbolic to numeric value, this approach 
takes much longer time in MATLAB. 

Comparison of Analytic Approaches 
All analytic approaches provide the ‘exact’ same results 
for the event times (within rounding tolerances): 
0.6920  1.1205  2.5409  2.9318  4.4658  4.7908  6.5321  6.6530 

But the calculation time duration differs significantly: 
• the Analytic-Numeric Approach has the shortest 

calculation time (0.1-0.25 seconds),  
• the Analytic-Symbolic Approach takes 10 times 

longer (2-5 seconds),  
• and the Full Symbolic Approach has the longest 

time (15-17 seconds). 
For the used ‘standard’ initial values = /6, =/12, the event times are close to the event times of the 
nonlinear system. For smaller initial values = /12,= /24 they get very close (Task B).  

An interesting alternative for getting generally closer 
to the nonlinear behaviour would be the use linear affine 
systems with different linearization points. 



Setinek et al.     C7 Constrained Pendulum: MATLAB Environment, Symbolic Approach & E-Learning 

246      SNE 31(4) – 12/2021 

B N E 

1.6 TASK C: Boundary Value Problem 
The benchmark defines as third task the solution of a 
boundary value problem: which initial angular velocity 

 with initial angle = /6 and pin angle =/12 is necessary to reach after one Hit event exactly = /2 (includes  = 0) ? 
The classic approach is an iteration of  or , resp., 

each with a simulation run with ‘sufficient’ time length. 
A charming easier alternative is to view the problem from 
the target values: starting with the (short) pendulum at 
angle = /2 and velocity = 0 backwards 
in time, the pendulum will reach after one Release event 
as long pendulum at a certain time /  the angle / = /6 with wanted velocity ( /  ). 

The dynamics backwards in time can be derived by a 
time transformation  =  yielding =  and ( ) = 1 ( ), ( ) = sin ( ) ( ) 

As consequence, the boundary value problem changes to 
a simulation backwards in time, with Release event and 
with a Target event at / . The event function becomes 
a vector event function: ( ) =    ( ( ) ( ) /6)  
The implementation for the nonlinear model with event 
handling can be re-used, changing only the signs in the 
model function and adding the Target event:  
    function [value,isterminal,direction] = hitrelease(~,y) 
     value  = [y(1)-phi_p    y(1)-pi/6]; 
     isterminal = [1  0]; direction = [0 -1]; end 
Note, that the Target event does not terminate the simu-
lation, it stores only the state target values (Figure 6, 
events Release (green cross) and Target (red cross). 

 
Figure 6: Simulation backwards in time for determining 

wanted angular velocity . 

The numerical results are quite accurate: / = 0.601299, ( / ) = / = 2.184514 

2 Simulink Model with and 
without Event Handling 

Simulink is MATLAB’s graphical modelling environ-
ment based on directed signal flow and classic block-ori-
ented modelling. Basis is the Integrator Block – denoted 
by  , which ‘integrates’ the input, the ODE. In prin-
ciple, Simulink makes use of the integral notation of 
ODEs, in case of the pendulum of = 1      =  

The Simulink model of the constrained pendulum is based 
on the pendulum ODEs using two integrator blocks. 
 

 
Figure 7: Simulink model for the constrained pendulum 

with switch block for changing length. 

Due to continuous differentiability of the states  and , 
only the length of the pendulum must be changed, de-
pending on the angle . There, Simulink offers a Switch 
block, which compares whether the current angle  is 
greater than pin angle  (the threshold is defined in the 
switch block), and which therefore models the event 
function (Figure 7). 

 
Figure 8: Simulink model for the constrained pendulum 

with compare block and switch block for  
changing length; detail. 

A more detailed approach for the event function is the use 
of a Compare to Constant block in addition to a switch 
block. Since the output of this block is Boolean, the 
threshold of the consecutive switch is set to 0 (Figure 8). 
However, both switching options deliver the same results.  



   Setinek et al.    C7 Constrained Pendulum: MATLAB Environment, Symbolic Approach & E-Learning 
 

                                                                                                                                         SNE 31(4) – 12/2021    247 

B N E 
Simulink offers state event handling by means of the 

Zero Crossing options in many blocks (23 blocks !), as 
e.g. in the Hit Crossing block (for general event func-
tions), and in Compare and Switch blocks (for simple 
event functions).  

It is possible to activate and deactivate the zero-cross-
ing detection (Figure 9, switch block), so simulation can 
run with and without event detection. 

 
Figure 9: Configuration menu for switch block with 

threshold definition and zero crossing  
enabling and disabling. 

Simulink parses the graphic model and compiles it into 
state space model  ( ) = ( , ). For simulation it makes 
use of the MATLAB ODE solver suite, quite similar to 
the use in MATLAB, but with extended possibilities for 
events, triggered or enabled/disabled submodels, and 
some other special tasks. 

Indeed Simulink does state event handling, and offers 
– in contrary to MATLAB – also possibilities to imple-
ment Event Actions. Generally, for this purpose there are 
two possibilities: 
• Parameter Change Events and State Change Events 

can be directly described in one model by switches 
and re-initialisation of integrator blocks, triggered by 
blocks capable of zero crossing detection. 

• Derivative Change Events and Model Change Events 
need another technique: original and changed deriv-
atives or original and changed models resp., are both 
put into different Simulink submodels, which can be 
enabled or disabled. The ‘root’model handles via 
events the switching between the submodels by ena-
bling or disabling them.  

The above submodel approach for structural-dynamic 
systems is the so-called Monolithic State Space Ap-
proach ([2]), the alternative to the Hybrid Decomposition 
Approach, used also in MATLAB (see Section 1.1). 

The term monolithic refers to the fact that the state 
space is a maximal one and not consecutively split into 
smaller state spaces: during simulation, in disabled sub-
models the states are ‘frozen’, and re-activated, as soon 
as the submodel is enabled.  

In this Simulink model for the constrained pendulum 
the ‘one model’ approach is chosen, a generic simple ap-
proach with state vector  ( ( )  ( ))  and switching 
length. The more general alternative would work with a 
monolithic overall state ( )  ( )  ( )  ( )  
– used in the Stateflow modelling approach, Section 3. 

 
State Event Detection – Zero Crossing 
Simulink allows to enable or disable event handling. 
Simulink’s event detection is more sophisticates than the 
MATLAB algorithm. Again for event detection the Reg-
ula Falsi method, a combination of bisection method and 
secant method, is used, with a ‘hard’ accuracy limit – in 
case of the non-adaptive strategy; recent Simulink ver-
sions offer an adaptive strategy, which instead of the 
‘hard’ limit works with an appropriate threshold around 
zero, stopping the detection algorithm. 

The investigations here refer to enabled (non-adap-
tive) zero crossing and disabled zero crossing (no event 
detection), and show as with MATLAB astonishing but 
different results. Key parameters for localisation and ac-
curacy are again the parameters for the ODE45 solver, 
the tolerances and the maximal stepsize.  

Generally, the results are very close to the MATLAB 
results – time courses as well as event times – with and 
without event handling. 

 
Figure 10: Solution with and without zero crossing near 

event: blue cross – detected event time, 
red cross – ‘accepted’ late event time. 



Setinek et al.     C7 Constrained Pendulum: MATLAB Environment, Symbolic Approach & E-Learning 

248      SNE 31(4) – 12/2021 

B N E 

There are small, but crucial influences of the algorith-
mic parameters, yielding astonishing results. Figure 10 
displays in detail the ODE45 calculations around an event 
time, with enabled/disabled zero crossing:  
• Without event detection: ODE45 varies the step-

size, and close to reaching the angle ,  
the solver reduces the step size because the state 
forecast with switched length exceeds the given  
tolerance;  
after some tries (more solution points before event), 
the solver ends up with an internal error warning 
and accepts the ‘next’ time instant as event time =  (theoretically after the event). 

• With event detection: the ODE45 solver approaches 
the event with bigger stepsizes. After detection of 
the event, event localisation starts and results in 
‘exact’ event time  (theoretically before the time 
instant calculated without zero crossing algorithm:  ). 

• Comparison: with fixed stepsizes, the event time se-
quence must obey  ;  
with step size control, without zero crossing  
algorithm, the stepsize control decreases the step-
sizes, so that the ‘accepted’ event time  =  
may be before (!) the exact time:  ;  
for further details, see discussion in Section 1.4). 

Indeed the stepsize control based on tolerances and step-
size limits yields this astonishing results. From another 
viewpoint, stepsize control could be seen as competitive 
event handling, searching for a stepsize which tolerance 
reaching event. Some observations:  
• Using the ODE45 solver with maximal stepsize set 

to automatic, only three hits of the pin are found. 
The amount of touches found depends on the cho-
sen maximum stepsize and the tolerances.  

• For the ODE45 with enabled zero-cross-detection 
with a maximum step size smaller than 0.154 and a 
relative tolerance of 10  the pendulum hits the pin 
four times (Figure 11).  

• In contrast to this, for the ODE45 without zero-
cross-detection, since it is not as accurate, the maxi-
mum step size needs to be smaller than 0.145 to ob-
serve four hits.  

Further results, especially a comparison between the dif-
ferent approaches and resulting ecent times, see Sec-
tion 5, Table 3. 

 

 
Figure 11: Angular velocity with disabled and enabled zero  

crossing, solver option maximum stepsize  set to 0.154,  
rel. tolerance 10 ; disabled zero crossing lets 7th  
and 8th event vanish. 

3 Simulink Stateflow Model with 
and without Event Handling 

Stateflow is a Simulink extension offering control 
schemes of signals and submodels by automata. Recent 
versions of Stateflow allow not only logic states in the 
automata, but also hybrid continuous states. 

Use of Stateflow for the constrained pendulum model 
could on the one side simply replace the switch block of 
the Simulink implementation in Section 2 by one state 
chart ‘actual’ length’ alternatively switched via feedback 
with switch of length. On the ‘advanced’ side, Stateflow 
allows to implement the constrained pendulum system as 
structural-dynamic system by the monolithic state space 
approach ([2]) using indeed the maximal state space ( )  ( )  ( )  ( )  
The implementation is based on two almost identical 
Simulink submodels (Figure 13, a) and b)) with the pen-
dulum system. Stateflow (Figure 12) switches between 
these two models, one with length  and one with length .  

 
Figure 12: Overall Stateflow model with two hybrid states 

‘long’ and ‘short’. 

 



   Setinek et al.    C7 Constrained Pendulum: MATLAB Environment, Symbolic Approach & E-Learning 
 

                                                                                                                                         SNE 31(4) – 12/2021    249 

B N E 

 
Figure 13: Model of the long pendulum (a) in the hybrid 

state ‘long’, and of short pendulum (b) in hybrid 
state ‘short’. StateWriter blocks transfer the system 
states  and  between the hybrid states. 

The Stateflow model (Figure 12) includes the hybrid 
states ‘long’ and ‘short’. The arrows in between mark the 
switch between the hybrid states: the conditions, when to 
switch (event function zero crossing) are given above the 
arrows in the squared brackets. The two hybrid states 
consist of Simulink submodels with the continuous dy-
namics (Figure 13, a) and b)). 

The transition condition is given by the change of sign 
in the event function. The transition condition from the 
long pendulum to the short one is . As soon 
as the inequation is satisfied, the computation is done in 
the model of the short pendulum, and the system states of 
the long pendulum are frozen. To switch from the short 
pendulum to the long pendulum model, the inequation 

 needs to be fulfilled.  
To start with the correct initial values after changing 

the model, a StateWriter block is used transferring the 
values at event time. Although the default model is the 
long pendulum (defined by the root arrow to state ‘long’, 
the simulation still works if the initial angle . 
This is based by the order of work steps in Simulink 
Stateflow: if a new hybrid state, in this case a dynamic 
model, is entered, Simulink checks if a transition condi-
tion is fulfilled, in which case the transition is done be-
fore the calculation in this hybrid state starts. 

An important tool in Stateflow is the Symbols Panel, 
(Figure 12, at right). In this panel the variables used in 
the Stateflow model can be defined as ‘constant data’, 
‘parameter data’, ‘local data’, etc. In case of the con-
strained pendulum ‘phi_p’ is defined as a ‘parameter data’ 
and ‘v’, ‘phi’ and ‘phi_dot’ are defined as ‘output data’. 

As the Stateflow implementation clearly makes use of 
the same zero crossing as in the Simulink implementation, 
the results – time courses and event times – are very close.  
Further results, especially the comparison between the dif-
ferent approaches can be found in Table 3, Section  5. 

4 System Sensitivity  
Time domain analysis is the primary tool for analysis of 
dynamic systems ( ) = ( , ). But as systems depend 
also on parameters , so systems and solutions are also 
functions of the parameters: ( , ) = ( , , ), ( , ). 

Sensitivity Analysis is a method, which qualifies and 
quantifies the change of the solutions (or key measures 
of the solution) with respect to change of the parameters 
– and the two method groups are analytical methods and 
stochastic methods.  

4.1 Parameter Sensitivity Functions 
The so-called Parameter Sensitivity Functions with the 
Parameter Sensitivity Equations are a classical tool for 
analysing the dynamics of an ODE system  ( ) =( , , ) with respect to change of parameters .  

The sensitivity functions are generally the partial de-
rivatives of the states ( ) with respect to the parameters 

, obeying the sensitivity equations, ODEs coupled with 
the system equations and derived by valid change of the 
derivation sequence: 

, ( ) = ( )    , ( ) = ( )         ( ) = ( ) = ( ) = ( , ) 

, ( ) = ( , )     , (0) = 0 

While the sensitivity function , ( ) is a general meas-
ure for the change of state ( ) with respect to parameter 

, the Normalized Sensitivity Function , ( ) measures 
quantitatively the change of the state ( ) due to a 1% 
relative change of the parameter : 

, ( ) = , ( ) 100 

The nonlinear pendulum with two states and four param-
eters deduces eight sensitivity functions and ODE sensi-
tivity equations  , , , , , , ,  with e.g.: = 1      =  = 1      = 1

 = 1 1      =  

 
Figure 14 shows all sensitivity functions for a longer time 
horizon, showing interesting oscillatory behaviour espe-
cially for the length sensitivity . 



Setinek et al.     C7 Constrained Pendulum: MATLAB Environment, Symbolic Approach & E-Learning 

250      SNE 31(4) – 12/2021 

B N E 

 
Figure 14: Sensitivity functions as ODE solutions of the 

sensitivity equations with additional oscillation. 

The MATLAB implementation of the sensitivity system 
is straightforward: 
     x0 = [ phi0 v0 0 0 0 0 0 0 0 0 ]'; 
     [t, x] = ode45(@(t,x) pend_sens(t,x,rl,rl2,dm,rm,dmm,g),… 
                [0, tend], x0); 
   function dxdt = pend_sens(t,x,rl,rl2,dm,rm,dmm,g) 
   dxdt=zeros(10,1); 
   dxdt = [ rl*x(2);           -g*sin(x(1))      - dm*x(2);           ... 
         rl*x(4);           -g*cos(x(1))*x(3) - dm*x(4)  - rm*x(2)  ;... 
         rl*x(6)-rl2*x(2);  -g*cos(x(1))*x(5) - dm*x(6);           ... 
         rl*x(8);           -g*cos(x(1))*x(7) - dm*x(8)  + dmm*x(2) ;... 
         rl*x(10);          -g*cos(x(1))*x(9) - dm*x(10) - sin(x(1))]; 
   end 
 
Of interest for the constrained pendulum are shorter pe-
riods of the oscillations in between the events Hit and Re-
lease. Figure 15 shows the normalized sensitivity func-
tions for length and damping: a length change is domi-
nating: 

, ( ) = ( ) 100     , ( ) = ( ) 100   
 

 
Figure 15: Normalized sensitivity functions for damping 

(smooth) and length (dominating). 

Of course the sensitivity functions can be continued after 
an event, starting with nonzero initial values (final values of 
previous segment).  

Already the small pendulum system shows that deri-
vation of the sensitivity functions is voluminous and er-
ror-prone. Symbolic computation in combination with 
appropriate function handling automatizes the derivation 
and simulation of sensitivity equations, e.g. with the 
MATLAB Symbolic Toolbox: 
• Definition of the symbolic system ODE function 

with symbolic states and parameters 
• Definition of symbolic sensitivity states, symbolic 

derivation of the sensitivity ODE functions 
• Composing system ODE functions and sensitivity 

ODE functions to complete symbolic function set 
• Transformation of symbolic sensitivity ODEs to  nu-

merical ODE (vector) function for ODE simulation 

Nevertheless, the sensitivity analysis with sensitivity 
functions and sensitivity ODE system is based on contin-
uous dependency of the parameters – which is not the 
case for the parameter pin position . 

4.2 Sensitivity by Monte-Carlo Method 
Partly simpler is another method for sensitivity analysis, 
the Monte-Carlo Method (used also for other tasks, as 
simulation itself). Generally, Monte-Carlo technique 
works with multiple random disturbances of inputs, cal-
culating the multiple system responses, and finally calcu-
lating mean and standard deviation of the responses. 

For the constrained pendulum this technique could be 
used for the pendulum parameters , , ,  and time 
courses  ( ; ) and ( ; ) as system response – without 
benefit compared to sensitivity functions. But the tech-
nique offers itself for analyzing the sensitivity of the 
event times ,  with respect to the pin angle . 

Starting with a sufficient big sample of disturbed pin 
angles , the resulting Hit and Release event times 

, ( ) 

for k =1,…,  ne (#events), i =1,…, ns (#samples) are calcu- 
lated, and then statistically evaluated with mean value and 
standard deviation: 

, = 1 , , = 1, … , 
, = 1 , , 2  

se
ns

iti
vi

tie
s

no
rm

. s
en

si
tiv

iti
es



   Setinek et al.    C7 Constrained Pendulum: MATLAB Environment, Symbolic Approach & E-Learning 
 

                                                                                                                                         SNE 31(4) – 12/2021    251 

B N E 
Sensitivity investigations will consider now the event 

times ,  for the nonlinear model with event detection, 
the event times ,  for the nonlinear model without event 
detection, and the event time differences 

, = , ,  

An implementation in MATLAB is very easy, because 
calculation of mean value and standard deviation are 
basic tasks. Simulation is performed in a loop with sam-
ple size , collecting a matrix  (t_events_e_mc) with  
event times for each event time and for each sample: 

= ,1,1 ,2,1 ,,1,1,2 ,2,2 ,,2
,1, ,2, ,,

 

and equivalently the matrix  (t_events_n_mc) for event 
times without event detection, and  (t_events_dif_mc) 
for the time differences, with results 
   ,,  (mean_t_events_e), ,,  (std_t_events_e) 

   ,,  (mean_t_events_n), ,,  (std_t_events_n),  

   , ,  (mean_t_events_dif), , ,  (std_t_events_dif). 

In contrary to the symbolic vector and matrix notation the 
implementation is very simple: 

     mean_t_events_e   = mean(t_events_e_mc) 
     std_t_events_e       = std(t_events_e_mc) 
     mean_t_events_n   = mean(t_events_n_mc) 
     std_t_events_n       = std(t_events_n_mc) 
     mean_t_events_dif = mean(t_events_dif_mc) 
     std_t_events_dif     = std(t_events_dif_mc) 

 

Table 2 summarizes the results for a Monte-Carlo 
study with a 5% uniformly distributed change in pin po-
sition, with a sample of = 500 tolerance of 1e-4. The 
results indicate that event times are not very sensitive 
with respect to small changes in the pin position, and that 
deviations are in the same range as the deviations be-
tween event times with and without state detection (the 
step size control in case of no event detection really 
seems to compensate the missing event detection). 

5 Comparison of Event Detection 
In case of nonlinear dynamics, the quest for the ‘exact’ 
event time  cannot really be determined – all ODE 
solutions with ( ) and without ( ) event algorithms are 
only approximations.  

Results with event detection in MATLAB, Simulink, 
and Stateflow are reliable and very close, if the ODE45 
parameters (tolerances, maximal stepsize) are chosen 
properly (Table 3, case A, C, D). Because the last ‘short’ 
pendulum phase is very short (~0.045 sec), all ODE ap-
proaches must limit the stepsize. 

The quick and ‘dirty’ approaches without event algo-
rithm calculate astonishing results for the event times : 
partly they occur before the ‘exact’ ones  – contrary to 
expectation (Table 3, Simulink case A vs. B, MATLAB case 
D vs E & F). Responsible is the stepsize control: the jump 
in length causes smaller stepsizes to keep the tolerances 
– in vain: step size control ends up with =  vio-
lating the tolerances (hidden warnings). The step size 
control seems to replace the event algorithm, although it 
is mathematically wrong (discontinuity). Is the earlier 
event time  more exact than the later  ? – no, because 
different solver parameters let also  happen earlier. Fur-
thermore, the ‘dubious’ stepsize control lets events  
vanish, which can be corrected by new solver tuning (Ta-
ble 3, Simulink case B, MATLAB case E vs. F).  

All linear model solutions are close to the nonlinear 
ones. For algorithmic event detection, linear models can 
make use of an ODE solver – with similar results for  
and  (Table 3, case G vs. H).  

Usually, linear systems are solved ‘exactly’ by the expo-
nential matrix, in a recursive loop with fixed steps. Event 
detection can be implemented by a ‘cheap’ Newton step –- 
successful, effective and more reliable  event times with 
ODE (Table 3, case E vs. G). Accuracy can be improved by 
smaller steps around the events. Mathematicians like the an-
alytic solution, where event detection requires solution of 
nonlinear equations, either by a partly symbolic Newton al-
gorithm, or direct symbolically, all with same ‘most’ exact 
results  and extremely close to solution with the exponen-
tial matrix (Table 3, case I vs J). 

Ev
en

t 
N

o.
 

 
,  ,

 

,,  

,,  

,  , ,
 

1 0.7034 0.7034 
0.0022 

0.7039 
0.0024 

0.0007 
0.0009 

2 1.1520 1.1519 
0.0004 

1.1522 
0.0007 

0.0005 
0.0006 

3 2.5901 2.5903 
0.0057 

2.5912 
0.0059 

0.0009 
0.0011 

4 2.9905 2.9907 
0.0029 

2.9917 
0.0031 

0.0010 
0.0012 

5 4.5425 4.5426 
0.0110 

4.5423 
0.0109 

0.0015 
0.0019 

6 4.8672 4.8676 
0.0053 

4.8675 
0.0056 

0.0017 
0.0021 

Table 2: Monte-Carlo sensitivity analysis for event times 
with and without event detection, nonlinear model. 



Setinek et al.     C7 Constrained Pendulum: MATLAB Environment, Symbolic Approach & E-Learning 

252      SNE 31(4) – 12/2021 

B N E 

6 Integration of Approaches 
into MMT E-Learning Server 

The MMT E-learning System – MMT stands for Mathe-
matics, Modelling and Tools – is a tool used at the Insti-
tute of Analysis and Scientific Computing and at TU Vi-
enna for education in modelling and simulation (and also 
by other institutes dealing with education in modelling 
and simulation). 

The MMT server, developed since 2006 ([5]), plays a 
major role in lectures for modelling and simulation and 
courses in applied mathematics. The case studies and ex-
amples for modelling and simulation deal with different 
kinds of modelling, like ODEs, cellular automata or 
agent-based models, and distinct applications.  

The MMT System is a web application with 
• a frontend presenting interactive examples and case 

studies for modelling and simulation, as well as  
related lecture notes, 

• with MATLAB running as simulation engine, 
• and with a backend content management system for 

preparing examples, case studies etc. and lecture 
note content. 

 
Figure 16: Entrance Webpage of the MMT Server. 

When a student enters the website, he is welcomed by 
Adam Ries (1492 – 1559; a German mathematician), 
with login (Figure 16).  

After login, all courses the student takes are listed on 
the left hand side. When the student chooses a course and 
in this course an example, the web page offers experi-
mentation features (Figure 17). On the left hand side a 
navigation lets select different examples, and further 
course topics (here ‘Pendulum Identification’).  

Each course topic includes appropriate examples 
(Figure 18, selected ‘Nonlinear Pendulum with Zero 
Crossing Data’). On the right hand side there is a link to 
the source code of the example (‘view m-file’; MATLAB 
m-files). Furthermore there can be other files linked, 
which can be downloaded like lecture notes, tables, etc. 

Ev
en

t t
im

e 

A 
Si

m
ul

in
k 

No
nl

in
ea

r M
od

el
 

w
ith

 E
ve

nt
 D

et
ec

tio
n 

  
rt

ol
 1

e-
4 

B 
Si

m
ul

in
k 

No
nl

in
ea

r M
od

el
 

w
ith

ou
t E

ve
nt

 D
et

ec
tio

n 
 

rt
ol

 1
e-

4 

C 
St

at
ef

lo
w

 N
on

lin
ea

r 
M

od
el

 w
ith

 E
ve

nt
 D

et
ec

tio
n 

rt
ol

 1
e-

4 

D 
M

AT
LA

B 
No

nl
in

ea
r M

od
el

 
w

ith
 E

ve
nt

 D
et

ec
tio

n 
rt

ol
 1

e-
4 

E 
M

AT
LA

B 
No

nl
in

ea
r M

od
el

 
w

ith
ou

t E
ve

nt
 D

et
ec

tio
n 

 
rt

ol
 1

e-
4 

F M
AT

LA
B 

No
nl

in
ea

r M
od

el
 

w
ith

ou
t E

ve
nt

 D
et

ec
tio

n 
 

rt
ol

 1
e-

5 

G 
M

AT
LA

B 
Li

ne
ar

 M
od

el
 

O
DE

 S
ol

ve
r w

ith
 E

ve
nt

  
De

te
ct

io
n 

 rt
ol

 1
e-

4 

H 
M

AT
LA

B 
Li

ne
ar

 M
od

el
 

O
DE

 S
ol

ve
r w

ith
ou

t E
ve

nt
 

De
te

ct
io

n 
 rt

ol
 1

e-
4 

I M
AT

LA
B 

Li
ne

ar
 M

od
el

  
So

lu
tio

n 
Ex

po
ne

nt
ia

l M
at

rix
 

&
 O

ne
st

ep
 N

ew
to

n 

J M
AT

LA
B 

Li
ne

ar
 M

od
el

  
An

al
yt

ic
 S

ol
ut

io
n 

al
l A

pp
ro

ch
es

 

1. 0.703454 0.70228 0.703459 0.703459 0.703327 0.703427 0.692023 0.686477 0.692018 0.692023 

2. 1.151559 1.159532 1.151763 1.151771 1.160078 1.151778 1.120535 1.130859 1.120547 1.120545 

3. 2.590362 2.585031 2.590407 2.590416 2.588979 2.590338 2.540851 2.510915 2.540911 2.540860 

4. 2.990219 2.986587 2.990503 2.990514 2.998792 2.990403 2.931783 2.932346 2.931825 2.931800 

5. 4.542716 4.54376 4.542743 4.542752 4.543987 4.542705 4.465752 4.447178 4.465854 4.465756 

6. 4.867135 4.865345 4.867457 4.867471 4.874602 4.867492 4.790766 4.782015 4.790856 4.790785 

7. 6.649999 - 6.648841 6.648860 - 6.648731 6.532110 - 6.532465 6.532060 

8. 6.719074 - 6.720245 6.720253 - 6.720995 6.652945 - 6.652801 6.652993 

Table 3: Event times    and  for all presented approaches – ‘standard’ initial values. 



   Setinek et al.    C7 Constrained Pendulum: MATLAB Environment, Symbolic Approach & E-Learning 
 

                                                                                                                                         SNE 31(4) – 12/2021    253 

B N E 

 
Figure 17: MMT Course Entrance. 

 
Figure 18: MMT Course Example. 

The availability of the source code is an important feature 
of the MMT system: students can use the code for further 
development. In the centre information on the selected ex-
ample is shown, and parameters for experiments can be 
chosen. With a click on the "OK" button, the server com-
putes the results with the chosen parameters (Figure 19).  

 
Figure 19: MMT Course Example – Results. 

There are various aspects for choosing examples and case 
studies for the MMT server: modelling topics, applica-
tions, methods, etc. The ARGESIM Benchmarks for Mod-
elling Approaches and Simulation Implementations are a 
challenging mixture of modelling approaches and applica-
tion, and have therefore become also a basis for education 
in modelling and simulation ([6]), using the various  solu-
tions published in SNE. Consequently the benchmarks are 
also interesting topics as case studies for the MMT server, 
and the MMT development team has started to integrate 
the some benchmarks into the MMT server, taking a well-
elaborated MATLAB approach with the defined tasks as 
examples, and extending them by further topics and tasks.  

After C9 Two-Tank Fuzzy Control, C11 SCARA Ro-
bot, C12 Collision of Spheres, C13 Crane with Control, 
C15 Kidney Clearance Identification, and C17 SIR-type 
Epidemics, now C7 Constrained Pendulum is integrated. 

The C7 integration into the MMT server (Figure 20, 
MMT introduction page for Constrained Pendulum) ex-
tends the benchmark tasks by topics presented in this con-
tribution: waiving event detection, event handling meth-
ods, linear system cases, linear analytic and symbolic so-
lutions, sensitivity analysis, and Monte-Carlo sensitivity. 
Additionally, the team prepares as further topic the approx-
imation of the nonlinear model by a sequence of linear af-
fine models with adaptive linearization points.  

 
Figure 20: MMT Case Study ‘Constrained Pendulum’. 

 
Figure 21: MMT ‘Constrained Pendulum’ – Results 1. 

 
Figure 22: MMT ‘Constrained Pendulum’ – Results 2. 

Choosing for instance the experiment ‘CPend – 
Events vs. No Events’ offers to enter model parameters. 
Pressing ‘OK’, the MATLAB engine runs, and gives 
back various results, as e.g. the time courses (Figure 21), 
or the event times (Figure 22). 



Setinek et al.     C7 Constrained Pendulum: MATLAB Environment, Symbolic Approach & E-Learning 

254      SNE 31(4) – 12/2021 

B N E 

At present the MMT Server offers about 200 case 
studies, each with various detailed examples. In winter 
2021 the MMT has also extended the already integrated 
C17 SIR-type Epidemic by model identification, and 
lockdown and vaccination strategies based on Corona ep-
idemics data from Austria (Figure 23). 

 
Figure 23: MMT SIR Case Study: Spread of Infection. 

 
Figure 24:  SIR Case Study – Identification. 

 
Figure 25:  SIR Case Study – Lockdown and Vaccination. 

In some simulation courses, students could investi-
gate with the MMT Server strategies again pandemics 
(Figure 24 and Figure 25). 

And last but not least, a view into the MMT backend 
with the model interface page for the constrained pendu-
lum (Figure 26). Novices need about one week to learn 
how to work and develop in this backend.  

 
Figure 26: MMT Case Study ‘Constrained Pendulum’ – 

Backend with parameter interface. 

Acknowledgement. The development of new MMT 
case studies is also done by students themselves – they 
present their seminar work, their practical course, or parts 
of their bachelor work or diploma work also in the MMT 
server – to be used by other students. This contribution 
on the benchmark Constrained Pendulum with all exten-
sions and the MMT integration is result of a student pro-
ject work from the lecture ‘Continuous Simulation’, com-
posed by four students from mechatronics, and by the su-
pervising tutor and lecturer, who added theoretical topics 
and MMT preparation.  

References 
[1] Breitenecker F. Comparison 7: Constrained Pendulum, 

Definition. SNE 3(7), 1993, 29 
[2] Körner A, Breitenecker F. State Events and Structural-

dynamic Systems: Definition of ARGESIM Benchmark 
C21. Simulation Notes Europe SNE 26(2), 2016, 117 – 
122. DOI: 10.11128/sne.26.bn21.10339 

[3] Stockinger AE, Gütl E, Rath S, Strasser D, Bicher M, 
Körner A, Ecker H. Direct Implementation of AR-
GESIM Benchmark C7 'Constrained Pendulum' in 
MATLAB and EXCEL. SNE 29(2), 2019, 105-110. 
DOI: 10.11128/sne.29.bne07.10478 

[4] Moler C, Van Loan C. Nineteen Dubious Ways to Com-
pute the Exponential of a Matrix, Twenty-Five Years 
Later. SIAM Review 45(1):3-49.  
DOI: 10.1137/S00361445024180 

[5] Winkler S, Körner A, Popper N. MMT – Mathematics, 
Modelling and Tools: An E-Learning Environment for 
Modelling and Simulation. SNE 21(2), 2011, 99-102. 
DOI: 10.11128/sne.21.en.10069 

[6] Breitenecker F, Körner A, Ecker H, Popper N, Pawletta T. 
ARGESIM Benchmarks on Modelling Approaches and 
Simulation Implementations – Development, Classifica-
tion and Basis for Simulation Education. SNE 29(1), 
2019, 49-61. DOI: 10.11128/sne.29.bn.10468 


