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Abstract. A new robust and efficient formulation for
stream-dominated thermal fluid systems has been de-
veloped and published as open-source library. This
methodology has been predominantly designed for and
applied on systems with known flow direction. Since it is
not directly evident how it is transferred to systems with
unknown flow direction, this paper details the implemen-
tation in the corresponding library. As an example, a re-
versible heat-pump is presented.

Introduction

What are stream dominated systems? Let us suppose

we have a component where a fluid is flowing from a

set of inlets to a set of outlets. A pipe section with one

inlet and one outlet is a simple representation of such a

component. When the mass flow rate is high, the fluid

within the component will be quickly replaced by the

fluid stream of the inlet(s).

In such a case, it is often a reasonable idealization to

assume that the thermodynamic state of the outlet Θout
is algebraically coupled to the thermodynamic state of

the inlet Θin (it may also depend on mass flowrate ṁ
and internal states x and inputs u). If so, we denote

the formulation of equations for such a component as

stream-dominated. Correspondingly, a system or sub-

system may be denoted as stream-dominated when it is

(primarily) composed out of such components.

Θout = f (Θin, ṁ,x,u) (1)

The reason is evident: with an algebraic coupling,

any change in the thermodynamic state of the inlet has

an immediate effect to the state of the outlet. This is

never true for an actual physical system but as an ide-

alization it may be upheld if the stream of the fluid is

dominating over the capacity.

Stream dominance is a very useful idealization and

hence frequently used. The corresponding algebraic

equations enable to describe even complex thermody-

namic processes very efficiently using very few time-

dependent state variables or even none at all.

Because of this efficiency, various tools (often de-

noted as 1D tools) support the object-oriented model-

ing and simulation of thermal fluid systems. Examples

are the optimal control of power plants, the simulation

of building physics and the environmental control sys-

tems (ECS) for cars or aircraft; the very last one be-

ing the authors’ application domain. Figure 1 shows a

picture of a three wheel bootstrap cycle, a classic con-

struction as part of the environmental control system of

many civil aircraft. The example has been created using

a proprietary library written in the open object-oriented

language Modelica [1].

The authors recently published the DLR Thermoflu-

idStream Library [2], an open-source implementation

of the stream-dominated approach. This library con-

tains a special sub-package that implements the con-

cepts for non-directed flows described in this paper. The

reader is invited to study the code of this implementa-

tion as additional content to this paper.

1 On Stream-dominated
Systems

Although, stream-dominance may lead to a purely alge-

braic system that can be efficiently solved in theory, it

is often difficult or inefficient to solve in practice. The

system of Figure 1 is a good example.
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Figure 1:Modelica diagram of a three-wheel-bootstrap cycle. The hot and dense bleed-air is cooled against the outside ram air.
The energy of the expansion is used to increase cooling efficiency. Furthermore the air is dehumidified. The system is
built extremely compact and the stream of air dominates. The direction of the stream is known a priori.

When modeled purely by algebraic equations us-

ing the object-oriented language Modelica, a non-linear

system of more than 200 equations results that needs to

be solved iteratively by a numerical method [3]. Simu-

lation tools such as Dymola [4] may automatically re-

duce the dimension to 40 but yet alone finding the area

of convergence remains a serious problem.

The high-degree of non-linearity hence poses a se-

rious robustness problem for the object-oriented mod-

eling of stream-dominated systems. Attempts to solve

this by more advanced numerical solvers (such as ho-

mothopy methods [5]) had been so far of limited suc-

cess.

Fortunately, a recent advance led to a more robust

formulation of stream-dominated systems. The idea is

outlined and tested in [6] and further implemented and

elaborated in [7] and [8]. Here, we quickly repeat the

core idea which centers around the decomposition of

the pressure p into the inertial pressure r and the steady-

mass flow pressure p̂

p = p̂+ r (2)

For a mass-flow ṁ that is constant along the stream

direction ds, the difference in inertial pressure Δr is

purely defined by the geometry of the flow and inde-

pendent of the thermodynamic state:

−Δr =
dṁ
dt

∫ ds
As

(3)

where As represents the flow cross section at posi-

tion s. Hence changes in mass flow rate ṁ can be deter-

mined by a linear system of equations, once the gradi-

ents in steady mass flow pressure p̂ between individual

streams and at the boundaries are known. The steady-

mass flow pressure p̂ is an unusual term, not present

in text-books on the matter. It is simply defined as the

complement of r to p. For a steady mass flow (meaning

dṁ/dt = 0), p̂ = p and hence its name. Fortunately, for

many applications, it is feasible to express the thermo-

dynamic state using p̂
When doing so, the equations for a stream-

dominated system can be set up in a very favorable

form. The highly non-linear computations of the ther-

modynamic state can be arranged in an explicit order
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Figure 2: The structure of the resulting equation system.
The blue part forms a non-linear LU system that
can be computed downstream (barring deliberate
small exceptions on component level). It computes
all p̂ and the thermodynamic state. The green
system is linear and computes r and dṁ/dt.

going downstream from sources to sinks. The changes

in the individual mass flow rates are then computed

solving a system of linear equations. This scheme is

illustrated by the corresponding BLT-form in Figure 2.

Again see [6] and [7] for more details.

When upholding these rules and realizing this

scheme in an object-oriented modeling framework such

as Modelica, it is reflected in the design of the compo-

nent interface (denoted as connector in Modelica). The

thermodynamic state is represented as a signal going in

direction of the stream from source to sink. The inertial

pressure r and the mass flow rate ṁ form a pair of effort

and flow. Here is the corresponding code of an inlet and

an outlet in Modelica:

connector Inlet
replaceable package Medium = Modelica.

Media.Interfaces.PartialMedium;
SI.Pressure r;
flow SI.MassFlowRate m_flow;
input Medium.ThermodynamicState

state_hat;
end Inlet;

connector Outlet
replaceable package Medium = Modelica.

Media.Interfaces.PartialMedium;
SI.Pressure r;
flow SI.MassFlowRate m_flow;
output Medium.ThermodynamicState

state_hat;
end Outlet;

The definition of the thermodynamic state state_hat

can differ for different media but commonly consists of

pressure p̂, specific enthalpy ĥ as well as mass fractions

for media with more then one component. In any case

the state is expressed by quantities for the steady mass

flow as described above.

This scheme has been applied with great success

for the modeling and simulation of thermofluid systems

with directed flow such as modern aircraft ECS. Using

this scheme, robustness of the models could be drasti-

cally improved [6] since no large non-linear equation

system needs to be solved iteratively anymore. With

respect to performance, the approach is also interest-

ing. Especially for real-time simulation of such sys-

tems, first investigations reveal promising results [7].

In order to be concise, we cannot review the com-

plete built-up of the equation system here (please be re-

ferred to [6] and [7]) but for our analysis in Section 2,

we need to focus on two items:

• How the linear equations for r and ṁ are inter-

linked with the non-linear computation for p̂.

• The structural prerequisite to ensure the LU-form

of the non-linear part.

On the first point: the non-linear computation of p̂
leads to differences in pressure that are compensated by

the inertial pressure r in the following way:

• For each inlet boundary of the stream: r = 0 and

hence p̂ = pinlet (4)

• For each outlet boundary of the stream: p̂+ r =
poutlet (5)

• For each split of a mass flow ṁ0 into ṁ1 . . . ṁn:

p̂1 = p̂2 = . . .= p̂n = p̂0 (6)
and

r1 = r2 = . . .= rn = r0 (7)

• For each junction of mass flows ṁ1 . . . ṁn into ṁ0:

p̂0 = gmix(p̂1, . . . , p̂n) (8)
and

p̂1 + r1 = p̂2 + r2 = . . .= p̂n + rn = p̂0 + r0 (9)

Where gmix represents the weighted average of the

steady mass flow pressures p̂1, . . . , p̂n where the corre-

sponding volume flow rates Vi form the weigths. To be

well-natured, the function gmix shall also be regularized

against zero and negative mass (and volume) flow rates.

Here is one possible implementation using a small ε for

regularization:
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gmix =
∑i (|Vi|+ ε)p̂i

∑i (|Vi|+ ε)
(10)

To ensure the LU-form of the non-linear part, the

directed stream must form an acyclic graph. If there

are cycles (such as in a vapor cycle) then the cycle

must be torn apart by volume elements. The inlet of

a volume element then acts as an outlet boundary of the

stream and the outlet of the volume element acts as inlet

boundary of the stream. This works because the inter-

nal state of a volume prevents a direct algebraic equa-

tion between volume inlet and outlet (at the expense of

time-dependent states).

2 Non-directed Fluid Streams
So far, this approach has only been applied to 1D fluid

streams of known flow direction; hence directed flow.

For many aircraft system, such an approach suffices

completely.

Some other systems however, like the aircraft

bleed(-air) system can also be modeled as 1D system

but the flow direction is a priori unknown. Bleed air

may flow from the engine to the central hub during nor-

mal operation but in the other direction for engine start-

up. Such systems hence have non-directed flows. This

paper presents an extension of the above scheme.

When extending stream-dominated systems from di-

rected to non-directed flows, one inherently is con-

fronted with a fundamental problem: the underlying as-

sumption of stream dominance will inevitably be vio-

lated.

Any transient from a strong positive mass flow to

a strong negative mass flow passes through zero mass

flow. No matter how one quantitatively defines stream

dominance, at zero mass flow, this assumption cannot

be upheld anymore and the algebraic coupling between

“outlets” and “inlets” loses all of its validity. And in-

deed, one shall not apply a stream-dominated modeling

approach if the splish-splash behavior of a fluid at low

mass-flow rates is of any interest.

However, for many applications, it is of no interest

and the transient just leads from one stream dominated

operation point to another stream dominated operation

point. Hence, validity at zero-mass flow is not needed.

It suffices when the model is robust and well-natured so

that the transient does not break or corrupt the simula-

tion. This is the first challenge.

The second challenge is of structural nature. In a

system of directed flow, the fluid stream is represented

by a signal flow for the thermodynamic state (see the

inputs/outputs in the Modelica connector). Since the

direction of the fluid flow is given, also the direction of

the signal flow is predetermined.

A change in fluid flow direction hence also implies a

change in signal flow direction. The algebraic equation

systems must hence be structured in such a way that it

supports both flow directions. A well proven solution

for this is to double the signal flow as it is also applied

for the Modelica Standard Fluid library [9, 10, 11].

Following this approach, each two port element

(such as a pipe) has a signal flow in both directions.

Depending on the actual mass flow rate, one of these

signals is chosen as relevant whereas the other signal

represents a dummy signal.

Consequently, the interface of a component for non-

directed flows has now two signals: one for the ther-

modynamic state when the flow direction is out of the

component and one for the thermodynamic state when

the flow direction is into the component. There still re-

mains the pair of effort and flow, formed by the inertial

pressure and mass flow rate.

connector FluidPort
replaceable package Medium = Modelica.

Media.Interfaces.PartialMedium;
SI.Pressure r;
flow SI.MassFlowRate m_flow;
inpput Medium.ThermodynamicState

state_hat_in;
output Medium.ThermodynamicState

state_hat_out;
end Inlet;

2.1 Cycle-free graphs for the signal flow of
the thermodynamic state

In graph-theoretical terms, we thus convert a non-

directed graph into a directed graph so that each non-

directed edge is being replaced by two directed edges in

opposite directions. However, we have to do this clev-

erly since as stated in section 2, the signal flow must be

loop free in order to ensure that no non-linear equation

system occurs and that the lower-triangular form can be

maintained. This means that a loop-free non-directed

graph must remain loop-free after conversion.

In order to understand the problem, let us first study

what not to do. Figure 3 shows a straight forward,

naïve conversion from an undirected graph to a directed

graph: a cycle of two edges is being created between

junctions A and B.
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Figure 3: Naïve conversion from an undirected graph to a
directed graph for expressing potential signal
flows for the thermodynamic state.

The cycle in Figure 3 is however an artefact of con-

version and not a loop of the actual system of fluid

streams. A flow cannot flow from B to A while it flows

from A to B. We have to incorporate this structural

knowledge into the conversion and we do so by split-

ting up the junctions A and B and creating a separate

virtual junction for each potential outflow. In this way,

we can explicitly state that any outflow must be struc-

turally independent from the flow in its directly oppos-

ing direction. Figure 4 depicts how to do this:

Figure 4: This conversion avoids the creation of cycles by
going from a cycle-free undirected graph to a
cycle-free directed graph but still expresses all
potential information flows for the thermodynamic
state. It however contains more nodes and edges.

The computation of the thermodynamic state based

on p̂in (hypothetical) downstream direction hence fol-

lows the structure of such a directed graph. Evidently

this computation is always performed for both direc-

tions although only one direction can actually be rele-

vant. Hence care must be taken that formulas used for

the downstream direction are robust against mass flows

in opposite direction (they do not need to be valid but

should be well-natured).

2.2 Regularization scheme for the inertial
pressure at boundaries

The linear equations for the inertial pressure r need to

be reformulated as well. As described in Section 1,

the boundary equations (4) and (5) for r differed from

an inlet to an outlet. For a non-directed system, it is

not predetermined what is an outlet and what is an in-

let. Hence, the equation has to be unified for a general

boundary and made dependent on the flow direction ex-

pressed by the sign of the mass flow rate ṁ. A straight

forward implementation would be:

r = if ṁ > 0 then pBoundary − p̂ else 0 (11)

However, such a hard switch is not feasible since

the partial derivative ∂ r/∂ ṁ shall be bounded in order

to enable numerical stability of explicit ODE solvers

and a sufficient area of convergence for implicit ODE

solvers. Hence a regularization scheme needs to be ap-

plied that expresses a continuous transition between the

two flow directions. ε is used to express the size of this

transition region in terms of mass flow rate. We then

use the regstep-function

y = regstep(x,y1,y2,ε) (12)

as depicted in Figure 5 to softly interpolate between y1

for positive x, and y2 for negative.

Given this function we can reformulate the bound-

ary equation for r in regularized form:

r = regstep(ṁ, pBoundary − p̂,0,ε) (13)

Please note that there is no physical basis for the ap-

plied regularization. This means that when the simula-

tion computes in the zone of regularization (−ε < ṁ <
ε) the validity of the model may be (at least partially)

lost. As stated before, this is a remedy solution for short

term transients going through zero mass flow.
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Figure 5: regstep-function used to smoothly interpolate
between two values y1 and y2, depending on the
sign of x.

2.3 Regularization scheme for the inertial
pressure at junctions

A corresponding regularization scheme is also needed

for the inertial pressures at the junctions. As in Section

1, the main point is to uphold the equivalence of pres-

sure p = p̂+ r for all flows at a junction. Because the

flow direction is a priori unknown, there is no outflow

indicated by the index 0 anymore (as in equation 9) and

all flows (whether inflowing or outflowing) are indexed

from 1 to n.

p̂1 + r1 = p̂2 + r2 = . . .= p̂n + rn (14)

Due to the doubling of the signal flow, there is

now a pair of steady mass flow pressure (p̂(i,in), p̂(i,out))
for each inertial pressure ri. The representative steady

mass-flow pressure p̂i must hence be chosen according

to the actual direction of the corresponding mass flow

ṁi. For the same reasons as in Section 2.2, this shall be

done in a regularized form:

p̂i = regstep(ṁ, p̂(i,in), p̂(i,out),ε) (15)

With this regularization in place, the linear equa-

tions for the inertial pressure can now be formu-

lated without a priori knowledge of the flow direction.

Please note that the non-linearity involving the regstep-

function is irrelevant because the mass flow rate ṁ al-

ways forms a state of the system and hence can assumed

to be known. It is not part of the equation system, only

its time derivative is.

3 Implementation in Modelica
and Use Case Application

As we are now familiar with the theoretical background

on how to set up the equations for non-directed thermo-

fluid systems, we want to see how this can be applied

in practice on an example system. Remembering that

we are interested in stream-dominated systems in both

flow directions, a reversible heat pump forms a suitable

example system. In such heat pumps, the flow direc-

tion through the heat exchangers can be reversed and

the validity at the zero-transition from positive to neg-

ative mass-flow is not of main interest. Reversible heat

pumps are used for example in the thermal management

of modern electric cars or for residential air condition-

ing. The latter will serve as our use case application.

Figure 6: Example of a reversible heatpump that contains

two non-directed heat exchangers.

Figure 6 gives an overview of the system architec-

ture. The system consists solely of components from

the freely available DLR ThermoFluidStream Library,

which was recently published by the authors [2]. The

main components of the system are known from a stan-

dard vapor cycle, as it can be found in every refrigera-

tor. It consists of a compressor, condenser, expansion

device and an evaporator. When the flow direction of

the refrigerant is changed, the heat exchangers can act

as evaporator or condenser according to the current flow

direction. The system can be operated in two different

cycle modes - heating (red arrows) or cooling (blue ar-
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Figure 7: Simulation result showing the transient of flow reversal

rows). In cooling mode, the indoor unit acts as an evap-

orator and the outdoor unit acts as a condenser. Thus the

heat is absorbed from the inside air and rejected to the

outside. In heating mode, the cycle is reversed which

makes the indoor unit the condenser and the outdoor

unit the evaporator. Hence the heat is absorbed from

the outside and rejected to the inside.

It is recommended to use components for non-

directed flows only when the flow direction is really

not known a priori. This is only the case for the heat

exchangers, the phase-separator and the expansion de-

vices (magenta). The two expansion valves are required

to control the superheating temperature after the evap-

orator in both operating modes. In practice, the change

of flow direction is carried out by a so-called reversing

valve. In our simulation model, the flow direction is

controlled by a system of valves and non-directed junc-

tions (yellow). The flow direction through the compres-

sor and the accumulator does not change during switch-

ing, which is also the case in real systems hence those

components can be kept directed.

To conclude this section, let us have a look at an

exemplary simulation result. For the sake of simplic-

ity and to spare the model of an additional controller,

we set the compressor speed to a fixed value. With the

expansion valves, the superheating temperature is con-

trolled to 5K and the temperature at the air side of the

indoor unit is set to 25 ◦C.

Looking at the results in Figure 7 we can observe

that we are able to switch from cooling to heating mode

at t = 50s during simulation quite drastically. The plot

shows a sudden change of the temperature at one end

of the heat exchanger. This highlights the stream domi-

nated modeling approach where the replacement of the

fluid is neglected on purpose and the model reacts hence

quicker than a real device would do.

From a computational point of view though, the

transition from positive to negative mass flow through

the indoor unit does not cause any problems. Never-

theless the system needs some time to reach the steady

state during startup and after switching. This can

mainly be referred to the controller to reach the setpoint

for the superheating temperature and the time constants

for temperature adaption in the heat exchangers. Af-

ter all, this example shows that the underlying method-

ology can robustly be applied for system architectures

with undirected flow components.
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4 Conclusions
In previous papers, a new scheme for the robust com-

putation of directed thermofluid systems has been pre-

sented. It proved to be extremely useful for our mod-

elling and simulation activities for aircraft systems. De-

velopment time for system models could be drastically

reduced and hard real-time simulation of complete sys-

tems became feasible. Yet, it was unclear whether this

computational scheme (and the way to set up the equa-

tions) can be conveyed to (or even combined with) non-

directed use cases.

This paper demonstrates that this is possible. It is

not trivial and requires to take into account the structure

of information flow (for the thermodynamic state) at the

junctions and to apply a regularization scheme for low

mass-flows and situations of flow reversal.

Once implemented in the equations of Modelica

components, the proposed solution becomes easy to ap-

ply for the end-user. The only major concern for the

end-user is that cycles of fluid streams shall be torn

apart by volume elements. The open-source library [2]

provides a corresponding implementation in Modelica

and also includes the presented example.

Independent from the concrete implementation, two

words of warning seem appropriate.

The first warning is a reminder that although non-

directed flows are supported, stream dominance is still

required for validity. Flow reversal shall occur only

briefly during transient and should not be of main in-

terest. This warning however also applies to similar

popular modeling approaches as the Modelica Standard

Fluid library [9, 10] that also implemented similar regu-

larization schemes and relies on similar assumptions al-

though this is unfortunately not prominently mentioned

(honi soit qui mal y pense).

The second warning addresses a common miscon-

ception: one may think that because components for

non-directed systems are more general than unidirec-

tional components, it would be smart only to work

with such components. However, models for di-

rected systems yield far fewer cycles than their non-

directed counterparts for the same reasons random di-

rected graphs have fewer cycles than random undirected

graphs. For instance, a bypass is not a cycle as long

as the flow direction is known. Hence, we recommend

to apply non-directed components only when necessary

and to combine them with directed components where

appropriate. Knowing the flow direction a priori is a

piece of information too valuable to be thrown away.
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