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Abstract. People spend several hours a week doing
laundry, with hanging clothes being one of the laundry
tasks to be performed. Nevertheless, deformable ob-
ject manipulation still proves to be a challenge for most
robotic systems, due to the extremely large number of
internal degrees of freedom of a piece of clothing and its
chaotic nature. This work presents a step towards auto-
mated robot clothes hanging by modeling the dynamics
of the hanging task via deep convolutional models. Two
models are developed to address two different prob-
lems: determining if the garment will hang or not (clas-
sification), and estimating the future garment location in
space (regression). Both models have been trained with
a synthetic dataset formed by 15k examples generated
though a dynamic simulation of a deformable object. Ex-
periments show that the deep convolutional models pre-
sented perform better than a human expert, and that fu-
ture predictions are largely influenced by time, with un-
certainty influencing directly the accuracy of the predic-
tions.

Introduction

Domestic tasks are very time-consuming. In general,

every single human would benefit from a complete au-

tomation of domestic tasks, as they are not only a nui-

sance, but they can be considered a form of unpaid la-

bor. In addition, certain collectives, such as the elder

and disabled people, could specially take advantage of

domestic task automation, due to their lack of mobil-

ity. For these collectives, domestic tasks can become

a daily struggle that may even require assistance from

other people. To automate some of these tasks, such as

washing or cooking, specific appliances have been de-

veloped that help us save time and effort. However, due

to the large number of disparate tasks to be automated, it

becomes impossible to own a specific machine for each

task, as this would be both expensive and demand an

unfeasible amount of space for installation. For these

reasons, robots are key in automating domestic tasks in

a viable and maintainable way.

Laundry tasks constitute one of the most prominent

subsets of domestic tasks and, at the same time, one of

the hardest to automate, as they involve working with

textiles. Textile articles, such as garments, are intrinsi-

cally hard to perceive and manipulate due to, amongst

other facts, their almost infinite number of internal de-

grees of freedom and possible configurations, as well as

their deformable and chaotic nature, which is extremely

difficult to predict. While there is extensive existing lit-

erature on the typical laundry pipeline, defined as un-

folding, ironing and folding, few works exist that fo-

cus on other garment-related tasks such as bed making,

dressing assistance or hanging garments.

Hanging garments is a task performed after gar-

ments are washed, and before the garments are unfolded

and ironed, to have a perfectly dry clothing article. As

with all garment-related tasks, automation of garment

hanging is difficult because of several reasons:

• Garment manipulation requires a robotic system

with proficient manipulation skills and enough

dexterity to deal with thin textile materials.

• It requires a deep understanding of deformable ob-

jects intrinsic properties and the physics that gov-

ern their movements, which make their movements

chaotic and difficult to predict.

• The high number of internal degrees of freedom,

possible poses, and occlusions present on a gar-

ment in a real world scenario makes perceiving and

modelling garments a challenging problem.
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In this paper, we aim to make a contribution towards

the goal of an automated robotic system able to do the

laundry, specifically the hanging garments task. For that

purpose, we present two different deep convolutional

models that are able to predict the behavior of the gar-

ment about to be hanged, addressing two different prob-

lems: determining if a garment dropped onto a hanger

will hang or not from a depth image of the garment just

before it is released, and estimating the future location

in space of a dropped garment onto a hanger. To train

these models, a synthetic dataset has been created, in-

cluding examples of both dropped garments that hanged

and garments that fell to the floor.

1 State of the Art

The typical laundry pipeline, as defined in the literature,

is composed of three different tasks: unfolding, iron-

ing and folding. For unfolding, existing approaches use

depth images of the garment to determine the most suit-

able grasp sequence for unfolding, using active random

forests [3], upper layer detection via Canny Edge detec-

tor [18] or a garment-agnostic model-less approach [5].

Once the garment is unfolded, it has to be ironed be-

fore it can be folded and stored, so that no wrinkles are

present in the garment when the owner is about to wear

it. If the wrinkles are large and soft, pulling the edges of

the garment is enough to remove them [17]. If the wrin-

kles are small and marked, the robot has to iron them.

While some approaches target individual wrinkles in

very controlled illumination conditions [9], other use

a human-inspired ironing method based on force con-

trol and a garment surface analysis [6]. When all the

wrinkles have been removed, the only remaining step is

to fold the garment. For folding, some approaches rely

on manipulation sequences that take the garment from

a random initial state to the desired folded state using

Hidden Markov Models (HMMs) [2] while others fol-

low a perception-based approach use polygonal mod-

els to estimate the garment shape and folding sequence

[16].

For every garment-related task, prediction of gar-

ment movement and state estimation are key abilities,

specially when involving garment manipulation. Miller

et al. [13] used parametrized shape models that are able

to fit 2D views of already flattened garments to find the

grasp points required to apply a given folding sequence.

Cusumano-Towner et al. [2] applied an approach heav-

ily based on manipulation. Their approach used a se-

ries of manipulation operations to estimate the state a

garment with a Hidden Markov Model. The initial state

might be unknown, but a known state is reached through

manipulation. Bersch et al. [1] used fiducial markers

stamped on a t-shirt to obtain a 3D reconstruction of the

garment. Since the markers were unique for each point,

the state of the garment can easily be estimated from

them, allowing them to compute suitable grasp poses on

the cloth, for later manipulation with a PR2 robot. Kita

el al. [7] introduced a method to estimate the state of

a garment through a 3D reconstruction of the garment

from different viewpoints. A cylindrical Z buffering al-

gorithm is then applied to the reconstructed point cloud

and expanded to obtain a flattened representation of the

garment. Though matching with a database of garments

grasped from different garment points, the actual state

of the garment can be estimated.

Willimon et al. [19] used energy minimization and

graph cuts to estimate the configuration of cloth sur-

faces from 2D color images, with an automatic mesh

generation algorithm that provides a triangular mesh

encapsulating the cloth surface without predefined val-

ues. Li et al. [10] proposed a real-time state estima-

tion algorithm based on a cylindrical descriptor used to

match a given real-world observation with a garment

pose database generated through physical simulation.

This descriptor obtains a binary string representation by

fitting the garment 3D point cloud in a cylinder divided

into different sections, that are then used as an occu-

pancy grid and unrolled into a 1D binary string. Mari-

olis et al. [11] use two stacked deep convolutional neu-

ral networks to estimate the state of a garment from a

depth image of the garment being hanged by one point.

The first convolutional network determines the garment

category, which is used to select which of the convolu-

tional networks that have been trained on that particular

category has to be used to compute the current pose.

Although the literature has traditionally focused on

the tasks in the laundry pipeline, recent works exist that

discuss other tasks, such as clothing assistance [8], and

bed making [15].

2 Dataset Generation

A Deep Convolutional Network is used to model the be-

havior of a free falling garment and to predict its final

location. Deep neural networks employ a large amount

of parameters that need to be trained, and therefore they

require a very large amount of data for training and val-
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idation. Ideally, the network has to be trained with data

from the same domain as the application. That is, if the

model is to be applied in a real world scenario, it should

be trained with real world data. However, training data

generation in the real world is very time demanding, as

for each trial the robot has to be reset to its initial posi-

tion, a garment has to be placed on its end-effector, and

then the robot has to drop it so that the trajectory of the

free falling garment can be recorded. Finally, the gar-

ment has to be picked up again from its final location to

be set for the next trial. In addition, tracking the exact

3D position of the garment while falling is not trivial.

An alternative to using real world data is to train the

model instead with simulated data. Since the character-

istics of the simulated domain are very different from

the real world domain (no noise, no lens distortion, dif-

ferent illumination conditions, uniform colors...), some

modifications or special techniques are required to ap-

ply a model trained in the simulated domain to the real

world. One of such techniques is domain randomiza-

tion, that generates training data from a simulation us-

ing random colors, textures and illumination, so that the

model is able to generalize and perform correctly inde-

pendently of the domain.

In this work, simulation was used as the source of

training examples to obtain a large training dataset. A

piece of cloth is simulated in a virtual environment rep-

resenting a simplified setup similar to the one in our

lab, including a 1 m x 1 m hanger and the floor. (Figure

1). To simulate the garment dynamics and interaction

with the lab environment, we use a spring-based model

applied to the 3D mesh, as included in the Blender soft-

ware package[https://www.blender.org/, last

accessed: 08-06-2019].

For each of the trials, one vertex of the mesh is se-

lected as hanging point, and then placed at a random

initial location. The initial location is sampled from a

normal distribution (with mean μinit and standard de-

viation σinit). To increase the chances of a garment be-

ing randomly hanged, the source distribution is centered

around the hanger, and close to it. The simulation of

the garment dynamics is then started so that the gar-

ment moves from its initial flat pose to the in-air hang-

ing pose. The garment is left hanged a sufficient amount

of time to reach a static state, as it will swing due to the

inertia of this initial movement. Once the garment is

static, a depth image showing the initial pose and lo-

cation is stored. Using depth images instead of color

images enables us to translate well between domains

Figure 1: Simulated lab setup with hanging garment and
hanger.

without the need for domain randomization, as depth

images from the real sensor and virtual depth images

are monochromatic and of very similar characteristics.

Finally, the garment is dropped and the position of the

center of mass of the falling garment is tracked for later

analysis and to derive a ground truth binary label for

classification.

As garments are dynamic systems displaying a

chaotic behavior, the result of each trial is not determin-

istic and depends heavily on small changes of the initial

conditions (location and pose) of the piece of cloth. For

that reason, the resulting dataset is unbalanced, includ-

ing a larger amount of samples in which the cloth did

not hang.

3 Hanging Prediction

Once enough training data has been generated, it is

used to train a model to predict the behavior of the

free falling garment. Two different models have been

trained and evaluated. The first one tries to estimate the

location of the garment at a given simulation time step,

usually the last one in the trajectory (i.e. the final loca-

tion of the garment, either hanged or in the floor). The

other one classifies the final outcome into two different

categories: hanged or floor, depending on the expected

outcome of dropping the garment. This section will de-

scribe each of them.
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3.1 Regression

The objective of the regression model is to predict the

exact location of a garment at a given simulation time

step from a depth image showing the initial location and

pose of the garment. In most of the cases, the most

interesting time step from the perspective of hanging

clothes is the last one, as it will determine whether the

garment will hang or not when dropped from a given

initial location. Due to the chaotic nature of the cloth

dynamics, as time steps advance the uncertainty of the

garment location increases, with the initial location be-

ing the easiest to predict, and the final location the most

difficult.

For the model, a Deep Convolutional Network is

used. Figure 2 shows the architecture of the network.

The network is composed of 4 sets of convolutional lay-

ers, and 2 fully connected layers to compute the output.

Sets 1 and 3 are built from 2 convolutional layers with

16 filters of size (3x3) and an Exponential Linear Unit

(ELU) as the activation function, followed by a max-

pooling layer of size (2x2) and stride 2. Sets 2 and 4 are

composed of a single convolutional layer with 32 filters

of size (3x3) and ELU as the activation function, fol-

lowed by a max-pooling layer of size (2x2) and stride

2. The fully connected layers have 300 and 3 neurons,

respectively. For the regression problem, we use ELU

as activation function for the last layer, representing the

predicted 3D coordinates (X , Y and Z) of the garment

at a given time step. The total number of learnable pa-

rameters of this model is 2100707.
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3
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0

conv2

16 16
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3
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30
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1

3
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Figure 2: HANGnet architecture diagram.

The parameters were trained by optimizing a custom

loss using an Adam stochastic optimizer. As the aim of

the prediction is to hang garments, the most interesting

information obtained from the prediction is the value of

the Z coordinate. To emphasize in the importance of the

Z coordinate, a custom loss function was developed:

Loss = ωx ∗ (X − X̂)2 +ωy ∗ (Y − Ŷ )2 +ωz ∗ (Z − Ẑ)2

(1)

Where �X = (X ,Y,Z) are the actual coordinates of

the point in the training example, �̂X = (X̂ ,Ŷ , Ẑ) are the

predicted coordinates, and ωx, ωy and ωz are hyperpa-

rameters expressing the relative importance of each of

the coordinate components.

The performance of the network is reported in the

Results section.

3.2 Classification

The classification problem is defined as predicting,

from a depth image of its initial location and pose,

whether a garment will hang or fall to the floor when

dropped near a hanger.

The architecture of the Deep Convolutional Net-

work used as model for the classification problem is

very similar to the one used for the regression problem.

Figure 3 depicts the architecture of the network. A total

of 4 sets of convolutional layers, and 2 fully connected

layers to compute the output are used. Sets 1 and 3 in-

clude 2 convolutional layers with 16 filters of size (3x3)

and ELU as the activation function, followed by a max-

pooling layer of size (2x2) and stride 2. Sets 2 and 4 are

composed of a single convolutional layer with 32 filters

of size (3x3) and ELU as the activation function, fol-

lowed by a max-pooling layer of size (2x2) and stride

2. The fully connected layers have 300 and 1 neuron, re-

spectively. As only one class is to be predicted, instead

of a Softmax function, a Sigmoid activation function is

applied to the output neuron to obtain the probability

of the garment falling to the floor given a certain input

depth image. When the output is above 0.5, the predic-

tion is that the garment will fall, otherwise the predic-

tion is that it will hang. The total number of learnable

parameters of this model is 2099705.

The binary labels for each training sample can be

obtained from the trajectory recorded at each simulated

trial, by observing the Z coordinate of the last point of

the trajectory (Zend). Based on the final location of the

center of mass, and considering a threshold Tf loor one

can compute the binary label f loor as:

f loor =

{
1, if Zend < Tf loor

0, otherwise
(2)

The resulting labels are used as ground truth to train
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Figure 3: HANGnet_classify architecture diagram.

the classification network. For training, a Binary Cross

Entropy loss is optimized by an Adam stochastic opti-

mizer. This loss is weighted to account for the imbal-

ance of the hanged/floor classes in the synthetic dataset.

4 Results
In this section we will discuss the training process of

both models (regression and classification) as well as

the results obtained with each of the models.

4.1 Regression

4.1.1 Setup

Following the simulation procedure described in section

2, a total of 15000 training examples were obtained.

Each of these training examples is composed by a depth

image of the virtual setup at the initial time step (after

the garment has reach a stable pose) and the trajectory

of the center of mass of the garment once it has been

dropped. The initial position of the garment is sam-

pled from a normal distribution with μinit =(0,0,1.5) m

and σinit = (0.01,0.4,0.2) m. A duration of 51 simu-

lation time steps has been selected as a good compro-

mise between computational cost and reaching a stable

hanged/floor state in simulation. Before they are fed to

the network for training, the depth images are cropped

at 2 m to remove the empty background and then nor-

malized in the 0 m to 2 m range.

As the samples were obtained randomly, not every

single sample results in the garment being hanged. In

fact, the ratio of garments hanged/not hanged is near

1:3, making the dataset imbalanced. In order to deal

with the imbalance in the dataset, stratification was used

to make the training/validation/test splits, so that each

of the three sets has the same proportion of examples

of each of the two classes. The stratified split was the

following: 20% of the samples (3000) were used for

testing and, from the 80% remaining, 20% (2400) were

used for validation and 80% (9600) for training.

For training the regression model, an Adam stochas-

tic optimizer was used, with a learning rate of 0.0001.

The custom loss introduced in section 3.1 (Eq. 1)

was used, with weights ωx = 0.033, ωy = 0.033 and

ωz = 0.33. The model was trained for 10 epochs, with

a batch size of 32.

4.1.2 Results

To study the effect of the time on the uncertainty of the

prediction and, therefore, on the accuracy of the model,

the network was trained to predict the location at differ-

ent time steps. Figure 4 shows the increase of the Mean

Squared Error (MSE) as time advances.

Figure 4: Mean Squared Error (MSE) and Validation MSE with
respect to the time step.

In terms of coordinates, MSE was computed for

each of the 3D components of the prediction (X, Y and

Z). Figure 5 shows the MSE of each of the component,

as well as the variation in error for each of them. It

can be observed that the error increases from a few mil-

limeters to several centimeters, and it is more dramatic

in the case of the Z coordinate, which was an expected

result, as the fact that the garment can remain randomly

hanged or not hanged affects to the expected location in

the Z axis.

4.2 Classification

4.2.1 Setup

For the classification model, the same dataset as the

one described in section 4.1.1 was used, and the same
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Figure 5: Mean Squared Error (MSE) of each of the 3
coordinates (X, Y, Z) with respect to the time step.

stratification techniques were use to deal with the

imbalance of the dataset when performing the train-

ing/validation/test splits. As the output of the classi-

fication model is a single binary value representing the

prediction of the network (0 if the garment with hang,

or 0 if the garment will fall), the trajectory previously

recorded in the dataset needs to be processed to obtain

a binary label. For that purpose, eq. 2 was used, with a

threshold value Tf loor = 0.81m.

For training the classification model, an Adam

stochastic optimizer was used, with a learning rate of

0.0001. In addition, L2 regularization was added to the

model, with a regularization strength of 0.01 to improve

the generalization capabilities of the network.

4.2.2 Human baseline

To evaluate the relevance of the results achieved, a

human baseline was obtained by labelling a subset of

200 elements from the training set by hand, based only

on the input data. In other words, a depth image was

presented to a human expert for him to predict whether

it will hang or fall. To improve the human perception

of depth in the input depth image, the 8-bit greyscale

image was transformed using a GIST stern[https://
www.ncl.ucar.edu/Document/Graphics/
ColorTables/MPL_gist_stern.shtml, last

accessed: 08-06-2019] colormap for display.

4.2.3 Results

After training, several metrics were computed based on

the 3000 element test set, as reported in table 1. A sub-

set of 200 elements were randomly selected and used to

compute a human baseline and compare it with the per-

formance of the classification model. Table 2 shows the

results of this analysis. Although the model has a lower

recall for the hanged class than the human expert, it im-

proves the performance of the human in all remaining

metrics considered.

Table 1: Classification model, 3000 items.

Class Precision Recall F1-score # items

Hanged 0.51 0.32 0.39 819

Floor 0.78 0.88 0.83 2181

Table 2: Classification model vs Human baseline, 200 items.

Class Precision Recall F1-score # items

Hanged 0.60 0.39 0.47 54

Floor 0.80 0.90 0.85 146

Hanged 0.38 0.56 0.45 54

Floor 0.80 0.66 0.72 146

In addition, confusion matrices were computed to

compare the performance of the model and the human

expert in terms of false positives / false negatives. As

shown in Figure 6, the classification model outperforms

the human expert when predicting garments that fell to

the floor, while having a similar performance when pre-

dicting garments that remained hanged.

5 Conclusions
In this work we propose two different deep convolu-

tional models to predict the behavior of a piece of cloth-

ing when dropped onto a hanger. One of models is able

to predict whether the garment will hang or fall, and the

other estimates the future location of the garment after

it is dropped. A synthetic dataset composed of 15000

examples obtained via deformable object simulation is

used to train both models. Experiments performed with

the regression model demonstrate an influence of time

in the accuracy of the predictions, as uncertainty in the

position estimation increases with time. The classifica-

tion model performance was compared to the baseline

performance of a human expert, obtaining a slightly bet-

ter performance.

Our future work will focus on the integration of both

models (regression and classification) to increase the in-

dividual accuracy of each of them, as well as in the im-

plementation of these models on one or several robotic

SNE 31(3) – 9/2021



175

Estevez et al. Towards Clothes Hanging via Cloth Simulation and Deep Convolutional Networks

Figure 6: Confusion matrices for the classification model
and human baseline.

platforms to obtain real world data and action, and fur-

ther validate the idea behind this work.

Acknowledgement

This work was supported by RoboCity2030-III-CM

project (S2013/MIT-2748), funded by Programas de

Actividades I+D in Comunidad de Madrid and EU and

by a FPU grant funded by Ministerio de Educación,

Cultura y Deporte. We gratefully acknowledge the sup-

port of NVIDIA Corporation with the donation of the

NVIDIA Titan X GPU used for this research.

References
[1] Bersch C, Pitzer B, Kammel S. Bimanual robotic cloth

manipulation for laundry folding. In: IEEE

International Conference on Intelligent Robots and

Systems. pp. 1413–1419 (2011).

[2] Cusumano-Towner M, Singh A, Miller S, O’Brien JF,

Abbeel P. Bringing clothing into desired

configurations with limited perception. In: IEEE

International Conference on Robotics and Automation

(ICRA). pp. 3893–3900. IEEE (2011).

[3] Doumanoglou A, Kim Tk, Zhao X, Malassiotis S.

Active Random Forests: An Application to

Autonomous Unfolding of Clothes. In: European

Conference on Computer Vision (ECCV). pp.

644–658. Springer International Publishing (2014).

[4] Elbrechter C, Haschke R, Ritter H. Folding Paper with

Anthropomorphic Robot Hands using Real-Time

Physics-Based Modeling. 2012 12th IEEE-RAS

International Conference on Humanoid Robots

(Humanoids 2012) pp. 210–215 (2012).

[5] Estevez D, Fernandez-Fernandez R, Victores JG,

Balaguer C. Improving and Evaluating Robotic

Garment Unfolding: A Garment-Agnostic Approach.

In: IEEE International Conference on Autonomous

Robot Systems and Competitions (ICARSC) (2017).

[6] Estevez D, Victores JG, Fernandez-Fernandez R,

Balaguer C. Robotic Ironing with 3D Perception and

Force/Torque Feedback in Household Environments.

In: IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS) (2017).

[7] Kita Y, Ueshiba T, Kanehiro F, Kita N. Recognizing

clothing states using 3D data observed from multiple

directions. In: International Conference on Humanoid

Robots (Humanoids). pp. 227–233 (2013).

[8] Koganti N, Ngeo JG, Tomoya T, Ikeda K, Shibata T.

Cloth dynamics modeling in latent spaces and its

application to robotic clothing assistance. IEEE

International Conference on Intelligent Robots and

Systems 2015-Decem, 3464–3469 (2015).

[9] Li Y, Hu X, Xu D, Yue Y, Grinspun E, Allen P.

Multi-Sensor Surface Analysis for Robotic Ironing.

In: IEEE International Conference on Robotics and

Automation (ICRA). Stockholm (2016).

[10] Li Y, Wang Y, Case M, Chang Sf, Allen PK. Real-time

Pose Estimation of Deformable Objects Using a

Volumetric Approach. In: International Conference on

Intelligent Robots and Systems (IROS). pp.

1046–1052. IEEE (2014).

SNE 31(3) – 9/2021



176

Estevez et al. Towards Clothes Hanging via Cloth Simulation and Deep Convolutional Networks

[11] Mariolis I, Peleka G, Kargakos A, Malassiotis S. Pose

and category recognition of highly deformable objects

using deep learning. Proceedings of the 17th

International Conference on Advanced Robotics,

ICAR 2015 pp. 655–662 (2015).

[12] Matas J, James S, Davison AJ. Sim-to-Real

Reinforcement Learning for Deformable Object

Manipulation (CoRL) (2018).

[13] Miller S, Fritz M, Darrell T, Abbeel P. Parametrized

shape models for clothing. In: International

Conference on Robotics and Automation (ICRA). pp.

4861–4868 (2011).

[14] Schulman J, Lee A, Ho J, Abbeel P. Tracking

deformable objects with point clouds. In: Proceedings

- IEEE International Conference on Robotics and

Automation. pp. 1130–1137. No. i, IEEE (2013).

[15] Seita D, Jamali N, Laskey M, Berenstein R, Tanwani

AK, Baskaran P, Iba S, Canny J, Goldberg K. Robot

Bed-Making: Deep Transfer Learning Using Depth

Sensing of Deformable Fabric (2018).

[16] Stria J, Pruša D, Hlaváč V. Polygonal Models for
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