
S N E E D U C A T I O N B E N C H M A R K N O T E

SNE 31(2) – 6/2021 101

A Tutorial-oriented Approach to ARGESIM
Benchmark C11 ‘SCARA Robot’ in MATLAB,

Simulink and Stateflow
Johannes Leindecker, Maximilian Zechmeister-Machhart, Felix Gauss, Philipp Wiegard
Inst. of Mechanics and Mechatronics & Inst. of Analysis and Scientific Computing, TU Wien,

Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria; johannes.leindecker@tuwien.ac.at

Abstract. This Educational Benchmark Note presents a tu-
torial-oriented approach to ‘ARGESIM Benchmark C11
SCARA Robot’, an SNE Student Note compiled by master
students of Mechanical Engineering. Students have de-
scribed for students necessary state space models for the
SCARA robot, and algorithmic preparations for implemen-
tation in MATLAB and Simulink, including proper state limi-
tations. Furthermore, for collision handling of the robot
movement, benefits of a state automata–based implemen-
tation in Stateflow is given. The simulations compare ex-
plicit and implicit model versions and efficiency of different
ODE solvers, and present a basic animation.

Model Description
Mechanical System. The mechanical system, that is
investigated in this Benchmark, is a three-axes robot arm,
called SCARA (Selective Compliance Assembly Robot
Arm). It has two vertical revolute joints and one vertical
prismatic joint, with which it can change the position of
its mounted tool tip.
One can describe the
equations of motion in
compact form of an im-
plicit second order sys-
tem of differential equa-
tions:

 (1)

Figure 1: Mechanical struc-

ture of the SCARA robot [1].

In this case, vector includes the joint angles and
and the joint distance . The mass matrix is a 3x3
block-diagonal matrix:

 (2)

To calculate the moments of inertia (eq. (8) - (10)), we as-
sume that there is a homogeneous mass distribution of the
two rods (mass and) along the length and ,
the mass of the load and the vertical drive motor is known
and the moment of inertia of the rotating parts is defined.

 (3)
 (4)

 (5)
 (6)

 (7)

 (8)

 (9)

 (10)

 (11)

Vector , which describes the right-hand side of the dif-
ferential equation, is a function of the joint torques
and and the joint force .

 (12)
 (13)

 (14)

Servo Motor and PD-Control. Due to the usage of
a PD-control (Proportional-Derivative), which controls
position errors and joint velocities, there is a limitation
for the mechanical system that has to be observed. This
limitation is the armature voltage (eq. (15)), restricted by

 (eq. (16)) during the regular operation of the
SCARA. The armature voltage is a function of the pro-
portional gains , the derivative gains and the target
and current value of the joints:

 (15)

SNE 31(2), 2021, 101 - 110, DOI: 10.11128/sne.31.bne11.10569
Received: January 13, 2021; Revised April 25, 2021;
Accepted: May 15, 2021
SNE - Simulation Notes Europe, ARGESIM Publisher Vienna
ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Leindecker et al. A Tutorial Approach to BM C11 ‘SCARA Robot’ in MATLAB, Simulink and Stateflow

102 SNE 31(2) – 6/2021

B N E

 (16)

In case of an emergency, the armature voltage has a big-
ger restriction zone () and therefore allows a
higher armature voltage. This emergency feature is used
in the collision avoidance later on.

Another limitation of the mechanical system is the ar-
mature current, due to the engineering property of a servo
motor. Using a first order differential equation (eq. (17)),
the electrical relationship of the armature is expressible
with the servo motor constant , gear ratio , re-
sistance and inductance :

 (17)

 (18)

 (eq. (19)) can be computed with the maximum per-
mitted torque and the servo motor constant

 (19)

The armature current is proportional to the joint torques
(,) and the joint force ():

 (20)

Obstacle definition & collision avoidance. Cre-
ating an obstacle, the tool-tip has to avoid, generates the
collision avoidance task. The obstacle is defined as

 (21)
 (22)

with and (23) (24)

This SCARA is equipped with a distance measuring sen-
sor, which allows regular movement of the tool tip, if the
distance between tool tip and obstacle is above the criti-
cal distance . In case of an undercut of the
critical distance , the armature voltage can have a
maximum of to decelerate faster and prevent a
crash.

Additional Range Control. Due to the mechanical
structure of the SCARA, we need to implement addi-
tional range control for the joint angles and the distance

, to achieve a model that pictures the real-life SCARA
even better:

 (25)
 (26)

 (27)

We only let our SCARA robot move its tool tip in a pos-
itive y-axis area (eq. (25)). That is why the limitation for
the angle is defined as . Angle has a
limit of under , because the second rod is above the
first one, which means that the tool-tip would crash into
the first rod if would reach an angle close to
(eq. (28)). The length of the vertical rod also needs to
be limited to ensure a realistic simulation (eq. (27)).

Figure 2: Reachable area of the tool-tip in the x-y-level.

1 MATLAB Implementation
Now we create a model of the SCARA movement using
MATLAB. At first, we implement the given values and
the equations of the definition, such as equation (3) –
(15), (17), (19) and (20) – (27). These equations provide
the needed values to implement the limitation of the cur-
rent from equation (17) and the limitation of the volt-
age from equation (18). The implementation of the
mass matrix (eq. (2)) differs, when we compare the ex-
plicit with the implicit model. Therefore, the mass matrix
implementation gets described in chapter 1.1 and 1.2.

These mentioned implementations are straight for-
ward and didn’t cause any problems, but limitating the
current is not as simple as it may seem. By reason of
the inability of the ODE-solver to limit the current itself,
we limitated the voltage and the derivative of the cur-
rent . To carry out the limitation for the voltage , we
simply use ‚if‘ loops that constantly compare the current
value of the voltage with the maximum allowed volt-
age . In case of an exceeding, the value for gets
limited to the maximum allowed voltage .

The limitation of the current is more difficult
(shown in code-snippet 1). We constantly have to com-
pare the current value of the current with the maximum
allowed current . If the current value is higher
than its maximum and the derivative of the cur-
rent negative, the derivative of the current is not lim-
ited because the negative inclination of the current
leads to a decrease of the current . Consequently, the
current will drop below its maximum .

 Leindecker et al. A Tutorial Approach to BM C11 ‘SCARA Robot’ in MATLAB, Simulink and Stateflow

SNE 31(2) – 6/2021 103

B N E
Vice versa if the current is lower than its minimum

 and the derivative of the current is positive. If
the current is higher (lower) than its maximum
() and the derivative of the current positive (neg-
ative), the value of the derivative of the current gets
limited to zero.

Code-snippet 1: Limitation of the derivative of the current .

There are two possibilities to stop the calculation of the
ODE-solver. The computing time can be limited to a
fixed value, which is not very accurate when it comes to
comparing different solving-times because there might
be not enough time to reach the target position or the
solver keeps on calculating, even though the SCARA is al-
ready very close to the target point or already reached it.

The second possibility uses an implementation of an
event-function, that automatically stops the program, as
soon as the tool tip reaches the target position. Therefore
a so-called event-function “reached_target”, which is
shown in code-snippet 2, is used to constantly compare
the current position of the the tool tip and the target posi-
tion. With a difference of between the
actual and the target position of the tool tip, the event gets
triggered and stops the calculation of the ODE-solver.

Code-snippet 2: Event that stops the code, as soon as the

tool-tip reaches the target position.

Code-snippet 3: Loop, to display a warning for

unreachable target points.

With ‚if‘ loops, we can display a notification in case of
an unreachable target position. The notification also
gives a short description of the reason for the error,
shown in code-snippet 3.

1.1 Excplicit Point-to-Point model
To solve the point-to-Point motion explicitly, we create a
9-row-vector that contains the joint velocities , the
angles and the distance of the joints and the currents
of the servo motors , written as vector .
Additionally, the mass matrix needs to be inverted and
multiplied with to receive the joint’s angular and direc-
tional acceleration :

 (28)

This step is necessary because the ODE-solver in the ex-
plicit model can’t work with a mass matrix, provided by
the command. Extending vector with and
the limited values of , we also get a 9-row-vector, which
basically is the derived vector.

In Figure 3 the changes of the angles and the heigth
(q1, q2, q3) over time of the explicit point-to-point model
are pictured. So, it can be observed that q1 and q2 have
the value 2 and q3 the value 0.3 when the event-function
stops the calculation. Furthermore, figure 4 visualises the
movement of the tool tip in the x-y-z-system.

Figure 3: Plot of , and , depending on t

(explicit point-to-point model,
target point , ode45).

Figure 4: Plot of the movement of the tool tip

(explicit point-to-point model,
target point , ode45).

Leindecker et al. A Tutorial Approach to BM C11 ‘SCARA Robot’ in MATLAB, Simulink and Stateflow

104 SNE 31(2) – 6/2021

B N E

1.2 Implicit Point-to-Point model
Solving the point-to-point movement implicitly, we need
to extend the original 3x3 mass matrix into a 9x9 mass
matrix (eq. (29)), so the dimensions fit the right side of
equation (1).

 (29)

The ODE-solver in the implicit model can work with a
mass matrix, provided by the command, which
means that we don’t have to invert our mass matrix
anymore. Hence, we provide the ODE-solver the maxi-
mum step size, the 9x9 mass matrix and the event for
reaching the target by the command. Limiting
the current and stopping the program happens in the
same way as in the explicit model. The numerical accu-
racy is the same as in the explicit model. Hence, the
graphical visualitaion is equal to Figure 3 and Figure 4
and not shown for the implicit model again.

1.3 Results of the Point-to-Point movement
We compare the ODE solvers ode45, ode23, ode23t,
ode23s, ode23tb, ode113, and ode15s for the point-to-
point movement, target point :

ODE-solver explicit solving-
time

implicit solving-
time

ode45 0.756971s 0.826150s

ode23 0.572606s 0.838872s
ode23t 0.270100s 0.485513s

ode23s 3.851616s -
ode23tb 0.299691s 0.595774s

ode113 0.878708s 1.069086s
ode15s 0.244320s 0.358710s

Table 1: Explicit and implicit solving-times of different
ODE-solvers for the point-to-point movement
with target point .

The measured explicit system is always faster than the
implicit one. Another factor for the solving-time is the
step size control of the solver itself. Through a high step
size control, like in the ode23t, ode23tb and ode15s, the
solving-time is very short. Thereupon, a solver like the
ode45, which has a low step size control, has a longer
solving-time. In addition, a correlation between the step

size control and the accuracy of a solver exists. For ex-
ample, ode23t, ode23tb and ode15s are fast but also have
a low accuracy. Besides, the ode45 has a medium accu-
racy, due to its low step size control.

1.4 Explicit collision avoidance model
The explicit collision avoidance works in the same way as
the explicit point-to-point movement, using the inverted
mass matrix . But to implement the collision avoidance,
we extend the explicit point-to-point model with various
cases which are automatically selected, regarding the di-
mensions of the obstacle and the target position.

An ‚if‘ loop, which is partly shown in code-snippet 4,
chooses the right sequence of event functions. In this
code snippet 4 case no. 1, 2 and the beginning of case no.
3 are pictured. The selected case depends on where the
target point is located. If an event function detects a zero
transition it stops the current ODE-solver and another
one, with a new dynamical structure, has to be started us-
ing the last entries of the stopped ODE-solver as starting
values for the new one. All times and values of the dif-
ferent used ODEs are attached in the vector te and vector
qe to get a gapless simulation.

We differ now from case no. 1 to case no. 5. The dif-
ferences are described in the following.

Case no. 1. In case no.1 (Figure 5), the target position
is located behind the obstacle and above the obstacle’s
height. It starts the regular point-to-point solver until the
tool-tip reaches the critical distance . After
the event of the critical distance between the obstacle and
the tool tip occurs, a new solver is called which only al-
lows movement of (shown in code-snippet 5). This
means that the SCARA drives vertically upwards, until
the tool-tip is higher than the height of the obstacle.
Then, the standard point-to-point solver is called again to
reach the target position.

Figure 5: Plot of case no. 1 (explicit collision avoidance
model, target point , ode45).

 Leindecker et al. A Tutorial Approach to BM C11 ‘SCARA Robot’ in MATLAB, Simulink and Stateflow

SNE 31(2) – 6/2021 105

B N E

Code-snippet 4: Case no.1, 2 and partly 3, chosen

depending on the position of the target point.

Code-snippet 5: Limiting the movement of the SCARA

robot to only joint 3.

Case no. 2. In case no. 2, the target position lies within
the obstacle or its critical surrounding. A notification
of the error gets displayed.

Case no. 3. In case no. 3, the target position is located
straightly above the obstacle’s height. The utilized pro-
cedure is the same as in case no. 1.

Case no. 4. In case no. 4 (fig. 6-8), the target position
is located behind the obstacle and below the obstacle’s
height. Here, the solver for the point-to-point movement
is used until the collision warning event gets triggered,
followed by the vertical upward movement of the tool-tip
as in case no. 1. As soon as the tool tip is higher than the
obstacles height, another solver is used, which only al-
lows movement in joint 1 and 2. This leads to a move-
ment of the SCARA parallel to the obstacles top side. Af-
ter the tool tip passes the obstacle, the solver for the
point-to-point movement is used again to finally reach
the target point.

Case no. 5. In case no. 5, the target position is located
in front of the obstacle. No collision avoidance occurs,
which makes this case to a simple point-to-point move-
ment; events are used to stop the program when the tool
tip reaches the target position.

Figure 6: Plot of , and over time

(case no. 4, explicit collision avoidance model,
target point , ode45).

Figure 7: Plot of , and , depending on t

(case no. 4, explicit collision avoidance model,
target point , ode45).

Figure 8: Plot of the case no. 4 (explicit collision avoidance

model, target point , ode45).

1.5 Implicit collision avoidance model
The implicit collision avoidance model uses the same
structure as the explicit collision avoidance model, apart
from the handling of the mass matrix. Here, the handling
of the mass matrix is the same as in 1.2 Implicit Point-to-
Point model. The solutions of the implicit model in case
no. 1 are plotted in Figure 9 and Figure 10.

Leindecker et al. A Tutorial Approach to BM C11 ‘SCARA Robot’ in MATLAB, Simulink and Stateflow

106 SNE 31(2) – 6/2021

B N E

Figure 9: Plot of , and over time

(case no. 1, implicit collision avoidance model,
target point , ode45).

Figure 10: Plot of , and , depending on t

(case no. 1, implicit collision avoidance model,
target point , ode45).

1.6 Results collision avoidance movement
We compare the following ODE-solvers for the collision
avoidance movement with the target point

: ode45, ode23, ode23t, ode23s, ode23tb,
ode113 and ode15s.

ODE-solver explicit solving-

time
implicit solving-

time

ode45 1.163843s 1.316385s
ode23 0.820086s 0.988098s
ode23t 0.458257s 0.581426s
ode23s 3.177899s -
ode23tb 0.427696s 0.621490s
ode113 1.240606s 1.259776s
ode15s 0.422060s 0.422124s

Table 2: Explicit and implicit solving-times of different

ODE-solvers for the collision avoidance movement
with target point .

2 Simulink Implementation
In Simulink, a model for simulating the Point-to-Point
movement in an explicit representation and two different
models for simulating the Point-to-Point movement with
collision avoidance also in an explicit representation
were developed. On the one hand a collision avoidance
model with the usual Simulink-blocks and a ‘Switch’-
block to switch between the Point-to-Point movement
and the collision avoidance movement and on the other
hand a Simulink solution with integrated ‘Stateflow’-
states, in which it is also possible to switch between these
movements.

All constant parameters necessary for the simulation
were given into Simulink over the MATLAB environ-
ment. The simulation results were transferred back into
MATLAB through ‘To Workspace’-blocks for plotting
purposes. To solve the explicit Simulink models, the var-
iable step size, one step solver ode45 was used, whereby
the relative tolerance was reduced to 1e-6. Since a double
integration is possible in Simulink by implementing two
‘Integrator’-blocks connected directly one after the other,
it is not necessary to transform the descriptive second or-
der differential equations [2]. The resulting 3x3 mass ma-
trix was implemented in the Simulink and Simulink /
Stateflow models using a ‘MATLAB Function’-block and
then inverted using a ‘Product’-block in inversion mode.

As in the MATLAB implementation in order to prem-
aturely end the integration at the target point, a Simula-
tion Abort Condition-subsystem was integrated in all
models (see Figure 11). When a precession of 0.001 is
reached, the simulation stops by means of a ‘Stop’-block.

Figure 11: Simulation Abort Condition-subsystem with a

logical combination of the differences between the
components of the target point location vector and
the robot arm location vector , with the ‘Stop’-block being
activated when a precession of 0.001 is reached.

2.1 Explicit Point-to-Point model in Simulink
Figure 12 shows the overall Point-to-Point Simulink
model with built-in Control Model-subsystem (shown in
Figure 13) and a ‘MATLAB Function’-block called dy-
namics (which contains the equations 12 to 14).

 Leindecker et al. A Tutorial Approach to BM C11 ‘SCARA Robot’ in MATLAB, Simulink and Stateflow

SNE 31(2) – 6/2021 107

B N E
The Control Model-subsystem includes a PD control-

subsystem, which defines the relationship between the
distance to the target point and the necessary voltage (see
equation 15), as well as a servo motor-subsystem (shown
in figure 14), which contains the first order differential
equation for determining the current (see equation 17).
The resulting current is limited via a limited output of the
‘Integrator’-block. The current limit values are calculated
using equation 19. Finally, the associated torque is deter-
mined in a ‘MATLAB Function’-block. The torque is re-
quired to calculate the right-hand side of the system of
differential equations (see equations 12 to 14).

The voltage is limited via a ‘Saturation’-block, which
is included in the PD control-subsystem. The voltage
limit values, like the current limit values, are given con-
stant parameters. The voltage and current limitation are
much easier to implement in Simulink than in MATLAB.

Figure 12: Explicit Point-to-Point Simulink model.

Figure 13: Control Model-subsystem.

Figure 14: Servo motor-subsystem including an ‘Integra-

tor’-block with limited output.

Figure 15: Point-to-Point simulation in Simulink -

time course of , and .

Figure 16: Point-to-Point simulation in Simulink -

tool-tip path in three-dimensional space.

Results. Figure 15 shows the time course of the two an-
gles and as well as the distance during the Point-
to-Point movement (simulated in Simulink). Figure 16
shows the result of the Point-to-Point simulation in Sim-
ulink in three-dimensional space with initial value

 and target point . The Simulink
Point-to-Point simulation runtime was 0.143362 seconds.

2.2 Collision avoidance model in Simulink
and Simulink / Stateflow

Figure 17 shows the overall Point-to-Point with collision
avoidance Simulink model with built-in Extended Con-
trol Model-subsystem. In order to avoid a collision with
a defined object, an additional subsystem was included
into the Control Model-subsystem (see Figure 18).
In this additional subsystem two ‘Switch’-blocks for
switching between Point-to-Point movement and obsta-
cle avoidance are implemented.

If the condition is
fulfilled, is changed in such a way that

, and .
 is then passed on to the integrator and the dynamics-

block (see Figure 17).

Leindecker et al. A Tutorial Approach to BM C11 ‘SCARA Robot’ in MATLAB, Simulink and Stateflow

108 SNE 31(2) – 6/2021

B N E

Figure 17: Explicit Point-to-Point with collision avoidance

Simulink model.

Figure 18: Additional subsystem with two ‘Switch’-blocks

for switching between different robot arm
speeds and maximum voltages.

In the second ‘Switch’-block, which is controlled via the
same condition, the permissible voltage limits are speci-
fied. In the case of obstacle avoidance, the normal maxi-
mum voltages (see chapter 2.1) are changed to the emer-
gency maximum voltages.

Figure 19 shows the overall Point-to-Point with colli-
sion avoidance Simulink model with built-in ‘Stateflow-
Chart’-subsystem.

When using the Stateflow environment, the task is to
define certain states and to specify conditions for when to
switch between these states. Point-to-Point movement and
collision avoidance were defined as states (see Figure 20).
To define the states, ‘Simulink state’-blocks were used, in
which Simulink models like the one shown in Figure 12
with different and maximum voltages were installed (see
Figure 21 and Figure 22). ‘State Writer’-blocks were used
to transfer the integrated parameters from one state to an-
other. The condition for a change from Point-to-Point
movement to obstacle avoidance has not changed com-
pared to the pure Simulink solution. In the opposite direc-
tion, the condition that the tool-tip has exceeded the obsta-
cle height is sufficient. The definition of the conditions for
changing between the states is much easier in Simulink /
Stateflow than in a pure Simulink solution.

Figure 19: Explicit
PtP with collision
avoidance -
Simulink model
with ‘Stateflow-
Chart’-susystem.

Figure 20: ‘Stateflow-Chart’-subsystem with ‘Simulink

state’-blocks and conditions for a change of state.

Figure 21: Point-to-Point subsystem.

Figure 22: Collision avoidance subsystem.

Results. Figure 23 shows the time course of the two an-
gles and as well as the distance during the Point-
to-Point with collision avoidance movement (Simulink).

Figure 23: Point-to-Point with collision avoidance

simulation in Simulink - time course of , and .

 Leindecker et al. A Tutorial Approach to BM C11 ‘SCARA Robot’ in MATLAB, Simulink and Stateflow

SNE 31(2) – 6/2021 109

B N E
Figure 24 shows the result of the Point-to-Point with

collision avoidance simulation in Simulink in three-di-
mensional space with initial value , target
point , obstacle height , ob-
stacle distance and critical distance

.

Figure 24: Point-to-Point with collision avoidance

simulation in Simulink - tool-tip path in 3D space.

Figure 25: Representation of the Simulink collision

avoidance maneuver in two-dimensional space.

The Simulink Point-to-Point with collision avoidance
simulation runtime was 0.239948 seconds.

Figure 26 shows the time course of the two angles
and as well as the distance during the Point-to-Point
with collision avoidance movement (simulated in Sim-
ulink / Stateflow).

Figure 27 shows the result of the Point-to-Point with
collision avoidance simulation in Simulink / Stateflow in
three-dimensional space with initial value ,
target point , obstacle height

, obstacle distance and critical dis-
tance .

The Simulink / Stateflow Point-to-Point with collision
avoidance simulation runtime was 0.315776 seconds.

Figure 26: Point-to-Point with collision avoidance simula-

tion in Simulink / Stateflow - time course of , and

Figure 27: Point-to-Point with collision avoidance

simulation in Simulink / Stateflow -
tool-tip path in three-dimensional space.

Figure 28: Representation of the Simulink / Stateflow

collision avoidance maneuver in 2D space.

3 Comparison & Results
A very essential difference between the MATLAB and
the Simulink implementation is the computing time for
each model. The direct comparison of the explicit point-
to-point models shows, that the Simulink implementation
is in our elaboration times faster than the MATLAB
implementation (both solving times result in the use of
the ode45). This observation is confirmed, when we com-

Leindecker et al. A Tutorial Approach to BM C11 ‘SCARA Robot’ in MATLAB, Simulink and Stateflow

110 SNE 31(2) – 6/2021

B N E

pare the computing times of the explicit collision avoid-
ance models (both solving times result in the use of the
ode45). The Simulink simulation times are significantly
shorter than those in MATLAB, since, in contrast to
MATLAB, the right side of the differential equation sys-
tem is mapped using a function and the code is not pro-
cessed in lines.
On the other hand, using ‘MATLAB-function’-blocks in
Simulink delays the simulation time.

Another important difference between these two im-
plementation possibilities is the ability of being able to
work with a second order differential equation system.
MATLAB can’t work with a second order differential
eqation system, in contrast Simulink can. This makes the
Simulink implementation easier because the C11 defini-
tion needs no further conversion.

When it comes to the limitation of the voltage and
current, the Simulink implementation is a lot easier and
faster, compared to the MATLAB implementation. As
shown in chapter 2.1, the limitation is done in Simulink
with very few steps, while the limitation in MATLAB
needs a small expansion, shown in chapter 1 and code-
snippet 1.

Addendum
Additionally, an animation of the point-to-point move-
ment and the collision avoidance movement is realised in
the Matlab code as shown in Figure 29. Only with this
animation we got a real feeling how the three rods were
moving, and which relative movements are necessary to
guid the tool tip of the SCARA to its target point. Fur-
thermore, through the animation we recognized a long
waiting time between the vertical and the horizontal
movement when the obstacle height was reached so we
adapted the setting of the PD control in order to reach the
target even faster.

Figure 29: Animation of the collision avoidance move-

ment of the SCARA in a 3D-model.

The animation was implemented with an explicit and
with an implicit model, but there was no significant dif-
ference. So, further explanations refer to an implicit ani-
mation model. For this task the already described code
of an implicit collision avoidance was used for this ani-
mation. The changes were made in the plot section.
First, the SCARA appearance itself had to be modeled.
This was realised with different lines for the SCARA
body, the rods and the tool tip as shown in the code-
snippet 6.

Code-snippet 6: Shaping the appearance of the SCARA

with different lines and their spatial position.

Finally, the before calculated values of are now used
to describe the position of the three rods in code-snippet
7. A ‚for‘ loop is used to plot every calculated position
of the rods on their way to the target point with a short
pause between the plots to get an animation of the mo-
tion of the SCARA.

Code-snippet 7: Loop to plot the present position of the

SCARA rods at every entry of with a short

pause between every plot to get an animation.

Information
MATLAB R2019b Update 4 (9.7.0.1296695) and MAT-
LAB R2020a (9.8.0.1323502) was used on macOS Cata-
lina 10.15.7 and Windows 10.0.18363.1139 to develop
this elaboration.

References
[1] Horst Ecker. Comparison 11 (SCARA robot) - Defini-

tion. EUROSIM - Simulation News Europe. 1998; 22:
30-32

[2] Mathworks: Products and Services.
https://de.mathworks.com (last access on 29th October
2020)

