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Abstract.  This Educational Benchmark Note presents a tu-
torial-oriented approach to ‘ARGESIM Benchmark C11 
SCARA Robot’, an SNE Student Note compiled by master 
students of Mechanical Engineering. Students have de-
scribed for students necessary state space models for the 
SCARA robot, and algorithmic preparations for implemen-
tation in MATLAB and Simulink, including proper state limi-
tations. Furthermore, for collision handling of the robot 
movement, benefits of a state automata–based implemen-
tation in Stateflow is given. The simulations compare ex-
plicit and implicit model versions and efficiency of different 
ODE solvers, and present a basic animation.  

Model Description
Mechanical System.  The mechanical system, that is 
investigated in this Benchmark, is a three-axes robot arm, 
called SCARA (Selective Compliance Assembly Robot 
Arm). It has two vertical revolute joints and one vertical 
prismatic joint, with which it can change the position of 
its mounted tool tip. 
One can describe the 
equations of motion in 
compact form of an im-
plicit second order sys-
tem of differential equa-
tions: 

 
 (1) 

 
Figure 1: Mechanical struc-

ture of the SCARA robot [1]. 

In this case, vector  includes the joint angles  and  
and the joint distance . The mass matrix  is a 3x3 
block-diagonal matrix: 

   (2) 

To calculate the moments of inertia (eq. (8) - (10)), we as-
sume that there is a homogeneous mass distribution of the 
two rods (mass  and ) along the length  and , 
the mass of the load and the vertical drive motor is known 
and the moment of inertia of the rotating parts is defined. 

   (3) 
    (4) 

    (5) 
     (6) 

   (7) 

   (8) 

    (9) 

                (10) 

                (11) 

Vector , which describes the right-hand side of the dif-
ferential equation, is a function of the joint torques  
and  and the joint force . 

              (12) 
               (13) 

                (14) 

Servo Motor and PD-Control.  Due to the usage of 
a PD-control (Proportional-Derivative), which controls 
position errors and joint velocities, there is a limitation 
for the mechanical system that has to be observed. This 
limitation is the armature voltage (eq. (15)), restricted by 

  (eq. (16)) during the regular operation of the 
SCARA. The armature voltage is a function of the pro-
portional gains , the derivative gains  and the target 
and current value of the joints: 

              (15)  
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         (16) 

In case of an emergency, the armature voltage has a big-
ger restriction zone ( ) and therefore allows a 
higher armature voltage. This emergency feature is used 
in the collision avoidance later on. 

Another limitation of the mechanical system is the ar-
mature current, due to the engineering property of a servo 
motor. Using a first order differential equation (eq. (17)), 
the electrical relationship of the armature is expressible 
with the servo motor constant , gear ratio , re-
sistance  and inductance : 

              (17) 

              (18) 

 (eq. (19)) can be computed with the maximum per-
mitted torque  and the servo motor constant  

              (19) 

The armature current is proportional to the joint torques 
( , ) and the joint force ( ): 

               (20) 

Obstacle definition & collision avoidance.  Cre-
ating an obstacle, the tool-tip has to avoid, generates the 
collision avoidance task. The obstacle is defined as 

                (21) 
                (22) 

with   and               (23)  (24) 

This SCARA is equipped with a distance measuring sen-
sor, which allows regular movement of the tool tip, if the 
distance between tool tip and obstacle is above the criti-
cal distance . In case of an undercut of the 
critical distance , the armature voltage can have a 
maximum of  to decelerate faster and prevent a 
crash. 

Additional Range Control. Due to the mechanical 
structure of the SCARA, we need to implement addi-
tional range control for the joint angles and the distance 

, to achieve a model that pictures the real-life SCARA 
even better: 

                 (25) 
                 (26) 

                (27) 

We only let our SCARA robot move its tool tip in a pos-
itive y-axis area (eq. (25)). That is why the limitation for 
the angle  is defined as . Angle  has a 
limit of under , because the second rod is above the 
first one, which means that the tool-tip would crash into 
the first rod if  would reach an angle close to  
(eq. (28)). The length of the vertical rod  also needs to 
be limited to ensure a realistic simulation (eq. (27)). 

 

 
Figure 2: Reachable area of the tool-tip in the x-y-level. 

1 MATLAB Implementation 
Now we create a model of the SCARA movement using 
MATLAB. At first, we implement the given values and 
the equations of the definition, such as equation (3) – 
(15), (17), (19) and (20) – (27). These equations provide 
the needed values to implement the limitation of the cur-
rent  from equation (17) and the limitation of the volt-
age  from equation (18). The implementation of the 
mass matrix (eq. (2)) differs, when we compare the ex-
plicit with the implicit model. Therefore, the mass matrix 
implementation gets described in chapter 1.1 and 1.2.  

These mentioned implementations are straight for-
ward and didn’t cause any problems, but limitating the 
current  is not as simple as it may seem. By reason of 
the inability of the ODE-solver to limit the current itself, 
we limitated the voltage  and the derivative of the cur-
rent . To carry out the limitation for the voltage , we 
simply use ‚if‘ loops that constantly compare the current 
value of the voltage  with the maximum allowed volt-
age . In case of an exceeding, the value for  gets 
limited to the maximum allowed voltage .  

The limitation of the current  is more difficult 
(shown in code-snippet 1). We constantly have to com-
pare the current value of the current  with the maximum 
allowed current . If the current value  is higher 
than its maximum  and the derivative of the cur-
rent  negative, the derivative of the current  is not lim-
ited because the negative inclination of the current  
leads to a decrease of the current . Consequently, the 
current  will drop below its maximum .  
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Vice versa if the current  is lower than its minimum 

 and the derivative of the current  is positive. If 
the current  is higher (lower) than its maximum  
( ) and the derivative of the current  positive (neg-
ative), the value of the derivative of the current  gets 
limited to zero. 

 
Code-snippet 1: Limitation of the derivative of the current . 

There are two possibilities to stop the calculation of the 
ODE-solver. The computing time can be limited to a 
fixed value, which is not very accurate when it comes to 
comparing different solving-times because there might 
be not enough time to reach the target position or the 
solver keeps on calculating, even though the SCARA is al-
ready very close to the target point or  already reached it.  

The second possibility uses an implementation of an 
event-function, that automatically stops the program, as 
soon as the tool tip reaches the target position. Therefore 
a so-called event-function “reached_target”, which is 
shown in code-snippet 2, is used to constantly compare 
the current position of the the tool tip and the target posi-
tion. With a difference of  between the 
actual and the target position of the tool tip, the event gets 
triggered and stops the calculation of the ODE-solver. 

 

 
Code-snippet 2: Event that stops the code, as soon as the 

tool-tip reaches the target position. 

 
Code-snippet 3: Loop, to display a warning for  

unreachable target points. 

With ‚if‘ loops, we can display a notification in case of 
an unreachable target position. The notification also 
gives a short description of the reason for the error, 
shown in code-snippet 3. 

1.1 Excplicit Point-to-Point model 
To solve the point-to-Point motion explicitly, we create a 
9-row-vector  that contains the joint velocities , the 
angles and the distance of the joints  and the currents 
of the servo motors , written as vector . 
Additionally, the mass matrix  needs to be inverted and 
multiplied with  to receive the joint’s angular and direc-
tional acceleration : 

                 (28) 

This step is necessary because the ODE-solver in the ex-
plicit model can’t work with a mass matrix, provided by 
the  command. Extending vector  with  and 
the limited values of , we also get a 9-row-vector, which 
basically is the derived  vector.  

In Figure 3 the changes of the angles and the heigth 
(q1, q2, q3) over time of the explicit point-to-point model 
are pictured. So, it can be observed that q1 and q2 have 
the value 2 and q3 the value 0.3 when the event-function 
stops the calculation. Furthermore, figure 4 visualises the 
movement of the tool tip in the x-y-z-system.  

 

 
Figure 3: Plot of ,  and , depending on t 

(explicit point-to-point model,  
target point , ode45). 

 

 
Figure 4: Plot of the movement of the tool tip  

(explicit point-to-point model,  
target point  , ode45). 
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1.2 Implicit Point-to-Point model 
Solving the point-to-point movement implicitly, we need 
to extend the original 3x3 mass matrix into a 9x9 mass 
matrix (eq. (29)), so the dimensions fit the right side of 
equation (1). 

         (29) 

The ODE-solver in the implicit model can work with a 
mass matrix, provided by the  command, which 
means that we don’t have to invert our mass matrix  
anymore. Hence, we provide the ODE-solver the maxi-
mum step size, the 9x9 mass matrix and the event for 
reaching the target by the  command. Limiting 
the current  and stopping the program happens in the 
same way as in the explicit model. The numerical accu-
racy is the same as in the explicit model. Hence, the 
graphical visualitaion is equal to Figure 3 and Figure 4 
and not shown for the implicit model again.  

1.3 Results of the Point-to-Point movement 
We compare the ODE solvers ode45, ode23, ode23t, 
ode23s, ode23tb, ode113, and ode15s for the point-to-
point movement, target point : 

ODE-solver explicit solving-
time 

implicit solving-
time 

ode45 0.756971s 0.826150s 

ode23 0.572606s 0.838872s 
ode23t 0.270100s 0.485513s 

ode23s 3.851616s - 
ode23tb 0.299691s 0.595774s 

ode113 0.878708s 1.069086s 
ode15s 0.244320s 0.358710s 

Table 1: Explicit and implicit solving-times of different 
ODE-solvers for the point-to-point movement 
with target point . 

The measured explicit system is always faster than the 
implicit one. Another factor for the solving-time is the 
step size control of the solver itself. Through a high step 
size control, like in the ode23t, ode23tb and ode15s, the 
solving-time is very short. Thereupon, a solver like the 
ode45, which has a low step size control, has a longer 
solving-time. In addition, a correlation between the step 

size control and the accuracy of a solver exists. For ex-
ample, ode23t, ode23tb and ode15s are fast but also have 
a low accuracy. Besides, the ode45 has a medium accu-
racy, due to its low step size control. 

1.4 Explicit collision avoidance model 
The explicit collision avoidance works in the same way as 
the explicit point-to-point movement, using the inverted 
mass matrix . But to implement the collision avoidance, 
we extend the explicit point-to-point model with various 
cases which are automatically selected, regarding the di-
mensions of the obstacle and the target position.  

An ‚if‘ loop, which is partly shown in code-snippet 4, 
chooses the right sequence of event functions. In this 
code snippet 4 case no. 1, 2 and the beginning of case no. 
3 are pictured. The selected case depends on where the 
target point is located. If an event function detects a zero 
transition it stops the current ODE-solver and another 
one, with a new dynamical structure, has to be started us-
ing the last entries of the stopped ODE-solver as starting 
values for the new one. All times and values of the dif-
ferent used ODEs are attached in the vector te and vector 
qe to get a gapless simulation.  

We differ now from case no. 1 to case no. 5. The dif-
ferences are described in the following.  

Case no. 1.  In case no.1 (Figure  5), the target position 
is located behind the obstacle and above the obstacle’s 
height. It starts the regular point-to-point solver until the 
tool-tip reaches the critical distance . After 
the event of the critical distance between the obstacle and 
the tool tip occurs, a new solver is called which only al-
lows movement of  (shown in code-snippet 5). This 
means that the SCARA drives vertically upwards, until 
the tool-tip is higher than the height of the obstacle. 
Then, the standard point-to-point solver is called again to 
reach the target position. 

 

 
 

Figure 5: Plot of case no. 1 (explicit collision avoidance 
model, target point , ode45). 
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Code-snippet 4: Case no.1, 2 and partly 3, chosen  

depending on the position of the target point.  

 
Code-snippet 5: Limiting the movement of the SCARA  

robot to only joint 3. 

Case no. 2.  In case no. 2, the target position lies within 
the obstacle or its critical surrounding. A notification 
of the error gets displayed. 

Case no. 3.  In case no. 3, the target position is located 
straightly above the obstacle’s height. The utilized pro-
cedure is the same as in case no. 1. 

Case no. 4.  In case no. 4 (fig. 6-8), the target position 
is located behind the obstacle and below the obstacle’s 
height. Here, the solver for the point-to-point movement 
is used until the collision warning event gets triggered, 
followed by the vertical upward movement of the tool-tip 
as in case no. 1. As soon as the tool tip is higher than the 
obstacles height, another solver is used, which only al-
lows movement in joint 1 and 2. This leads to a move-
ment of the SCARA parallel to the obstacles top side. Af-
ter the tool tip passes the obstacle, the solver for the 
point-to-point movement is used again to finally reach 
the target point. 

Case no. 5.  In case no. 5, the target position is located 
in front of the obstacle. No collision avoidance occurs, 
which makes this case to a simple point-to-point move-
ment; events are used to stop the program when the tool 
tip reaches the target position. 

 
Figure 6: Plot of ,  and  over time  

(case no. 4, explicit collision avoidance model, 
target point , ode45). 

 
Figure 7: Plot of ,  and , depending on t 

(case no. 4, explicit collision avoidance model, 
target point , ode45). 

 
Figure 8: Plot of the case no. 4 (explicit collision avoidance 

model, target point , ode45). 

1.5 Implicit collision avoidance model 
The implicit collision avoidance model uses the same 
structure as the explicit collision avoidance model, apart 
from the handling of the mass matrix. Here, the handling 
of the mass matrix is the same as in 1.2 Implicit Point-to-
Point model. The solutions of the implicit model in case 
no. 1 are plotted in Figure 9 and Figure 10.  
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Figure 9: Plot of ,  and  over time  

(case no. 1, implicit collision avoidance model, 
target point , ode45). 

 
Figure 10: Plot of ,  and , depending on t 

(case no. 1, implicit collision avoidance model, 
target point , ode45). 

1.6 Results collision avoidance movement 
We compare the following ODE-solvers for the collision 
avoidance movement with the target point 

: ode45, ode23, ode23t, ode23s, ode23tb, 
ode113 and ode15s. 

 
ODE-solver explicit solving-

time 
implicit solving-

time 

ode45 1.163843s 1.316385s 
ode23 0.820086s 0.988098s 
ode23t 0.458257s 0.581426s 
ode23s 3.177899s - 
ode23tb 0.427696s 0.621490s 
ode113 1.240606s 1.259776s 
ode15s 0.422060s 0.422124s 

 
Table 2: Explicit and implicit solving-times of different 

ODE-solvers for the collision avoidance movement 
with target point . 

2 Simulink Implementation 
In Simulink, a model for simulating the Point-to-Point 
movement in an explicit representation and two different 
models for simulating the Point-to-Point movement with 
collision avoidance also in an explicit representation 
were developed. On the one hand a collision avoidance 
model with the usual Simulink-blocks and a ‘Switch’-
block to switch between the Point-to-Point movement 
and the collision avoidance movement and on the other 
hand a Simulink solution with integrated ‘Stateflow’-
states, in which it is also possible to switch between these 
movements. 

All constant parameters necessary for the simulation 
were given into Simulink over the MATLAB environ-
ment. The simulation results were transferred back into 
MATLAB through ‘To Workspace’-blocks for plotting 
purposes. To solve the explicit Simulink models, the var-
iable step size, one step solver ode45 was used, whereby 
the relative tolerance was reduced to 1e-6. Since a double 
integration is possible in Simulink by implementing two 
‘Integrator’-blocks connected directly one after the other, 
it is not necessary to transform the descriptive second or-
der differential equations [2]. The resulting 3x3 mass ma-
trix was implemented in the Simulink and Simulink / 
Stateflow models using a ‘MATLAB Function’-block and 
then inverted using a ‘Product’-block in inversion mode. 

As in the MATLAB implementation in order to prem-
aturely end the integration at the target point, a Simula-
tion Abort Condition-subsystem was integrated in all 
models (see Figure 11). When a precession of 0.001 is 
reached, the simulation stops by means of a ‘Stop’-block. 

 
Figure 11: Simulation Abort Condition-subsystem with a  

logical combination of the differences between the  
components of the target point location vector  and 
the robot arm location vector , with the ‘Stop’-block being 
activated when a precession of 0.001 is reached. 

2.1 Explicit Point-to-Point model in Simulink 
Figure 12 shows the overall Point-to-Point Simulink 
model with built-in Control Model-subsystem (shown in 
Figure 13) and a ‘MATLAB Function’-block called dy-
namics (which contains the equations 12 to 14). 



   Leindecker et al.  A Tutorial Approach to BM C11 ‘SCARA Robot’ in MATLAB, Simulink and Stateflow 
 

SNE 31(2) – 6/2021      107 

B N E 
The Control Model-subsystem includes a PD control-

subsystem, which defines the relationship between the 
distance to the target point and the necessary voltage (see 
equation 15), as well as a servo motor-subsystem (shown 
in figure 14), which contains the first order differential 
equation for determining the current (see equation 17). 
The resulting current is limited via a limited output of the 
‘Integrator’-block. The current limit values are calculated 
using equation 19. Finally, the associated torque is deter-
mined in a ‘MATLAB Function’-block. The torque is re-
quired to calculate the right-hand side of the system of 
differential equations (see equations 12 to 14). 

The voltage is limited via a ‘Saturation’-block, which 
is included in the PD control-subsystem. The voltage 
limit values, like the current limit values, are given con-
stant parameters. The voltage and current limitation are 
much easier to implement in Simulink than in MATLAB. 
 

 
Figure 12: Explicit Point-to-Point Simulink model. 
 

 
Figure 13: Control Model-subsystem. 
 

 
Figure 14: Servo motor-subsystem including an ‘Integra-

tor’-block with limited output. 

 
Figure 15: Point-to-Point simulation in Simulink -  

time course of ,  and . 

 
Figure 16: Point-to-Point simulation in Simulink -  

tool-tip path in three-dimensional space. 

Results. Figure 15 shows the time course of the two an-
gles  and  as well as the distance  during the Point-
to-Point movement (simulated in Simulink). Figure 16 
shows the result of the Point-to-Point simulation in Sim-
ulink in three-dimensional space with initial value 

 and target point . The Simulink 
Point-to-Point simulation runtime was 0.143362 seconds. 

2.2 Collision avoidance model in Simulink 
and Simulink / Stateflow 

Figure 17 shows the overall Point-to-Point with collision 
avoidance Simulink model with built-in Extended Con-
trol Model-subsystem. In order to avoid a collision with 
a defined object, an additional subsystem was included 
into the Control Model-subsystem (see Figure 18). 
In this additional subsystem two ‘Switch’-blocks for 
switching between Point-to-Point movement and obsta-
cle avoidance are implemented.  

If the condition  is 
fulfilled,  is changed in such a way that 

,  and . 
 is then passed on to the integrator and the dynamics-

block (see Figure 17). 
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Figure 17: Explicit Point-to-Point with collision avoidance 

Simulink model. 

 
Figure 18: Additional subsystem with two ‘Switch’-blocks 

for switching between different robot arm 
speeds  and maximum voltages. 

In the second ‘Switch’-block, which is controlled via the 
same condition, the permissible voltage limits are speci-
fied. In the case of obstacle avoidance, the normal maxi-
mum voltages (see chapter 2.1) are changed to the emer-
gency maximum voltages. 

Figure 19 shows the overall Point-to-Point with colli-
sion avoidance Simulink model with built-in ‘Stateflow-
Chart’-subsystem. 

When using the Stateflow environment, the task is to 
define certain states and to specify conditions for when to 
switch between these states. Point-to-Point movement and 
collision avoidance were defined as states (see Figure 20). 
To define the states, ‘Simulink state’-blocks were used, in 
which Simulink models like the one shown in Figure 12 
with different  and maximum voltages were installed (see 
Figure 21 and Figure 22). ‘State Writer’-blocks were used 
to transfer the integrated parameters from one state to an-
other. The condition for a change from Point-to-Point 
movement to obstacle avoidance has not changed com-
pared to the pure Simulink solution. In the opposite direc-
tion, the condition that the tool-tip has exceeded the obsta-
cle height is sufficient. The definition of the conditions for 
changing between the states is much easier in Simulink / 
Stateflow than in a pure Simulink solution. 

 

Figure 19: Explicit 
PtP with collision 
avoidance -  
Simulink model 
with ‘Stateflow-
Chart’-susystem. 

 
Figure 20: ‘Stateflow-Chart’-subsystem with ‘Simulink 

state’-blocks and conditions for a change of state. 

 
Figure 21: Point-to-Point subsystem. 

 
Figure 22: Collision avoidance subsystem. 

Results. Figure 23 shows the time course of the two an-
gles  and  as well as the distance  during the Point-
to-Point with collision avoidance movement (Simulink). 

 
Figure 23: Point-to-Point with collision avoidance  

simulation in Simulink - time course of ,  and . 
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Figure 24 shows the result of the Point-to-Point with 

collision avoidance simulation in Simulink in three-di-
mensional space with initial value , target 
point , obstacle height , ob-
stacle distance  and critical distance 

. 
 

 
Figure 24: Point-to-Point with collision avoidance  

simulation in Simulink - tool-tip path in 3D space. 

 

 
Figure 25: Representation of the Simulink collision  

avoidance maneuver in two-dimensional space. 

The Simulink Point-to-Point with collision avoidance 
simulation runtime was 0.239948 seconds. 

Figure 26 shows the time course of the two angles  
and  as well as the distance  during the Point-to-Point 
with collision avoidance movement (simulated in Sim-
ulink / Stateflow). 

Figure 27 shows the result of the Point-to-Point with 
collision avoidance simulation in Simulink / Stateflow in 
three-dimensional space with initial value , 
target point , obstacle height 

, obstacle distance  and critical dis-
tance . 

The Simulink / Stateflow Point-to-Point with collision 
avoidance simulation runtime was 0.315776 seconds. 

 
Figure 26: Point-to-Point with collision avoidance simula-

tion in Simulink / Stateflow - time course of ,  and  

 
Figure 27: Point-to-Point with collision avoidance  

simulation in Simulink / Stateflow -  
tool-tip path in three-dimensional space. 

 

 
Figure 28: Representation of the Simulink / Stateflow  

collision avoidance maneuver in 2D space. 

3 Comparison & Results 
A very essential difference between the MATLAB and 
the Simulink implementation is the computing time for 
each model. The direct comparison of the explicit point-
to-point models shows, that the Simulink implementation 
is in our elaboration  times faster than the MATLAB 
implementation (both solving times result in the use of 
the ode45). This observation is confirmed, when we com-
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pare the computing times of the explicit collision avoid-
ance models (both solving times result in the use of the 
ode45). The Simulink simulation times are significantly 
shorter than those in MATLAB, since, in contrast to 
MATLAB, the right side of the differential equation sys-
tem is mapped using a function and the code is not pro-
cessed in lines. 
On the other hand, using ‘MATLAB-function’-blocks in 
Simulink delays the simulation time. 

Another important difference between these two im-
plementation possibilities is the ability of being able to 
work with a second order differential equation system. 
MATLAB can’t work with a second order differential 
eqation system, in contrast Simulink can. This makes the 
Simulink implementation easier because the C11 defini-
tion needs no further conversion.  

When it comes to the limitation of the voltage and 
current, the Simulink implementation is a lot easier and 
faster, compared to the MATLAB implementation. As 
shown in chapter 2.1, the limitation is done in Simulink 
with very few steps, while the limitation in MATLAB 
needs a small expansion, shown in chapter 1 and code-
snippet 1. 

Addendum 
Additionally, an animation of the point-to-point move-
ment and the collision avoidance movement is realised in 
the Matlab code as shown in Figure 29. Only with this 
animation we got a real feeling how the three rods were 
moving, and which relative movements are necessary to 
guid the tool tip of the SCARA to its target point. Fur-
thermore, through the animation we recognized a long 
waiting time between the vertical and the horizontal 
movement when the obstacle height was reached so we 
adapted the setting of the PD control in order to reach the 
target even faster.  

 

 
Figure 29: Animation of the collision avoidance move-

ment of the SCARA in a 3D-model. 

The animation was implemented with an explicit and 
with an implicit model, but there was no significant dif-
ference. So, further explanations refer to an implicit ani-
mation model. For this task the already described code 
of an implicit collision avoidance was used for this ani-
mation. The changes were made in the plot section.  
First, the SCARA appearance itself had to be modeled. 
This was realised with different lines for the SCARA 
body, the rods and the tool tip as shown in the code-
snippet 6.  

 
Code-snippet 6: Shaping the appearance of the SCARA 

with different lines and their spatial position.  

Finally, the before calculated values of  are now used 
to describe the position of the three rods in code-snippet 
7. A ‚for‘ loop is used to plot every calculated position 
of the rods on their way to the target point with a short 
pause between the plots to get an animation of the mo-
tion of the SCARA.  

 
Code-snippet 7: Loop to plot the present position of the 

SCARA rods at every entry of  with a short 

pause between every plot to get an animation.  

Information 
MATLAB R2019b Update 4 (9.7.0.1296695) and MAT-
LAB R2020a (9.8.0.1323502) was used on macOS Cata-
lina 10.15.7 and Windows 10.0.18363.1139 to develop 
this elaboration. 
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