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Abstract.  In industry, there are numerous applications 
for simulation. However, simulation in our area usually 
takes some time even if a preexisting model just needs to 
be parameterized; there is still the run time, which will 
usually take at least a few minutes if not hours. In our cur-
rent case, a planner wanted to know for a given product 
mix situation and for an equipment group with specific 
characteristics how much he can utilize the equipment 
without violating flow factor targets. A question, which 
arises several times during a typical workday as new or-
ders are coming in and the situation on the shop floor is 
continuously changing. Since the user is usually asking the 
same question just with different parameters we are able 
to solve the waiting time problem while still giving good 
decision support. Instead of simulating every scenario at 
the time the user actually needs these answers, we use 
data farming to generate a large set of data points that 
are then used to train a neural network. This neural net-
work then substitutes for the simulation and responds to 
the user immediately. 

Introduction
A crucial task in modern industry is capacity planning. 
Robinson et al. [1] point out why accurate capacity plan-
ning is so important, yet so difficult to achieve in the 
highly sophisticated semiconductor industry. A planner 
faces numerous questions every day from short-term op-
erative questions to long-term strategic ones. A necessary 
starting point to make any reasonable decsions is to know 
the available equipment capacity and how its’ utilization 
influences the material flow.  

As cycle times vary from product to product flow fac-
tors (cf. Equation 1) are good indictors to evaluate a pro-
duction system.  

 (1) 

 The trade off between utilization and flow factor can be 
visualized as operating curves (cf. [2]), which relate a 
system’s flow factor against its utilization. Operating 
curves are an important tool in managing semiconductor 
fabs (cf. [3]). 

 
Figure 1: Operating Curve of a basic single equipment 

without any special features 

 
Figure 2:  Operating Curve of a single batch-equipment 

with infrequent but long breakdowns 
 
Examples of operating curves are shown in Figure 1 and 
Figure 2. Although these curves represent the behavior of 
the system at all utilization levels, usually not the whole 
operating curve is relevant to a planner.  

What typically is of interest to our collegues is 
whether there is enough capacity for a given product mix 
or load. In modern days, this question has changed to 
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whether it is possible to maintain a given flow factor with 
the given product mixes and loads. Therefore, it is im-
portant to know until which point an equipment group 
can be utilized before it violates flow factor targets. 
These thresholds are basically what we are looking for. 

Figure 1 and Figure 2 also show that whether a system 
can handle a given material flow is not just based on its’ 
utilization. Numerous factors are influencing equipment 
behavior; batching, breakdowns, and maintenance are 
just some examples. Based on these characteristics equip-
ment groups are able to handle different utilization levels 
before reaching certain flow factors. As this differs from 
equipment to equipment this question needs to be an-
swered often for different equipment groups.  

It is the goal of our research to develop an approach 
that answers this question in a most timly fashion while 
still being sufficiently accurate to base planning and in-
vestment decisions upon. Traditionally, this is done at our 
industry partner with a calculation based on look up ta-
bles, which only included some factors. Although the 
look up is quite quick, the results were far from optimal 
since too few influencing factors were considered.  

A typical solution approach would simply be to build 
or generate a simulation model for a given equipment 
group and run some simuation experiments. But this 
would still take some time, with large equipment groups 
maybe even a few minutes. Hence, this approach would 
not meet the response time requirement for the given 
problem. Byrne [4] proposed an approach to limit the 
number of necessary design points to calculate an oper-
ating curve. Althougth this would speed up simulation, 
there would still be some waiting time for results. 

In the first section of this paper, we will give an intro-
duction to the general idea behind our approach. In Sec-
tion two, we will discuss some software development as-
pects of creating such a system. In the third section, we 
will briefly show the features considered in our current 
project. In the following sections, we will furthermore 
discuss the simulation model, data farming, and training 
of our artificial neural networks. In Section seven, we 
will shortly show our current results and give an outlook 
on our future plans in Section eight. 

1 System Overview 
As we have previously discussed, we aim to build a sys-
tem which is able to quickly provide answers to the same 
question with changing parameters or configurations, 
which is repeatedly asked during a normal workday.  

If these questions would only be asked from time to 
time or a response would not be that time critical a com-
mon approach would be to build a simulation model and 
answer the question after analyzing a simulation experi-
ment. 
 

 
Figure 3: Generalization of discussed approach for a fast 

response system based on data farming and 
machine learning. 

 
If short response times are very important, Figure 3 
shows a generalized approach on how we answer this 
question. The challenge column would be the normal 
simulation experiment approach. The user has a question 
about a given system configuration. A simulation model 
representing this system configuration is built and its’ 
performance is evaluated. After a reasonable number of 
simulation runs the user gets the answer. 

As the simulation runs are the time consuming part 
we changed the system. Instead of creating or parameter-
izing a simulation model each time the user needs an an-
swer to the question we move the simulation runs to a 
point in time long before the user asks our system. We 
use data farming to create the results to a huge number of 
possible factor combinations.  

The resulting data set is then used as the supporting 
points for machine learing algorithms, in our case neural 
networks, to approximate a function that reproduces a re-
sponse to a given configuration and therby replaces the 
simulation in the moment the user queries the system. In-
stead of directly asking for the results of a time-consum-
ing simulation experiment, the user asks the neural net-
work that is able to respond almost immediately. 

Figure 4 shows a basic overview of our system. 
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Figure 4: System overview. 

2 System Architecture 
In this section, we will discuss our system architecture 
from a software development point of view. We will start 
with the initial basic design and point our changes we 
have done to improve the system. 

 
Figure 5: Basic system architecture. 

Basing our architecture (cf. Figure 5) on the system over-
view shown in Figure 4 we planned for one big simula-
tion-based data farming component, which would gener-
ate a huge set of supporting points. These data points 
would be transferred as a file to an R (cf. [5]) script han-
dling data preparation and training of the neural network. 
With this setup, we were able to obtain reasonable results 
but we found that there is still a lot of room for improve-
ment. One of our first and surprisingly valuable changes 
was a switch from using R to train our neural networks to 
Keras (cf. [6]). With R, depending on our data set, we 
were sometimes observing training times of a couple of 
days, which we attributed to reaching some memory 
boundaries.  

We often had to abort after some time as no further 
progress was visible and it was hard to predict the remain-
ing training time. However, even training times of a few 
hours considerably limit the amount of network configura-
tions one can test in the hopes of improving results. The 
switch to Keras with an underlying Tensorflow (cf. [7]) li-
brary immediately improved training times incredibly. 
Furthermore, being able to utilize GPUs (graphics cards) 
for training improved training speeds to a point where in-
stead of several hours or days we were looking at seconds 
and minutes for training. This new dimension of training 
times opened up the opportunity to consider neural archi-
tecture search to further improve the results of the neural 
network and thereby the whole system in the future. 

A second big change to our system is the move from 
a monolithic piece of software to a service-based archi-
tecture using RESTful Web Services (cf. [8]). In this 
change, we see three major benefits to our system: 
1. Ease of communication between system parts, 
2. Scalability and distribution on multiple machines, 
3. Replaceability of components. 

In the beginning of the project, we made the conscious 
decision to implement different parts of our system with 
different languages. We see benefits in developing in 
Java with its object-oriented concept and type system 
paired with available IDEs supporting numerous ways of 
testing and debugging that make it very suitable to larger 
and more complex software projects. R on the other hand 
offered much easier access to mathematical functionality 
and neural networks. Nowadays, Python basically is the 
de facto standard language for data analyses and machine 
learning with a number of libraries and frameworks avail-
able and new systems usually being accessible only or at 
least first with Python. 

Communication across these language barriers is of-
ten not easy with “direct calls”. As most modern lan-
guages nowadays offer libraries, to easily implement web 
services, this is an elegant approach to handle communi-
cation between system parts written in different program-
ming languages without much additional implementation 
overhead. Gone were complicated command line calls 
and file-based communications. 

Most parts in our system can be quite computation in-
tensive. While it is still reasonable to run small test cases 
on a single office PC, larger experiments benefit from 
good scalability and distribution. Furthermore, different 
parts of the system benefit differently from available 
hardware.  
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While the simulation is mostly CPU and memory in-

tensive, training neural networks significantly benefits 
from the availability of modern graphics cards. Being 
able to assign services to machines with the best fitting 
hardware is therefore another aspect, which is easily 
taken care of with services.  

Besides distributing the different services on different 
machines, some services may in the future need additional 
computing power. With a service-oriented architecture, it 
is also easy to introduce load balancers which distribute 
requests of the same type on several machines offering the 
same service without any necessary changes to the client 
side. This makes setting up such a system very comfortable 
for different experimental environments. 

 

 
Figure 6: Service based system architecture. 

Replaceability without the need to touch any other system 
component is also a great benefit. As we try different 
frameworks and approaches the current architecture offers 
us to simply replace some services while others stay the 
same. Changing the simulator, the persistence approach or 
even the machine learning technique are all simply done 
by putting the new component up as a service replacing the 
old one. Hence, with this change we gained a lot of scala-
bility and flexibility for future experiments. 

3 Factors 
Starting with Robinson et al. [1] and Hopp and Spearmean 
[9] and a review of the previous planning methods we de-
fined relevant features for our equipment group model.  

 

Values for our factor levels were chosen based on a 
fab dataset from our industrial partner by looking for nat-
ural clusters and using representatives thereby capturing 
realistic workings points.  

Most factors can be easily defined with single numer-
ical values. These are shown as quantitative factors. 
Some factors shown as categorical in Table 1 represent 
more complex definitions. Product mix for example rep-
resents the number of different products as well as their 
percentage of the released material flow. For categorical 
features we selected three levels based on real equipment 
groups going from a low impact to a high impact setting 
with regard to the resulting flow factors. 
 

Feature Factor # Type 
Batching MaxBatch 

MinBatchPercentage 
5 
3 

Quant. 
Quant. 

Breakdown MeanTimeBetweenFailure 
BreakdownCapaLoss% 

3 
2 

Quant. 
Quant. 

Dedication Dedication 3 Cat. 
Equipment # ToolCount 7 Quant. 
Maintenance TimeToMaintenance 

MaintCapaLos% 
3 
2 

Quant. 
Quant. 

Product Mix ProductMix 3 Cat. 
Rework ReworkPercentage 3 Quant. 
Process Time RPT 6 Quant. 
Setup SetupDuration 3 Quant. 

Table 1: Feature and factor overview. 

While initially considering only one factor per feature we 
now split some features into two factors for better scala-
bility. This makes it easier for a future algorithm to gen-
erate new test points to validate and improve the resulting 
model. Additionally, the effect of some features is hard 
to capture with a single factor. For example, when con-
sidering two systems suffering from 25% loss of capacity 
due to breakdowns; one breaking down after 3 hours of 
productive time for about an hour while the other one 
runs fine for 3 weeks followed by a week of repair. We 
would expect the second system to perform worse with 
regard to cycle time and flow factor. Hence, we split 
breakdown into capacity loss and mean time between 
failures.  

As the increase in factors brings a significant increase 
in design points considering a full design, we have not 
yet updated our training data set to include all new points. 
Although the training data set does not include all these 
points, we are still able to address them better and test for 
them.  
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4 Evaluation and Simulation 
We use an inhouse developed factory simulator for all 
simulation runs in this project. As we have mentioned be-
fore the simulator is currently running as a service and 
simulation runs can be started by calling the service and 
handing over parameter values for each factor under con-
sideration.  

The simulation service will then automatically gener-
ate a simulation model based on the given parameters. 
Figure 7 shows a visualization of the equipment group 
model. As the goal of the simulation is to determine rea-
sonable utilization values for the lowest flow factor pos-
sible and the location of defined flow factor threshholds, 
the next step is a static capacity analysis. This is neces-
sary to run the simulation only with reasonable loading 
scenarios without wasting calculation time for extremely 
low utilization settings or incredibly overloaded systems. 
Based on the static capacity analysis we can now simply 
calculate the necessary lot releases to run the model at a 
specific utilization point.  

We use a search strategy akin to binary search to look 
for the location with the lowest possible flowfactor. For 
each utilization point under evaluation simualtion runs 
are performed until the sample size for this point is deter-
mined to be large enough for a stable estimation. Flow 
factor thresholds are searched for similarly while reusing 
the results of previously tested plus new utilization 
points. Once the lowest flow factor value and all re-
quested flow factor thresholds are determined the results 
are handed back.  

 
 

 

Verification and validation are difficult when consid-
ering data farming, as it is almost impossible to evaluate 
every single simulation run. We deployed different strat-
egies to ensure our simulation results reflect real world 
behaviour. The basis for this were unit tests to continu-
ously check the simulation software during development. 
This was done to avoid unintended effects during pro-
gramming. We additionally compared sample simulation 
results with the results from other simulation software 
packages. Additionally, we had a panel of experts re-
viewing results generated by the simulator and compare 
them to real factory data of equipment groups with simi-
lar characteristics. Of course, this cannot be done for all 
data points but helps to validate the system. 

5 Data Farming 
When considering the number of factors and factor lev-
els, we are looking at a huge number of data points to 
evaluate. In addition to all these data points, we are also 
looking at several simulation runs per data point. As we 
have mentioned before each data point is determined by 
calculating several utilization points for which we run a 
number of simulations each. Not all utilization points 
take the same amount of repetitions as we determine this 
number on the fly during the evaluation.  

After simulating an initial set of replications, we cal-
culate the confidence interval half-length and mean. 
Then, we compare their quotient with the relative error 
we aim for. If the quotient is still larger than the relative 
error, we run another set of replications.  

 
 

Figure 7: Simulation model structure. 
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We repeat this until the relative error is smaller than 

the quotient (cf. [10]). 
On average, we ran about 825 simulations for a single 

data point to determine the location of the lowest flow 
factor value and three thresholds. Considering even just 
one factor per feature we were looking at almost 460000 
data points which total in almost 380 million simulation 
runs just to generate the supporting points for our project. 

Although the evaluation of single data points is feasi-
ble on a normal PC, running these almost 460000 of data 
points on one of our simulation servers took several 
weeks. With our change in architecture and therefore 
much better scalability, we hope any future additions to 
our current data set will be available much faster. 

6 Training 
With all these data points from simulation, we were still 
only looking at the supporting points for our system. As 
we have mentioned before we moved from using R to 
Keras to implement the training of our neural networks 
which considerably increased training speed and made it 
much easier to test different layer configurations. Typi-
cally, we aim to minimize the mean squared error (MSE) 
of our testset. When trying to evaluate the usefulness of 
any trained network we additionally present the predicted 
results graphically.  

Figures 8 to 10 show the results of network configu-
ration and training parameter sets we tested. The dia-
grams are historgrams of how successful the predictions 
have been. Starting from the left results are grouped by 
the error in prediction compared to the simulation result. 
The first bar represents less than 1% distance and each 
following bar an additional 1%. E.g., a scenario for which 
the network predicted 75.5 but the simulation estimated 
73 would fall into the third bin. Please be aware that the 
x-axis in Figure 8 is using a different range from the other 
shown results. We chose to do this to be able to show the 
set of extremly poor predictions that is not present in the 
other results. 

Although the quality of the trained networks can dif-
fer greatly between network configurations, all of the re-
sults shown here were able to reduce the MSE continu-
ously during training and on a first glance seemed to 
work quite well. Only when visualizing what the results 
meant with regard to the actual problem at hand, it be-
came obvious that some of these networks are not usefull 
at all to solve our problem.  

 
Figure 8: Visualization of the distance between predicted 

and simulated value; example 1. 

 
Figure 9: Visualization of the distance between predicted 

and simulated value; example 2. 

 
Figure 10: Visualization of the distance between predicted 

and simulated value; example 3. 

 
Besides network architecture we found that training pa-
rameters like batch sizes and the number of episodes have 
a significant impact on result quality. In fact, Figures 8 
and 9 are based on the same network configuretion but 
used different batch parameters for training. 
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7 Results 
We set out to achieve two objectives. First, we wanted to 
create a system, which is able to respond immediately to 
a user query. Second, we needed to have sufficiently 
good results to base planning and investment decisions 
upon.  

On the first objective, we are where we want to be. 
The application server running on a better office PC with 
a modern graphics card responds within 300ms to a user 
query. The majority of this time is actually spent on allo-
cating the graphics card. Running the network for the pre-
diction just on the CPU without GPU support this re-
sponse time could actually be reduced even more as pre-
dicting is quite fast with just the CPU. 

 
Figure 11: Visualization of the distance between predicted 

and simulated value; current results. 

 
Looking at the second objective, Figure 11 shows our 
currently best results derived just with manual testing of 
different network architectures and training parameters. 
About 80% of our test points are predicted with an error 
of less than 3%. Almost all datapoints are predicted with 
less then 10% error from our simulation results.  

Furthermore, we are no longer seeing any artifacts as 
in Figure 8. Althoug these are reasonably good results and 
a prediction quality of 3% or better for a majority of data 
points would be good enough to base planning on these 
numbers, we are still looking at 20% of predictions being 
off by up to and 10%. Considering high utilization scenar-
ios overestimating possible utilization by 10% error could 
have a serious impact on the performance of the material 
flow and ability to maintain promised delivery dates.  

On the other hand, underestimating utilization thresh-
olds by 10% would mean significant loss of production 
capacity or triggering an investment in equipment before 
it is actually necessary. We therefore still see some need 
for improvement. 

8 Summary and Outlook 
In this paper, we presented our approach to create a sys-
tem with minimal response time to a user query, which 
we would usually answer by simulation. We discussed 
some aspects of software architecture to improve scala-
bility and flexibility of the software. The presented sys-
tem uses a simulation model to do data farming for sup-
porting points, which are then presented as training data 
set to machine learning methods like neural networks. 
The resulting trained system is able to respond to the user 
queries within moments. 

Although the system already works as a proof of con-
cept, the accuracy is still not where it would need to be to 
be applicable in an industrial setting. We are working on 
two approaches to improve prediction quality for all 
points. 

First, we have seen during our manual configuration 
of the the neural network that network architecture and 
training parameters tend to have a big impact on result 
quality. With our improved training speeds, we are plan-
ning to improve prediction quality by automating the pro-
cess of finding a good network configuration. There are 
several promising approaches to do this. We are currently 
working on adding a neuroevolution (A broader explana-
tion can be found in [11]) service to our system. As an 
alternative, we are also looking at Auto-Keras (cf. [12]). 

The second approach targets the somewhat infrequent 
supporting points within our training data set. Since add-
ing additional levels to factors drastically increase the 
number of total points to calculate for a full design, 
simply adding more levels would be a very computation 
intensive approach.  

Instead, we are seeking to improve the quality of the 
systems response by automatically searching for points 
with bad predictions and adding additional supporting 
points near those points to our training data set. Idealy, 
this would improve prediction quality in those areas and 
therefore for the whole system. 
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