
73

S N E T E C H N I C A L N O T E

NSA-DEVS: Combining Mealy Behaviour and
Causality
Peter Junglas*

Dep. of Engineering “Dr. Jürgen Ulderup”, PHWT Vechta/Diepholz, Schlesierstr. 13a, 49356 Diepholz, Germany; 1
*peter@peter-junglas.de

SNE 31(2), 2021, 73-80, DOI: 10.11128/sne.31.tn.10564

Received: January 20, 2021 (Selected ASIM SST 2020 Postconf.

Publ.), Revised May 24, 2021; Accepted: May 31, 2021

SNE - Simulation Notes Europe, ARGESIM Publisher Vienna,

ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Abstract. The RPDEVS (“Revised PDEVS”) formalism has
been introduced to allow for a simple description of
Mealy-type components that behave consistently. This
made it necessary to change the way the simulator han-
dles event chains. Using a simple example model we
show that the proposed algorithm has serious problems
with the resulting sequence of concurrent events. There-
fore we introduce NSA-DEVS, a variant formalism that
is inspired by ideas from non-standard analysis (NSA). It
uses infinitesimal time delays to make a natural ordering
of concurrent events easy, without the need to fix lots of
additional parameters. As proof of concept we describe
the example model in NSA-DEVS and implement it in a
suitably twisted RPDEVS simulator.

Introduction
More than 40 years after its invention the DEVS for-

malism [1] and its most popular variant PDEVS [2] are

now standard tools for the mathematical modeling of

discrete-event systems. If in doubt a quick search for

“DEVS formalism” in Google scholar reveals over 6000

papers and shows that the seminal book of Zeigler et al.

[3] has been cited about 7000 times.

Looking at widely-used simulation environments,

the picture changes completely: Neither Arena [4] nor

SimEvents [5] use DEVS internally or even mention

it in their documentation. And though Mathworks has

based its redesign of SimEvents on a proper modeling

formalism, the developers didn’t choose DEVS for this

purpose [6].

On the other hand there are quite a few free sim-

ulation programs available that use DEVS or one of its

variants for the definition of atomic components and the

implementation of coupled systems [7]. But all of them

twist the original DEVS formalism to make it a suitable

foundation for a concrete simulation environment [8].

Some of the problems are just minor nuisances, like the

addition of input and output ports, others are of a more

fundamental nature.

Probably the most serious flaw has been named by

Preyser et al., who show in [9], that PDEVS has diffi-

culties modeling certain Mealy-type components: The

necessary introduction of transitional states leads to de-

lays that change the expected order of concurrent events

and the behaviour of subsequent components. This is a

serious drawback, if one wants to define a library of

reusable blocks. Therefore the PDEVS formalism has

been altered in [10] to allow for Mealy-like behaviour

thereby introducing the revised version RPDEVS.

To make this work, one has to change the way chains

of concurrent events are handled, which is a complex

and possibly dangerous endeavour. Even after the care-

ful analysis in [10] and the formal definition of an

RPDEVS simulator [11] the question remains, whether

the proposed scheme is capable of handling the subtle

problems that appear in practical modeling tasks.

To further investigate the status of RPDEVS we will

introduce a simple example that is plagued by a com-

plex causal structure of concurrent events, and imple-

ment it in PDEVS and RPDEVS, using freely available

simulators.

Since the results show that RPDEVS has problems

with the example model, we will propose a different

way of how to cope with concurrent event chains, which

uses concepts of non-standard analysis [12]. After a

short introduction to the basic mathematical ideas, we

will define the new DEVS variant NSA-DEVS, which

combines the ideas of RPDEVS with a more robust

method to handle concurrent events.

SNE 31(2) – 6/2021

74

Junglas NSA-DEVS: Combining Mealy Behaviour and Causality

Finally we will implement the standard example in

NSA-DEVS and find that it can handle this model in

a clear-cut, easily understandable way. This supports

the assumption that NSA-DEVS might be a good ba-

sis for concrete modeling and simulation environments,

since it combines the security in the handling of con-

current events from PDEVS with the modeling power

of RPDEVS.

1 Singleserver - a Fundamental
Example

The singleserver example used in the following consists

of a generator that creates entities in fixed time intervals

tG = 1 and sends them to a queue, which is connected to

a simple server with fixed service time tS = 1.5. Entities

leaving the server are terminated (cf. Fig. 1). Addition-

ally the queue and the server output the current number

of entities stored.

gen queue termserver

bl

in in inout

blnq
ns

outout

Figure 1: Example model singleserver.

Though this is probably by far the most studied sys-

tem in discrete modeling, it is not trivial at all, espe-

cially if you try to model it with PDEVS. In the funda-

mental book of Zeigler et al. [3] a queue-server combi-

nation is modelled as one atomic component. But try-

ing to create separate atomic models for a queue and

a server is much more challenging due to the complex

interaction of the two components.

The server can be implemented easily using the state

diagram shown in Figure 2: When an entity E arrives,

the server outputs the new blocking status and changes

to the “busy” state. After the service time, it outputs

the entity and the changed blocking status and returns

to the “idle” state. In this and the following figures the

annotation (A)B/C on an arrow means: If condition A
is true and input is B, then the output is C and the state

changes. Any of the three parts may be missing.

The behaviour of the queue is much more compli-

cated, it is modelled here using the state diagram in Fig-

ure 3. The four states are distinguished by the size of the

queue (“empty”, “queuing”) and the blocking status at

idle busy

ta = ta = tS

E / bl=1

/ E, bl=0

Figure 2: State diagram of the server component.

the output of the queue (“free”, “blocked”). The only

internal transitions occur in the state “queuing free”,

they output an entity and have zero transition time. All

other transitions are external, triggered by an incoming

entity or a new blocking status.

.

ta = 0

empty
free

queuing
free

ta = inf

empty
blocked

queuing
blocked

ta = inf ta = inf

bl=1 /

bl=0 /

E /

(nq=1) / E

E /

bl=1 /

bl=0 /

E /

(nq>1) / E

E /

X

Figure 3: State diagram of the queue component.

This implementation of a queue uses a push strategy,

where entities proceed as far as possible, until they are

blocked. This is the basic idea behind many discrete

event simulators, from GPSS to SimEvents. Alterna-

tively, one could use a pull strategy, where entities only

proceed, when they are called by a component. This

would lead to a slightly simpler implementation of our

example. It is an interesting question, whether pull or

push strategies are better suited for complex simulation

environments, but not the point of this investigation.

The simulation of the complete singleserver model

leads to complicated cascades of concurrent events. For

a typical example assume that the queue is in state

“queuing blocked” with nq > 1 and the server gets

ready, going from “busy” to “idle”. It sends its new

blocking status bl = 0 to the queue, which now tran-

sitions to “queuing free”. Using an internal transition

SNE 31(2) – 6/2021

75

Junglas NSA-DEVS: Combining Mealy Behaviour and Causality

the queue outputs an entity, which arrives at the server,

leading to a transition to “busy” and the sending of

bl = 1 back to the queue. Now the queue has to change

to “queuing blocked”, before another entity is output via

an internal transition.

2 Implementing Singleserver
with PDEVS

The fundamental component in the PDEVS formalism

is an atomic PDEVS [3]. It is formally described by

an 8-tuple < Xb,S,Y b, ta,δint ,δext ,δcon,λ > with the

meanings

Xb set of possible input bags

S set of states

Y b set of possible output bags

ta : S → [0,∞] time advance function

δint : S → S internal transition function

δext : Q×Xb → S external transition function

δcon : S×Xb → S confluent transition function

λ : S → Y b output function

where an element of Q combines a state and the time

since the last internal transition, i.e.

Q := {(s,e)|s ∈ S,e ∈ [0, ta(s)]}.

It is important to note, especially for the present discus-

sion, that the output function λ is only called directly

before an imminant internal transition.

Atomic components can be combined to form a cou-
pled PDEVS, which is formally defined by the set of

components and their internal and outwards connec-

tions.

To implement the singleserver example in PDEVS

one has to augment the state diagrams with transitional

states that allow to produce output values, when an in-

put appears, i. e. at an external event. For the server

component (Fig. 2) one additional state is sufficient, and

the definition of the transition, output and time advance

functions is straighforward.

The definition of the queue component (Fig. 3) is

much more complicated, its extended state diagram

contains five additional states and a lot of corresponding

additional transitions (Fig. 4). The purpose of the four

states “n out A/B/C/D” and their corresponding transi-

tions is evident: Whenever an entity arrives, the length

of the queue changes, and a corresponding output value

has to be sent.

ta = 0

empty
free

queuing
free

ta = inf

empty
blocked

queuing
blocked

ta = inf ta = inf

bl=1 /

bl=0 /

E /

(n=1) / E,n

E /

bl=1 /

bl=0 /

E /

(n>1) / E,n

X

E /

n out A

ta = 0

/ n

n out B

ta = 0

/ n

n out D

ta = 0/ n

n out C

ta = 0/ n

n out E

ta = 0
/ n

bl=1 /

Figure 4: State diagram of the queue component with

additional transient states.

But the new states lead to further complications, in

particular for the definition of the external transition

function δext : When a new entity and a new block-

ing status arrive at the same time, the state has to pro-

ceed two “steps” at once to reach a necessary transi-

tional state. E. g. when the queue is in state “queueing

blocked” and a new entity arrives together with bl = 0,

the new entity is stored and the new state is “n out C”.

Special care is needed for the definition of the con-

fluent transition function δcon. Usually it first calls the

internal, then the external transition function, so that the

entity at the head of the queue leaves, before the new

entity is stored. But if a new value bl = 1 arrives, only

the external transition function is used, so that no entity

leaves the queue. This leads to a change of the queue

size without a call of the internal transition function,

therefore one needs another transitional state “n out E”

to produce the corresponding output.

If one has taken proper care of all complications

the complete model can be implemented in a PDEVS

simulation environment like MatlabDEVS [13], where

a simuation run will produce the expected results shown

in Fig. 5. The “spikes” in the plots of the queue length

and the server allocation are remnants of the concurrent

event chains, where state variables have different values

at the same time instant.

SNE 31(2) – 6/2021

76

Junglas NSA-DEVS: Combining Mealy Behaviour and Causality

0 2 4 6 8 10
0

5

10
Generator out

0 2 4 6 8 10

0

1

2

3

4

Queue n

0 2 4 6 8 10
0

2

4

6

Queue out

0 2 4 6 8 10
-0.5

0

0.5

1

1.5
Server n

0 2 4 6 8 10
0

2

4

6
Server out

Figure 5: Simulation results of the PDEVS model.

3 Trying to Implement
Singleserver with RPDEVS

To make the direct definition of Mealy components pos-

sible, Preyser et al. define RPDEVS in [10] as fol-

lows: An atomic RPDEVS is a simplified version of

the atomic PDEVS, which contains only a generic tran-

sition δ . Moreover its output funtion λ is called at

any kind of event and depends on the state and the in-

put. Formally an atomic RPDEVS is given by a 6-tuple

< Xb,S,Y b, ta,δ ,λ > with the meanings

Xb set of possible input bags

S set of states

Y b set of possible output bags

ta : S → [0,∞] time advance function

δ : Q×Xb → S state transition function

λ : Q×Xb → Y b output function

and the Q defined above.

A coupled RPDEVS is formally defined as in

PDEVS, describing the subcomponents and the inter-

nal and outward connections. But its behaviour is dif-

ferent, in order to cope with possible Mealy compo-

nents: The call of a λ -function produces outputs that

are routed to other components, where they in turn may

lead to a call of their λ -functions, creating cascades of

λ steps, which might change already processed input

values. In such a case earlier input values are withdrawn

and replaced by new ones (or cancelled completely).

For models without algebraic loops these λ iterations

will finally lead to a situation, where all input bags are

constant. Only then a single δ call is issued.

The singleserver example can be formulated in

RPDEVS much easier than in PDEVS, since one can

stick to the simple state diagrams shown in Fig. 2 and

Fig. 3. This allows to specify the atomic components

in a straightforward way by identifying the event type

inside the generic δ function according to the input bag

and the elapsed time. Using the PowerRPDEVS simu-

lator [14], the components can be easily implemented

in C++. Finally one can construct the complete single-

server example in a graphical environment.

Though all components work in simple test models,

the simulation of the singleserver model aborts at t = 1.

The error message states that the maximum number of

λ steps has been reached and that the model is illegiti-

mate due to a non-resolvable algebraic loop.

The reason for this behaviour becomes clear, when

one analyses the internal chain of events in the simu-

lator at t = 1 (cf. Table 1): The queue starts in state

“empty free” and changes to state “queuing free” in line

3, while the server remains in state “idle”. In line 4

the queue outputs its entity that is routed to the server,

which now sends the blocking status bl = 1 to the queue.

The basic problem now happens in line 6: The λ func-

tion of the queue is called again, now with bl = 1 in

the input bag. The entity that has been sent before, is

now blocked and has to be retrieved. This in turn leads

to the withdrawal of the bl=1 message from the server,

therefore the queue tries again to output its entity in line

7. The situation is now identical to line 4 and repeats,

until it is stopped, when the maximal count of λ steps

is reached.

No. Block Type Out Q in Q bl S in
1 Gen λ E1 E1

2 Que λ
3 Que δ
4 Que λ E1 E1

5 Srv λ bl=1 1

6 Que λ
7 Que λ E1 E1

Table 1: Events at t = 1.

The basic idea behind the state diagram in Fig. 3

was, that a component changes its state immediately af-

ter sending its output message. Therefore new input

messages, that arrive due to event cascades, find the

SNE 31(2) – 6/2021

77

Junglas NSA-DEVS: Combining Mealy Behaviour and Causality

component in a changed state. But the repeated exe-

cution of λ steps without any state changing δ steps in

RPDEVS leads to a completely different behaviour.

Of course, this doesn’t mean that it is impossible to

implement working queue and server components with

RPDEVS: One could mimic the PDEVS behaviour and

add additional transitional states or one could change

the internal behaviour altogether and use a different

scheme based on another state diagram. But a simple

direct implementation of Fig. 3 doesn’t work.

From the point of view of RPDEVS the singleserver

is faulty, containing an algebraic loop. On the other

hand the behaviour described in Fig. 3 is quite simple

and can be easily implemented in PDEVS. Zeigler knew

very well, why he didn’t include Mealy-type behaviour.

But if one insists on it for the sake of better modularity,

one has to think over the simulator behaviour, or better:

the abstract model behind it.

4 Extending the Time Line by
Infinitesimals

Modeling experience teaches us that a mathematical

problem in the description or simulation of a model

often has its roots in an oversimplification of the sys-

tem one wants to describe. This is of course true here:

In real world systems small delay times are inevitable,

whenever a message is sent or a state changes. If one

includes them in the model description, the problems

with cascades of concurrent events disappear immedi-

ately. But the price one has to pay for this solution,

is high: Such a model contains a huge amount of de-

lay times, whose values are not known, often not even

their order of magnitude. In addition, the behaviour of

the model gets much more complicated on a fine time

scale, though one often is not interested in these details.

What we are looking for, are time steps that are

larger than zero, but so small that they can be ignored

for most purposes. Furthermore their actual size should

not matter, even though we need different sizes of such

steps. This is actually exactly what one commonly de-

notes as infinitesimals. Hewitt [15] and Robinson [16]

have shown that one can implement such ideas in a

mathematically rigorous manner. Therefore we will

shortly introduce the basic concepts and use them af-

terwards for a new definition of discrete event systems.

A precise and pedagogical introduction to the mathe-

matical ideas and applications can be found in [12].

The set ∗
R of hyperreals is a totally ordered field

that includes the ordinary real numbers. In addition it

contains an infinitesimal element ε > 0 that is smaller

than any positive real number. Using the field axioms

one gets additional infinitesimals like 2ε,−ε,ε2. Each

real number r is surrounded by an infinite cloud r+ δ
with infinitesimal δ , its halo. On the other end ∗

R con-

tains ω := 1/ε , which is unlimited, i. e. larger than any

real number. Again one has lots of unlimited numbers

like 2ω,−ω,ω2, which are all surrounded by clouds

ω + r + δ with real r and infinitesimal δ , called their

galaxy. Each limited element h ∈ ∗
R, i. e. an element

of the galaxy of 0, can be uniquely written as h = r+δ
with real r and infinitesimal δ . r is called the standard
part st(h) of h.

The actual construction of ∗
R relies on heavy ma-

chinery from set theory and logic, like ultrafilters and

the axiom of choice. From our current point of view the

main reason for an explicit construction is to convince

oneself that such a set exists in a precise mathemati-

cal way. Hyperreals have been used to reformulate the

usual analysis with definitions that closely mimic the

original ideas of Leibniz, an endeavor commonly des-

ignated as nonstandard analysis. This often leads to

simple and intuitive proofs – once one accepts the basic

properties of ∗
R.

It is impossible to implement real numbers in a com-

puter, much less hyperreals. For our purposes it is suffi-

cient to use pairs (t,r) of floating point numbers, which

correspond to the hyperreal t + rε , where t could be the

floating point value ∞ to include infinite time delays in

passive states. This implementation looks similar to the

concept of superdense time [17] that uses a pair of a

real time value and a natural number for ordering of

concurrent events. But the structure of the hyperreals

is much richer, and the reasoning behind their use is

more intuitive and better adapted to the problems that

are adressed here.

5 Definition of NSA-DEVS

We will now use non-standard analysis (“NSA”) to get

rid of concurrent events by defining NSA-DEVS, a vari-

ant of RPDEVS. The basic idea is to forbid transient

states, i. e. transition times are always > 0, though they

may be infinitesimal. Furthermore we assume that the

transport of data between components always takes a

certain amount of time. Therefore we include an input

delay τ > 0 between the arrival of input and the call of

the output function.

SNE 31(2) – 6/2021

78

Junglas NSA-DEVS: Combining Mealy Behaviour and Causality

An atomic NSA-DEVS is given by a 7-tuple

< Xb,S,Y b,τ, ta,δ ,λ >, where τ ∈ ∗
R>0 is the input

delay time. All other elements have the same meaning

as in RPDEVS, but the definitions of the functions are

changed to

Q := {(s,e)|s ∈ S,e ∈ (0, ta(s)]}
ta : S → (0,ω]
δ : Q×Xb → S
λ : Q×Xb → Y b

The intervals (0, ta(s)] and (0,ω] are meant as subsets

of the hyperreals ∗
R.

When an external event, i.e. an input x ∈ Xb, oc-

curs at time t, the output function λ is called at t + τ ,

followed by an immediate call of δ . An internal event,

i.e. an imminent state change after a waiting time ta(s),
leads to a direct (undelayed) call of λ and δ . A con-

current incidence of a (delayed) external event and an

internal event can be detected by both functions directly

and doesn’t need a special mechanism.

A coupled NSA-DEVS is defined as in RPDEVS and

PDEVS, outputs are transported as usual. Due to the

(infinitesimal) delays a strict Mealy-type behaviour is

impossible, therefore special provisions like the iterated

λ calls in RPDEVS are unnecessary, each λ call is fol-

lowed immediately by the corresponding δ call.

Formally we have introduced a lot of additional (in-

finitesimal) parameters, but a simulator might be able

to free the user from this burden by using a simple de-

fault value of τ = ε for all components. Furthermore

the transition times of previously transient states could

be set to ε in many cases. It remains to be seen, whether

such a simple scheme actually works in standard situa-

tions. In the case of the singleserver example manual

finetuning is necessary, as will be shown below. On the

other hand, if one insists on a special ordering of (ide-

ally) concurrent events, one can use the infinitesimal

delays to achieve any order in a quite intuitive way.

Since one is generally not interested in the infinites-

imal behaviour, an NSA-DEVS simulator should show

state changes and output values only at the end of an

infinitesimal cascade, i.e. directly before a finite (non-

infinitesimal) step. All short-lived states and overwrit-

ten outputs are then internal to the simulator. This be-

haviour is somewhat similar to that of an ODE solver

that uses microsteps internally for stepsize adaptation,

but outputs only completed steps. Optionally it should

be possible to replace the value ε by a user supplied

small real number for debugging purposes or to analyse

the behaviour at the infinitesimal scale.

6 Implementing Singleserver
with NSA-DEVS

To adapt the RPDEVS description of singleserver to

NSA-DEVS, one needs two modifications: All compo-

nents get an additional parameter τ with a default value

of ε , and the queue component gets a further parameter

tD, which defines the transition time of the state “queu-

ing free”, again with a default value of ε .

Until a proper NSA-DEVS simulator is available,

one can use the PowerRPDEVS simulator to mimic the

behaviour in debug mode, where the infinitesimal value

ε is set to a small number (ε = 10−4 in the following ex-

amples). To this end one creates a simple delay compo-

nent, basically a simple server, and adds it before every

input of each component. All delay times are set to the

value of τ of the corresponding component. In particu-

lar, the delay times of several inputs of one component

have to be identical to properly implement the NSA-

DEVS behaviour defined above. These delays guaran-

tee that no λ iterations occur, therefore the simulator

works as required by the NSA-DEVS definition.

-0.5
 0

 0.5
 1

 1.5
 2

 2.5
 3

 0 2 4 6 8 10

QUE n

-0.5

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10

SRV n

 0
 2
 4
 6
 8

 10
 12

 0 2 4 6 8 10

GEN out

 0
 2
 4
 6
 8

 10
 12

 0 2 4 6 8 10

QUE out

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 2 4 6 8 10

SRV out

Figure 6: Simulation results of the NSA-DEVS model with

default delays.

With these changes the singleserver model runs in

“NSA-DEVS debug mode”, the results are shown in

SNE 31(2) – 6/2021

79

Junglas NSA-DEVS: Combining Mealy Behaviour and Causality

Fig. 6. But they are not as expected: At t = 4 the entity

4 joins entity 3 in the queue and both leave the queue

immediately. After the service time entity 3 leaves the

server at t = 5.5, but entity 4 is lost. At first thought this

problem seems to be related to the nullserver problem

described in [18]: The delay at the input of the server

acts as additional storage and accepts entity 4 though

the server is busy.

While this is true, the real cause of the problem lies

elsewhere. Even in a correct implementation of NSA-

DEVS, where the delay is implemented directly in the

simulator, entity 4 would get lost! This is due to the

delay of the “busy” message from the server: Before

it arrives, the queue has already output the next entity

according to the internal transition shown in Fig. 3. This

is an example, where it is not sufficient to use the default

value ε for all infinitesimal delays.

In order to obtain the desired causal ordering of

“concurrent” events, a fine tuning of the delays is nec-

essary. One has to guarantee that the message from

the server arrives, before the queue sends a new en-

tity. Therefore one sets the transition time tD of the

“queuing free” state to a value larger than the sum of

the two transport delays at the inputs of the server and

the queue. Choosing td = 2.1ε solves the problem and

the results are as expected. They coincide with the re-

sults of the PDEVS implementation (cf. Fig. 5), in-

cluding the “spikes”. Here they have a small, but finite

width, like it should be in a proper NSA-DEVS simula-

tor in debug mode. In standard mode output values that

change in an infinitesimal time are suppressed and only

the last values are shown.

7 Conclusions

Like RPDEVS, the variant NSA-DEVS proposed here

allows for simple and consistent handling of Mealy-

type behaviour. Furthermore it seems to solve the prob-

lems of RPDEVS with chains of concurrent events.

Therefore it possibly could be a working basis for a con-

crete simulation environment.

The drastic measure of prohibiting real “concur-

rency” for causally ordered events generally causes se-

rious side effects by introducing lots of additional time

parameters. This is mitigated here by the introduc-

tion of infinitesimal delays used mainly internally and

whose actual values do not matter. That such a scheme

is mathematically sound has been shown by referring to

the results of non-standard analysis.

A certain amount of fine-tuning can still be neces-

sary to ensure a requested causal ordering. But this is

not a speciality of NSA-DEVS: The proper behaviour

of the system has to be modelled anyhow, in PDEVS

this is done by a careful design of the confluent transi-

tion function. In case of causally unrelated events, one

could twist some of the infinitesimal delay parameters

to ensure a certain temporal order, if requested.

At first sight NSA-DEVS seems to destroy the po-

tential of parallel execution. But this is not necessarily

the case: For unrelated events one simply chooses iden-

tical delays – usually just ε –, so that they still occur at

the same time t ∈ ∗
R and can be executed in parallel.

Only causally depending events have different times, so

that their order is fixed – as it should be. Moreover,

the elimination of many transitional states in RPDEVS

and NSA-DEVS could provide more opportunities for

parallel execution than PDEVS.

The difference between RPDEVS and NSA-DEVS

is due to the fact that they address different problems:

RPDEVS copes with concurrent events that are causally

unrelated, as they appear in models using Mealy-type

components. In contrast NSA-DEVS deals primarily

with concurrent events that are causally related, i. e.

have a logical order. While RPDEVS offers a com-

pletely internal solution for the first problem, similar to

the internal event loop in Modelica [19], NSA-DEVS

reveals internal details to the modeller, which can be

helpful in some cases, but might be confusing in others.

Whether this approach is feasible in complex models,

has to be seen in future studies.

This is only a first step in the analysis of a new

DEVS-based scheme that could possibly be used for

simulation environments and the definition of univer-

sally applicable component libraries. The next step

would be the definition and implementation of a proper

simulator. This could be followed by a thorough inves-

tigation of standard examples with complex event cas-

cades, such as a switch that routes entities according

to an input value [9] or models of digital circuits con-

taining flip-flops [20, 21]. Finally one could try to im-

plement a complex case study like the ARGESIM C22

benchmark [22] as a further step to investigate the prac-

tical usefulness of the proposed scheme.

Acknowledgement

The author gratefully acknowledges clarifying discus-

sions with Christina Deatcu, Thorsten Pawletta and

Franz Preyser.

SNE 31(2) – 6/2021

80

Junglas NSA-DEVS: Combining Mealy Behaviour and Causality

References

[1] Zeigler BP. Theory of Modeling and Simulation. New

York: Wiley-Interscience, 1st ed. 1976.

[2] Chow ACH. Parallel DEVS: A Parallel, Hierarchical,

Modular Modeling Formalism and its Distributed

Simulators. Transactions of The Society for Computer
Simulation International. 1996;13(2):55–67.

[3] Zeigler BP, Praehofer H, Kim TG. Theory of Modeling
and Simulation. San Diego: Academic Press, 2nd ed.

2000.

[4] W David Kelton NBZ Randall P Sadowski. Simulation
with Arena. New York: McGraw-Hill, 6th ed. 2015.

[5] Clune MI, Mosterman PJ, Cassandras CG. Discrete

Event and Hybrid System Simulation with SimEvents.

In: 8th International Workshop on Discrete Event
Systems. Ann Arbor. 2006; pp. 386–387.

[6] Li W, Mani R, Mosterman PJ. Extensible discrete-event

simulation framework in SimEvents. In: Proc. 2016
Winter Simulation Conference. Arlington: IEEE. 2016;

pp. 943–954.

[7] Franceschini R, Bisgambiglia PA, Touraille L,

Bisgambiglia P, Hill D. A survey of modelling and

simulation software frameworks using Discrete Event

System Specification. In: Proc. of 2014 Imperial
College Computing Student Workshop. Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik. 2014; pp.

40–49.

[8] Goldstein R, Breslav S, Khan A. Informal DEVS

conventions motivated by practical considerations. In:

Proc. of Symposium on Theory of Modeling &
Simulation – DEVS Integrative M&S Symposium. 2013;

pp. 10:1–10:6.

[9] Preyser FJ, Heinzl B, Raich P, Kastner W. Towards

Extending the Parallel-DEVS Formalism to Improve

Component Modularity. In: Proc. of ASIM-Workshop
STS/GMMS. Lippstadt. 2016; pp. 83–89.

[10] Preyser FJ, Heinzl B, Kastner W. RPDEVS: Revising

the Parallel Discrete Event System Specification. In:

9th Vienna Int. Conf. Mathematical Modelling. Wien.

2018; pp. 242–247.

[11] Preyser FJ, Heinzl B, Kastner W. RPDEVS Abstract

Simulator. SNE Simulation Notes Europe. 2019;

29(2):79–84. doi: 10.11128/sne.29.tn.10473.

[12] Goldblatt R. Lectures on the Hyperreals. New York:

Springer. 1998.

[13] Pawletta T, Deatcu C, Pawletta S, Hagendorf O,

Colquhoun G. DEVS-based modeling and simulation in

scientific and technical computing environments. In:

Proc. of DEVS Integrative M&S Symposium (DEVS’06)
- Part of the 2006 Spring Simulation Multiconference
(SpringSim’06). Huntsville/AL, USA: D. Hamilton.

2006; pp. 151–158.

[14] Preyser F. PowerRPDEVS on sourceforge.

URL https://sourceforge.net/projects/
powerrpdevs/

[15] Hewitt E. Rings of real-valued continuous functions I.

Transactions of the American Mathematical Society.

1948;64(1):45–99.

[16] Robinson A. Non-standard Analysis. Amsterdam:

North-Holland. 1966.

[17] Sarjoughian HS, Sundaramoorthi S. Superdense time

trajectories for DEVS simulation models. In: SpringSim
(TMS-DEVS). 2015; pp. 249–256.

[18] Austermann L, Junglas P, Schmidt J, Tiekmann C.

Conceptional problems of transaction-based modeling

and its implementation in SimEvents 4.4. SNE
Simulation Notes Europe. 2017;27(3):137–142. doi:

10.11128/sne.27.tn.10383.

[19] Modelica Association. Modelica R© – A Unified
Object-Oriented Language for Systems Modeling,
Language Specification Version 3.5.

URL https:
//modelica.org/documents/MLS.pdf

[20] Fiedler C, Preyser FJ, Kastner W. Simulation of

RPDEVS Models of Logic Gates. SNE Simulation
Notes Europe. 2019;29(2):85–91. doi:

10.11128/sne.29.tn.10474.

[21] Junglas P. Pitfalls using discrete event blocks in

Simulink and Modelica. In: Proc. of ASIM-Workshop
STS/GMMS. Lippstadt. 2016; pp. 90–97.

[22] Junglas P, Pawletta T. Non-standard Queuing Policies:

Definition of ARGESIM Benchmark C22. SNE
Simulation Notes Europe. 2019;29(3):111–115. doi:

10.11128/sne.29.bn22.10481.

SNE 31(2) – 6/2021

