
65

S N E T E C H N I C A L N O T E

Orthotropic Non-hysteretic Permeability Model as
a Lookup-table for FEA

Robert Courant*, Jürgen Maas

Mechatronic Systems Laboratory, Technische Universität Berlin, 10623 Berlin, Germany
*robert.courant@emk.tu-berlin.de

SNE 31(2), 2021, 65-72, DOI: 10.11128/sne.31.tn.10563

Received: May 23, 2021 (Selected ASIM SST 2020 Postconf.

Publ.), Accepted: May 31, 2021

SNE - Simulation Notes Europe, ARGESIM Publisher Vienna,

ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Abstract. Within this paper, we present an appropriate
approach to prepare the data of orthotropic nonlinear
soft magnetic materials for use in finite element analyses.
Based on the co-energy density, an elliptic model for the
interpolation between the principal directions is derived
and extended to laminated materials. Instead of adapting
the FE-code to incorporate the fundamental equations, a
workflow is proposed to generate a lookup-table of the
anisotropic nonlinear permeability which can be easily
integrated in FE-programs like COMSOL Multiphysics. The
modelled behaviour is shown for typical material classes
and the lamination model is numerically validated.

Introduction
Soft magnetic materials are essential for almost all mag-

netic circuits. They play an important role in electro-

motors and transformers to guide the flux to guarantee an

efficient operation[1],[2]. For the dimensioning of those

circuits, accurate models of their magnetic behaviour

are necessary. The most important characteristic is the

relation between magnetic field strength H and magnetic

flux density B. All ferromagnetic materials show a sat-

uration at high fields, therefore a nonlinear approach

has to be chosen. As the nonlinear problems are almost

impossible to solve analytically for complex geometries,

magnetic problems are typically computed numerically.

High performance soft magnetic materials often ex-

hibit an anisotropic behaviour. Characteristic examples

are different grain oriented (GO) electrical steels that

show a magnetic easy axis in rolling direction and trans-

verse magnetic hard axes. Consequently, magnetically

anisotropic materials are typically characterised by uni-

axial nonlinear curves Bu,i(Hu,i) in three principal direc-

tions. This experimental characterisation of anisotropic

materials requires sophisticated measurements[3],[4].

Because the flux components influence each other (even

for isotropic materials), for vectors between the principal

directions, a suitable interpolation has to be found. An

extension of the topic are laminated materials, where

non-ferromagnetic layers inhibit the perpendicular flux

more than in plane.

This paper chooses an elliptical approach based

on the co-energy density, which is well known

concept[5],[6]. Key elements are based on the imple-

mentation of [7]. It has to be noted that hysteresis is

not considered here. For magnetic materials, hysteresis

is typically modelled with a JILES-ATHERTON model,

other models like PREISACH or PRANDTL-ISHLINSKI

are also applicable.

Another application of anisotropic magnetic prop-

erties, that attracted the author to the topic in the first

place, are magnetic shape memory alloys, studied for

their shape memory and magnetocaloric effect. These

are indeed described by BH-curves in easy direction and

in the perpendicular hard directions as shown in Figure 1.

Therefore, they are appropriate benchmarking examples

for our model.
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Figure 1: HB- and μr(B)-curves for easy and hard axis of

examined MSMA from [8].

Section 1 introduces the physical background and

motivates the elliptical model. This approach is gener-
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alized for nonlinear orthotropic materials in section 2.

Section 3 extends the model to laminated materials. Be-

cause magnetic anisotropy can be only incorporated as a

relative permeability in the used FE-software COMSOL

Multiphysics, the model is prepared as a look-up table of

the nonlinear permeability dependent on the flux density

B. In section 4, our model is analysed for different ex-

ample materials. The laminate is numerically validated

in section 5.

1 Constitutive Equations

Electromagnetic problems are described by

MAXWELL’s equations. There, two quantities

each are defined for the electric and magnetic domain,

one for the excitation and one for the effect. In the

magnetic domain, these are the magnetic field strength

H and the magnetic flux density B. These two vector

fields are coupled by generally nonlinear material

properties

B = B(H). (1)

The co-energy density of the magnetic field can be de-

rived by

w′(B) =
∫ B

0
H · dB̃. (2)

In the easiest case of vacuum this is

w′(B) =
B2

2μ0
(3)

which leads to the linear coupling of B and H

B = μ0H. (4)

For general linear materials, this is extended using Ein-

stein notation to

B j = μ0μr,i jHi (5)

with the relative permeability matrix μr,i j. In most cases,

the relative permeability is assumed orthotropic and the

matrix is thus

1

μr,i j
=

⎛
⎜⎜⎝

1
μr,x

0 0

0 1
μr,y

0

0 0 1
μr,z

⎞
⎟⎟⎠ . (6)

Figure 2: Contour lines of the magnetic co-energy for a linear

isotropic material with μr,iso = 5000.

Figure 3: Contour lines of the magnetic co-energy for a linear

anisotropic material.

The co-energy density for this case is

w′(B) =
∫ B

0

1

μ0μr,i j
B̃ j · dB̃i

=
B2

x

2μ0μr,x
+

B2
y

2μ0μr,y
+

B2
z

2μ0μr,z
. (7)

The contour surfaces w′ = const. of this are concentric

ellipsoids. This is why an elliptic model is used in sec-

tion 4 to model anisotropic nonlinear functions. Figure 2

depicts the contour surfaces in 3D or contour lines in 2D

for a linear isotropic material with μr,iso = 5000. The

contour surfaces are concentric spheres. Figure 3 shows

the expected ellipsoids for a linear anisotropic material

with μr,x = 5000 and μr,y = μr,z = 2000.

Nonlinear isotropic materials have equally oriented

field and flux, where the absolute value is described by

a nonlinear relation as

B = Biso

(|H|) H
|H| . (8)

The use of the absolute value produces a spherical in-

terpolation between the directions. Although the shown

relation B(H) is the more comprehensible, for numerical
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validations the opposite formulation H(B) is preferable,

because in most FE-programs, the problem is solved

using the auxiliary vector potential A that is linked to

the flux density by B = rot(A). Accordingly, in section 3

we will setup the lookup-table for the nonlinear function

of μr dependent on B in the form of

(Bx|By|Bz|μr,x|μr,y|μr,z). (9)

2 Elliptic Interpolation

The interpolation for nonlinear orthotropic materials has

to fulfil three conditions. Firstly, it has to be a convex

function, which translates to convex contour lines in

2D or surfaces in 3D. Secondly, the interpolation has

to match the uniaxial nonlinear curves it is fitted to. Fi-

nally, the approach has to match the elliptical model

of the co-energy density as shown in (7) for linear or-

thotropic magnetic materials. An obvious choice, that

meets the requirements, is again an elliptical model of

the co-energy density w′(B), where the half-axes in all

directions of the contour surface for each co-energy den-

sity w′ are determined by the corresponding flux density

Bu,i(w′) of the uniaxial measurements.

These measurements are typically provided as a table

(Hu,i|Bu,i). The co-energy densities can be numerically

integrated according to (2). From the extended table

(Hu,i|Bu,i|w′) a function Bu,i(w′) can be interpolated. For

each w′, the contour surface is described by

(
Bx

Bu,x(w′)

)2

+

(
By

Bu,y(w′)

)2

+

(
Bz

Bu,z(w′)

)2

=1. (10)

Figure 4 illustrates the two-dimensional case with a

contour line. The interpolation scheme is to generate

preferably equally spaced sample points of the ellipsoids

for each co-energy density (Bx|By|Bz|w′). These values

can be interpolated to a function w′(Bx,By,Bz).

By

Bx

By

Bu,y(w′)

Bx Bu,x(w′)

contour line for w′

Figure 4: 2D representation of the elliptic interpolation.

3 Lamination

Laminated magnetic materials could be modelled with

their full geometry as shown in section 5. Due to the

thin layers, especially of the non-magnetic insulation,

an otherwise unnecessarily fine mesh is required which

increases the computational burden. Therefore, for most

applications a homogenised material model suffices. The

insulation material 2 is non-ferromagnetic μr = 1. The

stacking factor f is the volume ration of the ferromag-

netic material 1 to the overall volume. The sheets are

thin, a change in the field from one sheet to the next can

be neglected. Without loss of generality, the sheets are

assumed to be in the xy-plane and stacked in z direction.

At interfaces, the normal component of the flux density

is continuous, therefore the homogenized flux density is

Bz = B1,z = B2,z. (11)

The homogenized flux density in the xy-plane is con-

structed by a mixing law

Bx = f B1,x +(1− f )B2,x

By = f B1,y +(1− f )B2,y. (12)

The homogenized co-energy density w′
lam can be calcu-

lated as a weighted sum of that of the ferromagnetic

material w′
1(B1,x,B1,y,B1,z) from the interpolation and

that of vacuum from (3) and is dependent on the homog-

enized flux density and that in the insulation

w′
lam

(
Bx,By,Bz,B2,x,B2,y

)
= f w′

1

(
1

f

(
Bx − (1− f )B2,x

)
,

1

f

(
By − (1− f )B2,y

)
,Bz

)

+
1− f
2μ0

(
B2

2,x +B2
2,y +B2

z

)
. (13)

For a strong ferromagnetic material 1, B2,x and B2,y can

be neglected and the approximated co-energy density is

w′
lam(B) = f w′

1

(
Bx

f
,

By

f
,Bz

)
+

1− f
2μ0

B2
z . (14)

Relative permeability. The relative permeabilities

for the look-up table (9) could be calculated using (5)

with the field strength H derived according to (2) as

Hlam(B) =
∂w′

lam(B)
∂B

. (15)

SNE 31(2) – 6/2021



68

Courant and Maas Orthotropic Non-hysteretic Permeability Model as a Lookup-table for FEA

While this is physically correct, the numerical derivate

on the interpolated function w′
lam(B) is not very accurate

for a realistic sampling grid. Instead, the permeabil-

ity can be computed from the uniaxial measurements

(Hu,i|Bu,i). Using the analytical derivate of (14), the uni-

axial field strengths of the complete laminated material

can be calculated as

Hlam,u,x(Bu,x) = Hu,x

(
Bu,x

f

)

Hlam,u,y(Bu,y) = Hu,y

(
Bu,y

f

)

Hlam,u,z(Bu,z) = f Hu,z
(
Bu,z

)
+

1− f
μ0

Bu,z. (16)

Now, (5) can be solved for μr,lam,i
(
Bu,z

)
. For the uniax-

ial values, the ferromagnetic material’s contribution to

the co-energy density

w′
an = w′

1

(
Bx

f
,

By

f
,Bz

)
(17)

can be accurately integrated according to (2). While the

overall behaviour of the laminate is dependent on the

complete co-energy density w′
lam, the relative permeabil-

ities of the ferromagnetic material are only dependent

on the new co-energy density w′
an. Therefore, the perme-

abilities of the ferromagnetic material and consequently

of the laminate can be derived from the uniaxial mea-

surements. Consequently, the generation of the look-up

table (9) consists of two steps: First, w′
an(Bx,By,Bz) is

calculated on a grid (Bx|By|Bz), then the permeabilities

(μr,lam,x|μr,lam,y|μr,lam,z) are taken from the uniaxial mea-

surement with the corresponding co-energy density w′
an.

The presented approach yields a far smoother permeabil-

ity than the direct derivation according to (15), especially

at low flux densities.

4 Application
Applying our method to the example depicted in Fig-

ure 3 shows no difference. Therefore, the third condition

is fulfilled. The second condition can be tested by com-

paring μr along an axis from the elliptic model with the

uniaxial input data. The interpolation shall be applied to

a representative GO electrical steel of grade M-6. The

BH-curve is taken from the COMSOL material library,

the results are shown in Figure 5. The rolling direction

has a much higher initial permeability, proportional to

the derivate of the curve, than the transverse direction.

Figure 5: BH-curve of the investigated grain oriented steel

M-6 in both principal directions, detail on the right.

Figure 6: μr,i(Br,i) in all directions, (a) of the investigated GO
steel M-6 and (b) of the laminate with stacking
factor f = 0.995.

At very high fields, the transverse direction gains a slight

advantage. This can also be seen in Figure 6 (a) of the

elliptic model for this material with the rolling direction

in x and the transverse curves used for y and z. The

curves of the uniaxial measurements perfectly match the

model, therefore the second condition is fulfilled.

The contour surfaces or contour lines in a 2D-section

for the elliptical model of this material can be seen in Fig-

ure 7. At lower fields, the difference between the axes is

higher, almost reaching a factor of two, while the results

approximately match at higher fields in accordance with

the input curves. The density of the contour lines in the

2D-section is correlated with the permeability. At low

fields, the permeability is high and the energy doesn’t
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Figure 7: Contour lines of the magnetic co-energy density for

pure grain oriented steel without lamination.

Figure 8: Contour lines of the magnetic co-energy density for

laminated grain oriented steel with f = 0.995.

grow that fast, after the saturation, more energy is needed

to still increase the field. When the axes roughly match

for high fields, the contour lines are almost concentric

circles.

In Figure 8 and Figure 9, laminates of the same grain

oriented steel with different stacking factors are shown.

In Figure 8, the stacking factor is f = 0.995, meaning

that only 0.5% are non-magnetic insulation. Neverthe-

less, for low co-energy densities the flux in z-direction

changed drastically. The former ellipses in 2D and el-

lipsoids in 3D are flattened with an almost parallel top.

Figure 9: Contour lines of the magnetic co-energy density for

laminated grain oriented steel with f = 0.8.

The corresponding relative permeabilities can be seen

in Figure 6 (b). Because of the almost identical cross

section compared to the full GO material, the in-plane

curves x and y are also almost identical between (a) and

(b). In contrast to that relative permeability in stacking

direction z is greatly reduced. With increasing saturation,

the effect of the gap becomes less prominent, until both

transverse directions are almost identical again. The

contour surfaces or contour lines of the ferromagnetic

material’s contribution to the co-energy density w′
an ac-

cording to (17) are almost indistinguishable from the

co-energy density of the pure GO steel without lamina-

tion in Figure 7 and are therefore not separately shown.

This is again because of the almost identical cross sec-

tion.

The effect extends to higher co-energy densities with

the lower stacking factor f = 0.8 in Figure 9. The field

in z is dominated by the insulation even for higher fields

where the ferromagnetic materials begins to reach the

saturation. With the reduced cross section area of the

ferromagnetic material, the flux in x and y is also slightly

reduced and the saturation is reached a bit earlier.

Another example to test our model are magnetic

shape memory alloys (MSMA). Figure 1 shows the char-

acteristic HB-curves for the easy and hard axis. The

results of the elliptic model are depicted in Figure 10.

While the initial permeability of the GO steel was around

40000 in rolling direction, the MSMA only reaches

30. Therefore, higher co-energy densities are evalu-

ated to cover the same flux density range. The MSMA’s

anisotropy is larger than that of the GO steel. The change

in permeability isn’t as high, consequently the contour

lines in 2D are more equally spaced.

Figure 10: Contour lines of the magnetic co-energy density

for MSMA with easy axis in x.
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5 Numerical Validation

To validate the laminated model, a benchmark FE-

simulation is conducted in COMSOL, comparing the

geometrically modelled laminate with an averaged con-

tinuum using the generated look-up table (9) at different

angles with ϕ = 0◦ denoting the flux in stacking direc-

tion z and ϕ = 9◦! for the flux in rolling direction x. For

a decent accuracy, a table with 200 flux densities in each

direction is used. As described in the introduction, mag-

netically anisotropic materials have to be implemented

as relative permeabilities dependent on the flux density

B. In contrast to that, the materials from the included

material library are implemented as isotropic BH-curves

as shown in Figure 5. To exclude errors in the devel-

oped anisotropic model, the comparison is therefore con-

ducted with the isotropic material of GO M-6 in rolling

direction from the same diagram. For the laminate, a

stacking factor f = 0.95 is investigated.

Additionally the relative permeability of the laminate

rotated by ϕ is calculated analytically. The co-energy

density w′
an in the ferromagnetic material is

w′
an(B,ϕ) = w′

an

(
Bsin(ϕ),0,Bcos(ϕ)

)
. (18)

Using the look-up table, the relative permeabilities in

material coordinates μr,i,mat can be determined. Using

those, the magnetic fields in material coordinates are

Hx,mat(B,ϕ) =
Bsin(ϕ)

μr,x,mat

(
w′

an(B,ϕ)
) ·μ0

Hz,mat(B,ϕ) =
Bcos(ϕ)

μr,z,mat

(
w′

an(B,ϕ)
) ·μ0

. (19)

The analytical field in flux direction and the relative

permeability are then

Hana(B,ϕ) = sin(ϕ)Hx,mat + cos(ϕ)Hz,mat

μr,ana(B,ϕ) =
B

Hana ·μ0
. (20)

The model setup in COMSOL is shown in Figure 11.

It consists of four tests, evaluated in the domain between

the orange lines and connected parallelly to the same

excitation. On the left, a material using the look-up-

table of the laminated material is defined (magenta). To

measure the material response at different angles, the

material coordinates are rotated accordingly. This test

of the averaged lamination model is designated "avg".

The other three tests are different implementations of the

Figure 11:Model setup for rotation angle ϕ = 30◦ with used

materials and test designation at the bottom.

Figure 12: Used mesh, detail of the fully modelled laminate

with two elements over the gap.

complete stacked geometry, which is again rotated for

different cases.

The test designated "perm" uses a so-called "low per-

meability gap" between the layers of GO M-6. This

special transition condition is used to model a thin gap

of non-ferromagnetic material on a boundary instead of

in a domain. An advantage is the easier mesh without the

thin domains, the internal behaviour is not automatically

calculated though. While the magnetic flux is computed

correctly, the field strength and energy in the gap have

to be considered manually to calculate the average per-

meability of the laminate.

The last two tests designated "geom" and "orig" use

the fully modelled gaps. This can be seen in the detail of

Figure 12, where the thin blue gap with μr = 1 is shown.

The gaps are identical for both tests, but the isotropic

GO material is modelled differently. While for "geom"

the look-up table is used, "orig" is modelled direly using

the aforementioned BH-curve from Figure 5.
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Figure 13: Resulting fields for an excitation of 7T, orientation
of the laminate left ϕ = 90◦, right ϕ = 3◦!, fluxlines
in light grey.

The excitation has to be connected to the angled tests

in a numerically stable way for a wide flux range. This

is done in three steps. First, a vertical remanent flux is

defined in the green excitation domain, this flux is dis-

tributed through the red almost perfect conductor with

μr = 106. To avoid steep gradients at the interface to the

laminated material especially at ϕ = 90◦ (see Figure 13

on the left), a connection layer with a lower permeability

of μr = 10 is defined and the corners are rounded. After

a short layer of the non-laminated GO material, the test

materials start outside the evaluated inner region. The

necessary air region around the flux guiding geometries

has a reduced permeability of μr = 0.1. While this mag-

netic insulation is unphysical, it helps to concentrate

the flux inside the test domains even at high saturation.

Without this addition, the flux inside the test domains

would be less uniformly vertical. We can therefore be

even more accurate at high flux densities than physical

experiments with the same geometry could be. The mesh

can be seen in Figure 12. While a sufficiently fine mesh

is defined for most domains, special care is required at

the thin gaps in "geom" and "orig". These are done with

a mapped mesh with two elements over the gap as shown

in the detail view.

The local flux densities for two load cases can be

seen in Figure 13. Both show an excitation of 7T which

results in approximately 1.8T in the test domains. There-

fore, the GO steel is already in the beginning saturation

according to Figure 6. While the overall flux is oriented

vertically in the test domains in all cases, the detail at

ϕ = 30◦ shows a zig-zag pattern of the (grey) flux lines

between the GO regions and the gaps. Therefore, the

bridged length of the gap is reduced and accordingly

Figure 14: Resulting relative permeability μr(B) for the
specified tests (line styles) and angles (line
colours).

the magnetic resistance. A much thinner, almost one-

dimensional geometry, would reduce this effect. In turn a

sleek test region would suffer more flux leakage through

the adjacent air regions.

The reduced magnetic resistance of the geometrically

modelled tests "geom" and "orig" for diagonal layers

compared to the averaged model can be also seen in the

resulting relative permeabilities in Figure 14. There, the

angles are colour coded and the four test scenarios and

the analytic calculation according to (20) are denoted

with different line styles. The two geometrically mod-

elled tests "geom" and "orig" are shown with full lines,

with a thicker line for "orig", the implementation using

the original material model. Apart from some ripples

in the saturation region a complete fit can be observed.

Those ripples are caused by the interpolation on the

look-up table and dependent on its resolution.

The simulated averaged model is marked with a thick

dashed line. The thin dashed line denotes the test "ana".

This is the analytical calculation according to (20) ap-

plied to the average flux density in the test domain. Apart

from a slight deviation at the beginning saturation at

ϕ = 90◦, the analytical calculation "ana" and the imple-

mented model "avg" are a complete match. The ripples

in both curves are again caused by the resolution of the
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look-up table. The dotted line denoting the test "perm"

with the low permeability gap overestimates the perme-

ability at higher flux densities in rolling direction (higher

angles towards ϕ = 90◦), because the reduced cross sec-

tion of the ferromagnetic material cannot be taken into

account in this setup. This deviation would increase for

higher stacking factors.

The overall performance of the developed averaged

model can be evaluated comparing the thick solid line

for the original model and the thick dashed line for the

averaged model. The saturation behaviour is replicated

accurately for all angles. The starting permeabilities

meet exactly the analytical expectation, while the origi-

nal model slightly overestimates them for a flux in stack-

ing direction (lower angles towards ϕ = 0◦), most likely

caused by the discretization in the thin gaps.

6 Conclusion

The proposed elliptic interpolation of the co-energy den-

sity produces convex functions for a stable and ther-

modynamically consistent simulation. The generated

look-up table of the relative permeabilities μr,i can be

easily imported in FE-software like COMSOL Multi-

physics. While we showed the interpolation between

perpendicular uniaxial measurements, the data of other

directions could be also included in the construction of

the contour surfaces. This might be particular useful

for GO steel at low fields where the angle between the

magnetic hard direction and the easy rolling direction

is close to 60◦as discussed in [9]. Our model can be

applied to anisotropic materials with totally different

permeability ranges as shown for GO steel and MSMA.

For laminated materials, with an increasing stacking

factor the lamination becomes dominant compared to

the anisotropy of the base ferromagnetic material. The

overall behaviour of the laminate is dependent on the

complete co-energy density w′
lam, in contrast to that, the

permeability is dependent on the co-energy density w′
an

in the ferromagnetic material. Even very high stacking

factors f with only small gaps in the ferromagnetic ma-

terial already cause a drastic change in the contour lines

and surfaces of w′
lam compared to the material without

lamination, while w′
an is less effected. The permeabilities

calculated from w′
an are much smoother than those gen-

erated from the gradient of w′
lam and correctly replicate

the high anisotropy.

The numerical validation shows a very high accor-

dance of the fully modelled laminate and the deduced

homogenization rule. This opens many possibilities for

efficient models of magnetic circuits without the need

to mesh the thin gaps. For dynamic simulations, the

described magnetic behaviour is not sufficient. Besides

hysteresis, the electrical conductivity σ becomes impor-

tant to estimate eddy currents. For laminated stacks,

different models of σ are compared in[10].
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