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New Schedule  for  EUROSIM Conferences  and Congress  

Due to Corona Virus, also EUROSIM changed the schedule of EUROSIM Conferences and the EUROSIM Congress – 
all events will take place one year later. To bridge the 2020 conference gap the EUROSIM societies organise virtual 
conferences, and the EUROSIM Board started in June 2020 VESS – the Virtual EUROSIM Seminar, a series of online 
presentations discussing trends in modelling and simulation and preparing emphasis of future EUROSIM events. 
 

 

 
www.eurosim2023.eu  

 

The EUROSIM Board and DBSS started in June 2020 VESS – the Virtual EUROSIM Seminar, a series of online presen-
tations discussing trends in modelling and simulation. These international online simulation seminars – monthly or bi-
monthly – are open to everybody, via Zoom, lasting 60 minutes (45 minutes presentations, 15 minutes Q & A). 
Information and informal registration via website www.eurosim2023.eu 
 

 
 

The First SIMS EUROSIM Conference on Modelling and Simulation, SIMS EUROSIM 2021 takes place in Oulu, Finland, 
September 21-23, 2021. The 62nd International Conference of Scandinavian Simulation Society, SIMS 2021, is embed-
ded with SIMS EUROSIM 2021. The SIMS EUROSIM conference will be organized every third year by SIMS and EUROSIM. 
The background of this conference series is in the 60-years history of Scandinavian Simulation Society, SIMS. 
The program of the SIMS EUROSIM 2021 Conference will have a multi-conference structure with several special topics 
related to methodologies and application areas. The program includes invited talks, parallel, special and poster sessions, 
exhibition and versatile technical and social tours – info www.scansims.org 

 

 
 

MATHMOD organizers continue the conference series one year later, with 10th MATHMOD 2022, February 16-18, 2022. 
MATHMOD 2022, one of EUROSIM’s main events, provides a forum for professionals, researchers, and experts in the 
field of theoretic and applied aspects of mathematical modelling for systems of dynamic nature.  
The scope of the MATHMOD 2022 conference covers theoretic and applied aspects of various types of mathematical 
modelling (equations of various types, automata, Petri nets, bond graphs, qualitative and fuzzy models) for systems of 
dynamic nature (deterministic, stochastic, continuous, discrete or hybrid) – info and details  www.mathmod.at 
 

 
 

EUROSIM 2023, the 11th EUROSIM Congress, will take place in Amsterdam, The Netherlands, Spring/Autumn 2023. It 
will be organized by the Dutch Benelux Simulation Society (www.dutchbss.org) supported mainly by their corporate mem-
bers like TU Delft, Amsterdam University of Applied Sciences, EUROCONTROL and IGAMT (www.igamt.eu).  
Due to the growth of Simulation and its relationship with other analytical techniques like Big Data, AI, Machine Learning, 
Large Scale Simulation and others, the event will be structured, for the first time, in dedicated tracks focused on different 
areas and applications of Simulation ranging from aviation to health care and humanitarian activities. We have the ambi-
tion to attract at the congress participants from Academia, industry and governmental representatives to share the latest 
developments in Simulation and related activities and applications.  
Please follow the news and activities towards the EUROSIM 2023 at www.eurosim2023.eu 
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Editorial  
Dear  Readers, SNE Volume 31 starts in the March Issue SNE 31(1) with three topics. First, this issue finishes the subject ‘high 
math meets simulation’  – Martin Holzinger presents his third contribution on PDE solution by conformal mappings presenting a 
surprising application, the modelling and simulation of thermal distributions in teeth. 
      Second, SNE 31(1) starts with post-conference publication of contributions from ASIM 25. Symposium Simulation Technique. 
Two contributions deal with co-simulation: T. Moshagen presents a stable but explicit co-simulation coupling method, and 
I. Hafner and N. Popper investigate stability properties of hierarchical co-simulation. And H. Folkerts, T. Pawletta, and C. Deatcu 
introduce model generation for multiple simulators using SES/MB and FMI.  
      And third, two contributions – Benchmark Notes ‘BN’ – continue the series on ARGESIM Benchmarks. In 2019, SNE has intro-
duced extended possibilities for submitting a benchmark contribution: i) a Benchmark Solution with concise description of model 
implementation and experiment tasks (as before, two pages SNE), ii) or a Benchmark Report with sufficient detailed description of 
model implementation with variants and adequate experiment formulations (four to six pages SNE), iii) or a Benchmark Study 
presenting e.g. different / alternative / comparative modelling approaches and sketching analysis variants or supplemental model 
experiments (six to ten pages SNE). Additionally, content may concentrate on educational aspects (Educational Benchmark Note 
‘BNE’), and student authors may submit a benchmark contribution from their views (Student Benchmark Note ‘BNS’).  
So, Peter Junglas et al. have realised a very comprehensible benchmark report to ARGESIM Benchmark C21 ’State Events and  
Structural-dynamic Systems’ with Simulink, and M. Batliner et al. have developed a benchmark study for ARGESIM Benchmark 
C11 'SCARA Robot’ with extended trajectory tracking control comparing model approaches and simulation results in MATLAB, 
Simulink and SimMechanics The next issue will continue with Student Benchmark Notes. 

      I would like to thank all authors for their contribution, and thanks to the editorial board members for review and support, and 
to the organizers of the EUROSIM conferences for co-operation in post-conference contributions. And last but not least thanks to 
the SNE Editorial Office for layout, typesetting, preparations for printing, electronic publishing, and much more. 

      Felix Breitenecker, SNE Editor-in-Chief, eic@sne-journal.org; felix.breitenecker@tuwien.ac.at 
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Simulation Notes Europe (SNE) provides an international, 
high-quality forum for presentation of new ideas and ap-
proaches in simulation - from modelling to experiment analysis, 
from implementation to verification, from validation to identi-
fication, from numerics to visualisation - in context of the sim-
ulation process.  
SNE seeks to serve scientists, researchers, developers and users 
of the simulation process across a variety of theoretical and ap-
plied fields in pursuit of novel ideas in simulation and to enable 
the exchange of experience and knowledge through descrip-
tions of specific applications. SNE follows the recent develop-
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joining application areas, as complex systems and big data. SNE 
puts special emphasis on the overall view in simulation, and on 
comparative investigations, as benchmarks and comparisons in 
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Abstract. With the conformal map from unit square 

to unit disk analytically known, in our last contribution 

we investigated ways to numerically map the disk to 

more general (but star-shaped) domains. Such point

mappings of the complex planes are now to be inter

preted as transformations of co-ordinates, hence the do

mains are parametrized by the square. Using general, 

curvilinear co-ordinates one has to take the shape of the 

fundamental tensor and other related quantities into ac

count. The also numerically known derivatives of the 

map act as metric quantities flowing in and correcting 

a pre-given PDE in Cartesian co-ordinates on such a do

main. On the other hand, a formulation of physical laws 

in co-ordinate free manner gives an even smarter access 

to implement a simulation code of a given problem in 

Mathematica. In this article, we focus on a practical prob

lem: let the domain be the cross-section of a tooth and 

the task be to find the temperature distribution on its 

boundary with respect to a heat source moving in the 

interior of the domain. This model can then be inter

preted as a decision-finding issue to parameter identifi

cation when treating a tooth with a laser pulse. Consider

ing the problem in three dimensions by using rotational 

symmetry will turn out to be essential with respect to the 

obtained results. 

Introduction 

The treatment of tooth root inflammations by root re
section is (in the author's own experience) one of the 
less desirable aspects in the whole digestion process. 

Moreover, success of this dolorous treatment can not be 
ensured and more commonly leads to extraction of the 
affected tooth after repeatedly abortive attempts. 

To try to rescue a tooth from extraction anyhow, 
laser treatment can be applied as an alternative method. 

The purpose of this alternative and widely painless 
endodontic laser treatment approach [1] is to annihilate 
malicious bacteria by means of thermal demolition with 
the obvious side condition that the Parodontium anchor
ing the tooth must not be damaged by temperatures too 
high. The area in question is sketched by the red line 
in Figure 1, labeled with Cementum there. For this un
dertaking, a laser source is moved along the root canal. 

Enamel 

Dent in 

Gingiva 

Pulp 

chamber 
(blood ves sels 

& nerves) 

jaw 

bon e 

Crawn 

Neck 

Root 

Figure 1: Schematic tooth cross-section (Source: Wikipedia). 

With the gained knowledge of our previous articles (cf. 
[3] & [4]) we can set out to establish a simulation model 
on this issue. Hereto we adapt the developed heat equa
tion simulation code on unit square (and unit disk) with 
the insights provided by the conformal map. While ba-
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sically we are already ready-to-run, deducing a model 
in three spacial dimensions is most desirable. This ex
tension has yet to be discussed as well as an apt im
plementation of the laser heat source. Moreover, let us 
focus on the temperature distribution on the boundary. 

1 Calculating the Tooth Grid 

In our previous contribution [4, p.90f], for three dif
ferent pre-given domains we investigated how to nu
merically establish the function of boundary correspon
dence, <p f-t e, relating the angle <p circling around unit 
disk ~ to angle e on domain <.!) with given boundary 
I!: as a smooth, closed Jordan arc. Due to worst error 
behaviour we will focus on geometry GE03, described 
by means of Hermite interpolation. This domain may 
be used to derive a tooth cross-section simulation grid. 

1.1 Notation 

Using Cartesian co-ordinates ( s, 1J) on Q5 , we assumed 
rotational symmetry with respect to 77-axis. Introducing 
the complex s -plane, a point of <.!) can be addressed 
via s = s + i1] by means of its complex representation. 
Let then w denote the complex w-plane where ~ resides 
so its points are reached by the complex representation 
w = u + iv. Furthermore, in a third complex plane we 
represent the unit square ,Q in the z-plane, z = x + iy, 
where the computational grid is located (cf. [3, p.43]). 

For the subsequent task to numerically construct the 
map ,Q --+ Q5, the unit disk ~ will be interposed. Hence, 
let w = h(z) be the elliptic function evolved in [3, p.47] 
acting as a closed-form conformal map ,Q--+ ~- We 
note that implementing and calculating h and its deriva
tives numerically with Mathematica is straight-forward. 

Finally, with s = g(w) presented in [4, p.87] map
ping the closures ~ --+ Q5 we find the conformal map 
from square onto domain by composition of g and h, 
thus f = g oh: ,Q--+ Q5 where s = f(z) = g(h(z)). 

It is well worth explicitly pointing out the chain rule 
for the case that g( w) = w · eP(w) is established by means 
of a trigonometric polynomial (see again [4, p.87]), 

applying the first derivative then results in 

!' (z) = Sx+ i1Jx = g' (w)h' (z) = h' (z)eP(w) (wP' (w) + 1), 

SNE 31 (1) - 3/2021 

whereas for the second derivative we get 

!" (z) = Sxx + i1].xx = g" h'2 + h" g' 

= ep [h" + P' (2h'2 + wh" + wh'2 P') + wh'2 P"] . 

Term by term differentiation of P is trivial for Mathe
matica, so is the numeric evaluation off, f' and f" . 

1.2 Remarks on g and g' 

Concerning trigonometric interpolation of ln p ( e ( <p)) 
to get hold of the Fourier coefficients establishing the 
map g we noticed that series convergence degrades de
pending on the £-condition as well as in case that slope 
discontinuities arise in the parametrization of I!:. 

Of course, with GE03 we will not face any prob
lems: smoothness of boundary is guaranteed by means 
of Hermite interpolation and the £-condition has been 
investigated as well as convergence and error be
haviour on [O, 2n]. But let us have a look at the non
trigonometric case in this section just for completeness. 

For example, by considering the unit square itself 
as image domain QJ , in [4, p.89] we showed that high
precision e ( <p) can be achieved nonetheless by switch
ing to more apt base functions than trigonometric ones. 

Suppose therefore that e ( <p) is known to and imple
mented in Mathematica as well as p ( 8) describing I!: 
is at hand. Then we distinguish four cases [5, p.56f] to 
snatch numeric values for g and g': 

Unit disk boundary point images: 

Unit disk boundary point derivatives: 

g' (e;cp) = e' ( <p). e;(e(cp )- cp ) · [p( e( <p)) - ip' ( e( <p)) J 

Unit disk interior point images: 

[ 
1 12ir eiiJ +w ] g(w) =w·exp - lnp(8(?J))-.6--d?J 

2n o e' -w 

Unit disk interior point derivatives: 

'( )_g(w) g(w)l2irlnp(8(1J))+i(8(1J)-?J) ;iJd.a 
g w ---+-- e u 

w 2n o ( eiiJ - w )2 · 

g'(O) = _1 j g(s) ds = _1 {2ir p(8(1J))e;e(iJ ) d?J. 
2in Jy s(s -0) 2n lo e'6 
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If necessary, formulae for higher-order derivatives can 
be developed likewise by regarding the generalized 
CAUCHY integral formula for derivatives [2, S.246, 
Theorem 4.7d] like we did for points in the interior of 
the unit disk to evaluate g' ( w) . Finally note that the 
singularity arising in the origin, g' ( 0), was removed by 
subsequent application of CAUCHYs integral formula. 

1.3 Grid Visualization 

Setting up and saving the grids on unit square, disk and 
GE03 is done in complex arrays z, Wand ZETA: 

F o r[i=l,i <=n,i++,Fo r[j=l,j <=n,j++, 
Z [ [i, j]] =-1+ (i-1) dx+I (-1+ ( j-1) dy);];] 

X = Re[Z]; Y = Im[Z]; 

Real and imaginary parts of these arrays are also defined 
for the ease of data access. Whereas these objects are 
used in the simulation process (for example, z can be 
fed directly in functions h and f and other arrays are 
defined to save the derivative values on the grid), the 
grids themselves are stored in separate structures: 

Zgrid=Flatten[Ta ble[ 

X [ [ i, j J J, Y [ [ i, j]], i, 1, n, j, 1, n], 1]; 

With these definitions, ListPl o t outputs can be gen
erated in a convenient way. Figure 2 shows the result of 
such an output (n = 101). While Figure 3 has already 
been presented in [3, p.47], Figure 4 shows the im
age grid following from the conformal mapping f from 
square to GE03 with the unit disk interposed. Note 
in particular how the square comers are being mapped. 
Despite these present singularities no further impact on 
the simulation process can be expected. 

In the visualization context, all of these mappings act as 
point transformations. In our subsequent examinations, 
f will alternatively be interpreted as a transformation of 
co-ordinates. With the metrics calculated in addition, 
we are ready to run a simulation model on the tooth 
cross-section parameterized by the unit square. 

2 Setting up the Model 

It is one of the major benefits of our approach in using 
conformal parametrization of a domain by means of the 
unit square that - as soon as the conformal map and its 

-1 .0 -0.5 0.0 0.5 1.0 

Figure 2: 101 x 101-point simulation grid in z-plane. 

- 1.0 -0.5 0.0 0.5 1.0 

Figure 3: Result of the mapping h : .Q -t ~ in w-plane. 

derivatives are numerically determined and externally 
saved - an existing PDE-model can easily be ported to 
an other domain of interest. 

Basically, one starts with an investigation of the un
derlying PDE itself in co-ordinate free formulation. Re
garding the fundamental tensor involved and knowing 
8ij = D;j in Cartesian co-ordinates, the proper transfor
mation laws have to be taken into account to determine 
its new shape as well as vector or tensor valued state 
variables must be transformed. Right here the confor
mal transformation f and its derivatives come into play. 

SNE 31 (1) - 3/2021 
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....... . .. . 

- 5 

,• . .... . ... . . . . . . . . . . . . 

-10 ~~~~~~~----'------'------'------'--~_J__J__J__J__J_~ 
-5 0 5 

Figure 4: Result of the mapping f =go h : .Q ---+ '5 in t;-plane. 

2.1 30 considerations 

Starting from what we have implemented so far consid
ering the simulation models on square and disk, switch
ing to our new f' paying tribute to domain GE03, the 
heat equation on the tooth cross-section can be simu
lated and one might think that we are already done. 

However, such an approach in two dimensions is 
worth to be critically impugned. In fact, dropping the 
third Cartesian co-ordinate, 3, to work with a 2D model 
results in the assumption of a constant temperature pro
file in this direction. Thus, this proceeding will lead us 
to a 3D geometry similar to a rod with infinite length, 
having a cross-section '5 in each fixed point 3. 

This is definitely not in our intention and a compari
son of mean temperature distributions will in fact reveal 
a 44% deviation with regard to the 3D model to be de
veloped below. Let us therefore pack rotational symme
try by introducing cylindrical co-ordinates in our model 
to prevent dentists from having a formidable tooth braai. 

Let thus be '5* c JR3 a three-dimensional domain 
and ( S, 1J , 3) Cartesian co-ordinates with 1J denoting the 
axes of rotation. Let further be 

f(x+iy) = s(x,y) +i71(x,y) 

a conformal map such that for 3 = 0 the unit square in 
the (x,y)-plane is mapped to the cross-section '5 c '5* 
located in the '-plane. Then the desired symmetry is 
incorporated by the co-ordinate transformation 

s = s(x,y)sin<p , 1J = 71(x ,y), 3 = s(x,y)cos<p. 
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The new shape of the covariant metric tensor when 
switching from Cartesian to curvilinear co-ordinates, 
( S, 1J ,3) --+ (x ,y, <p ), is determined by (cf. Figure 5) 

-5 

sl + 11; 
0 
0 

0 
sl +11; 

0 

0 5 

Figure 5: Fundamental tensor on '5 with g11 = g22 • 

The transformation itself obviously has impacts on the 
expressions involved in differential operators, too. For 
example, examination of the LAPLACE operator given 
in [4, p.92] yields (let be x = s} + 71}) 

1 [(J2u (J2u 1 ( du du)] 1 d2u 
6u = x dx2 + dy2 + ~ Sx dx -11x dy + s2 d<p2. 

The assumption of a rotational symmetric, angular con
stant temperature field now entitles us to drop the last 
summand in the expression above. 

Comparing the remaining expression with the 2D 
simulation rod approach - the Laplacian is corrected 
by a factor 1 / X in this case - we note that in addition, 
first derivatives of the temperature field u(x,y, t) appear. 
Also, the sense of this expression on the axes of sym
metry itself (singularity for s = 0) has to be questioned. 
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-5 

- 5 0 

Figure 6: The two independent (HRISTOFFEL symbols r: I 
(top) and rb (bottom) on tooth cross-section ~ 

can be derived by evaluating f ' and f" in each grid 

point. 

In the course of setting up f ( z) by means of trigonomet
ric interpolation, we also showed how to derive expres
sions for f' and f" . With these functions implemented, 

we are able to visualize the CHRISTOFFEL symbols 
shown in Figure 6. Although not needed for simulat
ing the heat equation it is a good idea to calculate and 
externally save these numeric values for each grid point 
for the case that the base PDE has to be adapted. 

2.2 Impacts on grid and model 

As it can be expected that switching over to a 3D rota
tional geometry yields a far more realistic modeling ap
proach, there are other good news concerning the grid 
size: the temperature field has to be 17-symmetric per 
definition, meaning restricting the computational area 
to [O, 1] x [1 , 1] is sufficient. For an odd number n2 of 
grid points on the unit square this results in a reduction 
to an effective number of ( n2 + n) /2 calculation points. 

As an example, for the 101 x 101-grid shown in 
Figure 2 instead of solving a system of 9.801 coupled 
ODEs we get along with 4.851 equations. This gain in 
simulation resources (primarily memory and CPU time) 
can be used for additional grid refinement if necessary. 

These thoughts reflect the fact that the PDE itself 
only holds in the interior of the domain and one has to 
treat the boundary gridpoints in a different way. In this 
sense, the nature of reasonable boundary conditions in 
grid points t; = i77 , 17 E [-1 , 1] has yet to be clarified. 
Aside the axes of rotation we do not face any prob
lems, DIRICHLET type conditions can be implemented 
as well as NEWTON/NEUMANN ones just like we pre
viously did in our heat simulations on square and disk. 

An heuristic approach to this boundary axes prob
lem could claim smoothness of the temperature field 
when traversing the axes. This physically motivated de
mand would result in V' nu = 0 \117 E [-1, 1]. 

Finally, a mathematical approach can also legitimate 
prescription of the homogeneous NEUMANN boundary 
condition on the 17-axes: with knowledge of the modi
fied Laplacian holding in the interior, examination of 

lim ( SxUx - 17xUy) / S 
~ -to+ 

reveals that zeroing the numerator is at least a neces
sary condition for the expression to make sense. Tak
ing now into account that t; = f( z) is 17-symmetric, one 
first shows that the y-axes is mapped onto the 17-axes. 
With S (O ,y) = 0, Sx(O ,y)-/= 0 and 17x(O ,y) = 0 Vy co
mes Ux= 0 and we are done (details in [5, p.63, fn .6]). 
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2.3 Dental laser source 

Introducing a heat source into our model to simulate the 
thermal treatment with a laser equipment inserted into 
the dental root canal with successive pulsing or move
ment can be done in different ways. With respect to 
rotational symmetry of our 3D model developed so far 
focusing on the 17-axes (representing the canal) for the 
sake of not breaking up the symmetry seems reasonable. 

One practicable approach could be altering the ho
mogeneous NEUMANN boundary condition on the 17-
axes to Y'0 u = a(O, 17 , t). But aside the necessity of a 
correct parameter identification it is also to be expected 
that we are running into numerical problems with this 
modeling approach. Moreover, adjusting the depth of 
heat penetration would also be a desirable aspect but 
cannot be incorporated by this modeling procedure. 

Seeming more flexible is the introduction of an ad
ditional source term into the heat equation itself which 
holds in the interior of the region. For this purpose, a 
Gaussian curve in two dimensions would be appropri
ate, that is we make use of 

[-s
2

- (17 -110-vt)2
] 

cr(s , 17 ,t)=uamp·exp s 

as our heating source base signal function. Being de
pendent on both space and time variables this signal can 
then be further adjusted to the desired needs within a 
simulation run. For t = 0, the signal starts moving at 
point (0, 110) up- or downwards the axes of symmetry 
with velocity v (positive or negative). 

Penetration depth is controlled by constants. As for 
the amplitude Uamp, we leave the correct unit determina
tion as well as considerations concerning plausible nu
meric values to the physicist. Having a look at the two
dimensional normal distribution can extend the signal 
to pay tribute to a certain direction (using correlation). 

Furthermore we see that grid points on the 17-axes 
will not be affected by this modeling approach, in
deed the homogeneous NEUMANN boundary condition, 
Y' 0 u = 0, has to hold during the whole simulation run. 
The peak Uamp of the Gaussian is calculated on the 
boundary by solving this condition within simulation. 

Finally, caused by the fact that we are dealing with 
an invariant, adding the source term CJ' ( S, 17 , t) to the 
heat equation has no further impact concerning confor
mal transformation laws. Yet another advantage com
pared to heating via boundary condition where trans
formation of the normal vector has to be considered. 
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3 Parameters and Results 

In [3, p.43] we assumed for IC, the coefficient of ther
mal diffusion being responsible for heat propagation, 
for sake of convenience IC = 1. This is by chance not 
too far from reality, in literature [7, Fig.5] one finds for 
dentine and enamel IC ~ 2 - 5 x 1o- 7 [ m2 s- 1]. Suppos
ing [mm] units like pointed out in the cross section fig
ures thus entitles to define IC= 0,3[mm2s- 1]. 

With u0 = 36 °C as prescribed initial temperature 
distribution the set of boundary conditions also has to 
be adapted to the level of this reference temperature uo, 

Y'nu = 

0, 

a,(u0 - u) , 
a,(u0 - u) , 

ac(uo - u) , 

x=O, yE (-1,1) 

xE(0, 1) ,y =-1 

x=l , yE(-1,1) 

xE(0, 1) ,y =l. 

Herein, for convenience the junction point from root 
to crown was determined to be - in computational co
ordinates (x ,y) - at point (1 , 1). With ac and a, being 
positive heat is being dissipated to the exterior. For the 
heat transition coefficients (ac: enamel-+air and root 
a,: cementum-+bone) one finds in literature [6, p.1640] 
a, = 10- 4 [Wmm- 2K- 1] and ac = 10- 5 [Wmm- 2K - 1]. 

Using a canonical model first, impact of the different 
geometries on the results and rate of convergence can be 
studied. Mean temperatures and temperatures at s = 0 
for different grid spacing are presented in Table 1. 

Finally, for the results shown in Figure 7, a con
stantly emitting heating source with Uamp = 400 and 
s = 2/ 10 was placed at t = 0 in points= Si. Moving 
down the axes of symmetry with velocity v = -1 / 5, the 
points= - 7i is reached within t = 60s. 

I Geo II Grid u(O) I Li% I u0 I Li% I 
26 x 51 0.5076 - 0.4637 

1 51 x 101 0.5079 0.05 0.4649 
101 x 201 0.5079 0.005 0.4654 

1.326 0.298 - 0.2745 
2 5.151 0.2988 0.285 0.2761 

20.301 0.299 0.047 0.2765 

1.326 0.1975 - 0.1875 
3 5.151 0.1998 1.17 0.1905 

20.301 0.2004 0.283 0.1913 

Table 1: Investigating convergence (t = 50) on the three 

different cross-sections presented in [4, p.91]. 

-
0.25 
0.1 
-

0.59 
0.16 

-
1.6 

0.42 
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t = 25s t =40s t =50s 
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Figure 7: Simulation results: Isothermal lines for a heat source moving down from 1) = 5 to 1) = -7 (t) and associated 

temperature distributions on the boundary (c). Visualization on the boundary with time proceeding (b). 
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Summary 

The present SNE article completes our conformal trans
formation simulation trilogy where it was our inten
tion to point out an alternative approach to the classical 
method of Finite Elements by using Finite Differences 
on particular curvilinear grids to produce a system of 
coupled ordinary differential equations. 

Hence, we demonstrated how conformal mappings 
are utilized to simulate two-dimensional or symmet
ric three-dimensional Initial Boundary Value Problems. 
Parametrization of a 2D-region by means of the unit 
square is achieved when combining the analytically 
given map from square to unit disk with numerically 
constructed conformal transformations. The introduc
tion of such special co-ordinates thus makes the usage 
of rectangular structured computational grids possible. 

The method of lines (we also focused on deriving 
generalized expressions for the sake of extensible ap
proximation quality) can then be used to transform a 
given system of PDEs to a system of ODEs. The latter 
can be treated by standard methods available for sys
tems with lumped parameters. All computations were 
carried out by using the program Mathematica 11.3. 

Starting with Cartesian co-ordinates, linking up the 
derivatives of the map with the fundamental tensor is 
all to be done to get access to the metrics of the trans
formation. This approach proves to be highly flexible 
concerning an application to a wide range of PD Es. 

In contrary, as theory of conformal mapping is 
bound to complex analysis, the field of application a 
priori is limited to two-dimensional domains which can 
be considered as a serious restriction. Knowing the spe
cial shape of the metric tensor in the conformal case, 
an attempt to construct an analogon in three dimensions 
would be an interesting topic for future research indeed. 

Focusing on a thermal heat conduction problem for 
tooth laser treatment at last, the calculated tempera
ture distribution on the boundary can be used to adjust 
source intensity for the sake of avoiding injuries. Possi
ble further model extensions are discussed in [5, p.67ff]. 
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Abstract. The term co-simulation denotes the coupling
of some simulation tools for dynamical systems into one
big system by having them exchange data at points of a
fixed time grid and extrapolating the received data into
the interval, while none of the steps is repeated for iter-
ation. From the global perspective, the simulation thus
has a strong explicit component. Frequently, among
the data passed across subsystem boundaries there are
flows of conserved quantities, and as there is no itera-
tion of steps, system-wide balances may not be fulfilled:
the system is not solved as one monolithic equation sys-
tem. If these balance errors accumulate, simulation re-
sults become inaccurate. Balance correction methods
which compensate these errors by adding corrections for
the balances to the signal in the next coupling time step
have been considered in past research. But establishing
the balance of one quantity a posteriori due to the time
delay in general cannot establish the balances of quan-
tities that depend on the exchanged quantities, usually
energy. In most applications from physics, the balance of
energy is equivalent to stability. In this paper, a method
is presented which allows users to choose the quantity
that should be balanced to be that energy, and to accu-
rately balance it. This establishes also numerical stability
for many classes of stable problems.

Introduction

With the rise of simulation software for technical sys-

tems emerged the desire to couple those simulations in

order to take into account the influence the systems ex-

ercise onto each other. In other words, these systems

are now viewed as subsystems which form one big sys-

tem.

One now wants to simulate this large system, using the

subsystems’ simulator software and coupling it by shar-

ing data. What used to be a parameter when the systems

were calculated separately is given now by a state vari-

able of the other subsystem, reading:

S1 : ẋ1 = f 1(x1,x2,z1,z2) (1)

0 = g1(x1,x2,z1,z2) (2)

S2 : ẋ2 = f 2(x1,x2,z1,z2) (3)

0 = g2(x1,x2,z1,z2). (4)

Here, the (x1,x2) are the differential, the (z1,z2) are the

algebraic states. The setting generalizes to n subsys-

tems in a straightforward way, and it includes parabolic

partial differential equations. We require that the

derivatives dzigi have full rank. Such each of the Si is an

index-1 differential-algebraic system if the (xk �=i,zk �=i)
are seen as parameters of it. The influence of x2,z2 in a

split setting is therefore modeled by parameters u12 in

S1 and x1,z1 as parameters u21:

S1 : ẋ1 = f 1(x1,z1,u12) (5)

0 = g1(x1,z1,u12) (6)

S2 : ẋ2 = f 2(x2,z2,u21) (7)

0 = g2(x2,z2,u21). (8)

When coupled, the ui j are determined by the coupling

conditions

0 = h21(x1,z1,u21) (9)

0 = h12(x2,z2,u12) (10)

that have to be fulfilled, and exchanged at fixed time

nodes Tk. Between them, the ui j are extrapolated. To

establish coupling, the hik must be solvable with respect

to the uik. The dzigi have full row rank, too. Such, the

differential-algebraic system given by Equations (5) -

(10) is again of index 1.

SNE 31(1) – 3/2021
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u

x1 x1

u12

u21

u12

u21

Time

S2

x2 x2 x2

x1
S1: S1: T0−T1 S1: T1−T2 S1: T2−T3

S2: T1−T2S2: T0−T1 S2: T2−T3

Figure 1: Explicit co-simulation scheme.

This description of the setting is widespread [2].

It is commonly said that the coupling is done by

a co-simulation scheme if the ui j are calculated from

Equations (9) and (10) at exchange time nodes Tk
and then passed on to S2 and S1, respectively. Of

course, some extrapolation of ui j into [Tk,Tk+1) is re-

quired. Considerable research has been done on cou-

pling [6, 7, 5]. A lot of methods repeat the timestep

after the calculation with an extrapolation that has been

improved with respect to some objective. Thus, they are

implicit, see e.g. [5]. For a convergence proof, see [2].

The convergence of explicit co-simulation methods for

ODE and index one DAE not surprisingly as well im-

proves with the extrapolation order of subsystems input

[8, 2]. The situation here in simulator coupling mirrors

the one in ODE solvers: The explicit solvers are quick

in each step but not stable [12, 8], while the implicit

ones require iterations within each step but usually en-

sure some stability. When used for stiff problems, the

explicit schemes require such small stepwidths that the

implicit schemes are finally c heaper. A lso, implicit

algorithms for coupled solvers require additional pro-

gramming and storage. Therefore, the co-simulation

scheme, where one just proceeds to the next timestep

(Figure 1), is still popular.

So far, it has been common sense that the usual sta-

bility classifications like A - and B-Stability cannot be

achieved with explicit algorithms [14]. A solution for

these stability issues would be helpful in many applica-

tions and is the subject of this contribution.

It is important to note that all results and figures herein

have been published before in [1]. This contribution is

a highly condensed presentation of that content for the

purpose of reaching the engineering community rather

than novelty.

1 The Lack of Stability

1.1 Stability classifications

For readability, we present the concepts of stability clas-

sifications of methods.

Definition 1.1 (Stable points of ODE) Let x∗ be an
equilibrium point of the ODE ẋ = f (x) and φ t x the so-
lution for the initial value x(t0) = x. Then x∗ is

• stable if ∀ε > 0 ∃δ > 0 : ‖x− x∗‖ < δ ⇒
‖φ t x− x∗‖< ε ∀t ∈ [t0,T ]

• asymptotically stable if ∃r > 0 : ‖x− x∗‖ < r ⇒
limt−→∞ φ t x = x∗.

Definition 1.2 (Stable Point of Difference equation)
Let x∗ be an equilibrium point of the k−th order
difference equation xn+1 = f (xn, ...,xn−k). Then x∗ is
classified as in Definition (1.1) where x is replaced by
xn and ∀t ∈ [t0,T ] by ∀n ∈ {1, ...,N} and furthermore
t −→ ∞ by n −→ ∞.

Using these two definitions, stability classifications like

zero-, A- or B-stability are defined: The respective sta-

bility of a method is the inheritance of the stability of

an equilibrium point of a certain ODE class to the equi-

librium point of the difference equation yielding from

the application of the numerical scheme.

Stability, consistency and convergence. In

this framework, zero stability of a numerical method

means that the difference equation that one gets by

applying the method to ẋ = 0 is stable. It is well-

known that this is a necessary condition for convergence

[13, 14]. But this condition is fulfilled by all one-step

methods as xn+1 = xn+0 is a stable equation. (One-step

methods can be written as xn+1 = xn + hψ(xn, tn,hn),
and ψ(xn, tn,0) = f , where f is the ODE’s right hand

side.) So unlike for multistep methods, there is no need

here to examine zero-stability when one examines con-

vergence of one-step methods. It frequently causes con-

fusion that zero stability in the original paper [13] was

labeled stability only, and with this nomenclature Lax’s

and Richtmyers’ theorem is given in an equation-like

form stability + consistency = convergence.

SNE 31(1) – 3/2021
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1.2 Stability

These results were confirmed numerically in [8,

Sec.3.2] using the two-dimensional linear problem

ẋ = Ax, (11)

which with

A =

(
0 1

− c
m 0

)
, x =

(
x
ẋ

)
(12)

can be interpreted as linear spring-mass oscillator with

mass m and spring constant c. This problem is the most

simple problem possible that is linear and can be split-

ted. The original problem is marginally stable, so sta-

ble, as its spectrum is purely imaginary.

Spring Mass

System States

x1 := s = x x2 := v = ẋ
Outputs

u21 := F =−cx u12 := v = ẋ
Inputs

u12 u21

Equations

ẋ1 = Ext(u12) = v ẋ2 =− 1

m
Ext(u21)

=−F
m

Spring Mass

System States

. . . . . .
Outputs

u21 := ( f , ḟ )

= (−cx,−cv)
(13)

u12 := (v,a)

= (ẋ, ḟ/m)
(14)

Inputs

u12 u21

Equations
...

...

Table 1: Standard Co-simulation schemes for the
spring-mass system, top constant, down linear
extrapolation. When there is no difference, dots
have been used.

Written as a co-simulation problem, Problem (11)

with (12) yields Table 1. In [8] and [12] it is shown that

co-simulation schemes are not stable for linear prob-

lems, even not for stable subsystem solvers. The stabil-

ity for linear problems replaces the notion of A-stability,

as the one-component equation used there cannot be

split. When treated with a co-simulation scheme ( out-

put of the spring is the force f = −cx, that of the mass

is the velocity v = ẋ) the emerging (method-induced)

ODE {
ẋ1 = a1,1x1 +a1,2 Ext(x2)

ẋ2 = a2,2x2 +a2,1 Ext(x1)
. (15)

is obviously unstable [8, Section 2.5].
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Figure 2: Simulation of the system (11)-(12) in the
co-simulation scheme with constant extrapolation,
varying the exchange step size H. Upper row, left:
H = 0.2, right: H = 0.1. Previously published in [12].

Its numerical solution is shown in Figure 2, – there

is no linear stability for general step sizes. This means

‖x‖−→∞ for t −→∞. The energy of our system is E =
1
2 mv2 + 1

2 cs2 =
〈
x, 1

2 diag(m,c)x
〉
= 〈x,x〉 1

2 diag(m,c) =

‖x‖ 1
2 diag(m,c), which is an equivalent norm, so lack of

stability is equivalent to energy augmentation.
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Using piecewise constant extrapolation of inputs,

the force, as it is seen by the mass, is effectively shifted

to later times: a value from time Ti is used for all fu-

ture times t ∈ (Ti,Ti+1). The analogy with the reactive

power and the real power of an electrical network is ap-

parent. Work from oscillating systems with phase shift

contains an integral over a constant and thus grows un-

bounded (Figure 2). Similar arguments hold for linear

extrapolation co-simulation.

2 Enforcing Balance by Sharing
the View on Potential Flow

2.1 The proposed method

The key feature to establish energy balance is exchang-

ing the value of power and calculating the variable of in-

terest from that power. Consider a co-simulation prob-

lem with subsystems S1 and S2 as given by Equations

(5) - (10) with states x1 and x2 respectively and inputs

u21 and u12. We suggest the following procedure to en-

force energy balance between subsystems S1 and S2:

1. At data exchange timepoint Tn the powers Pi j as the

flux of energy are calculated in both subsystems,

using up-to-date input un
ji. In general Pi j �= Pji.

Applied to the S1 − S2 setting, P21 (the power cal-

culated in S1 for passing to S2), is calculated using

fresh u12, the input into S1. Now in the input vec-

tors ui j one component is replaced by Pi j and that

new vector u21,bal is exchanged between the sub-

systems. Applied to S1 − S2 setting, the value P21

replaces one component (u21)m of u21, and respec-

tively, P12 replaces (u12)n of u12.

This means S1’s point of view about the power has

been passed on to S2 and vice versa.

2. Now both subsystems have the same information

and thus the opportunity to draw the same conclu-

sion on what energy exchange should be assumed.

We denote this assumed energy exchange as

P̂12(P21,P12) =−P̂21, (16)

a straightforward choice is P̂21 = (P12 −P21)/2 =
−P̂12, where now it is necessary to define flow di-

rections: Pi j shall be negative if it leaves S j, so it is

counted with opposite sign in Si.

Again remember that P21 is the power calculated

in S1 for passing to S2, calculated using u12, the

input into S1. The former input (u12)n(t) now is

calculated subject to

P21(x1(t),u12\n,(u12)n(t)) = Ext(P̂12). (17)

Analogously (u21)m(t) s.t.

P12(x2,u21\m,(u21)m) = Ext(P̂21) is calculated.

The expression 12\ k in subscript is to say that the

k-th component of the vector is left out. For the

unique inversion of Pi j it is required that the maps

(u ji)k −→ Pi j(., .,(u ji)k) are strictly monotone.

As Ext(P̂12) = −Ext(P̂21), now it is established

that the inputs of S1 and S2 are consistent in terms

of energy conservation for all t.

2.2 Example

To apply the scheme given in Section 2.1 above to

a spring-mass system (12), replacing the standard

co-simulation scheme from Table 1, one first calculates

the energies of the systems parts, powers acting on

subsystems boundaries, and their derivatives. As

Pi = Ẇi, Pi < 0 indicates that energy leaves Si.

Spring Mass

Energy

W =
∫

− f ds

=
∫

− f vdt

W =
∫

f ds

=
∫

mavdt

Power

P = Ẇ

=− f v = cxv

P = Ẇ

= mav = f v

Derivative of Power

Ṗ = c(v2 + sa) Ṗ = m(a2 + vȧ)

= m(a2 + v
ḟ
m
)

The derivative of force ḟ is available as output of

spring, as it is usually needed for linearly extrapolating

the input. With this, the scheme yields Table 2.
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Spring Mass

System States

x1 := s = x x2 := v = ẋ

Outputs

(u21,Std)1 := f =−cx (u12,Std)1 := v = ẋ

(u21,Std)2 := ḟ =−cv (u12,Std)2 := v̇ = f/m

(intermediately exchanging ui j,Std)

(u21)1 = P(x1,u12)

= cxv = cx1(u12)1

(u12)1 = P(x2,u21)

= f v = (u21)1x2

(u21)2 = Ṗ(x1,u12)

= c(v2 + xa)

= c((u12)
2
1 + x1(u12)2)

(u12)2 = Ṗ(x2,u21)

= m(a2 + v
ḟ
m
)

= m

(
(u21)1

m

2

+ x2
(u21)2

m

)

Inputs

(u12)1 := P̂ (u21)1 :=−P̂

(u12)2 := ˆ̇P (u21)2 :=− ˆ̇P

Input variables of standard method ustd depending on Power

v =
Ext(P̂)

cs
=

Ext(u12)1

cx1
f =−Ext(P̂)

v
=

Ext(u21)1

x2

Equations

ẋ1 = v ẋ2 =
f
m

Table 2:Method form Section 2.1 applied to the spring-mass

system.

3 Stability of power balanced
schemes

As discussed in Section 1.2 and shown in [8], stability

for linear systems of a partly explicite scheme is not

given. This section shall relate energy conservation of

our method to stability. The class of problems under

consideration are all stable gradient flow problems

ẋ =−M∇xP
T , (18)

which is a huge class, containing entropy driven and

energy conserving problems. The mobility Matrix M
determines the systems stability - it is positive definite

if the system is dissipative and skew if energy conserv-

ing. This behavior must be inherited to the ODE that is

induced by our splitting method. We give an outline of

the arguments:

1. Switch to gradient flow view. In this, inserting (18)

into the time derivative of the respective potential

Ṗ(x) yields

Ṗ(x) = 〈∇xP(x), ẋ〉= 〈
∇xP(x),−M∇xP(x)T 〉

(19)

with the scalar product 〈., .〉.
2. Introduce split system

• Identify coupling contributions

• Characterize potential conserva-

tion/dissipation properties (see below)

3. See method as decoupling ODE – Insert calcula-

tion of inputs from power into original equations

4. Relate decoupled ODEs stability properties to sta-

bility of original systems

• Show that negotiated exchange conserves

Ṗ ≤ 0. It can be shown and there are

straightforward arguments that there is no un-

physical power production when sharing sub-

systems agree on the exchanged energy

• Use Lyapunov’s direct method on the decou-

pled system.

• Additionally, one can argue that maximum

stable stepwidth for dissipative systems is

augmented (method is closer to B-stability

than extrapolation of inputs method).

5. If such stable subsystems ODEs are solved with

methods preserving that stability, overall solution

will be stable.

Items (2) and also (4) need closer consideration. The

split systems potential production Ṗ(x) according to
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Eq. (19) in subsystem-wise block matrix form reads

Ṗ(x) = Pk +Pl + ... (20)

=

⎛
⎜⎜⎜⎜⎝

.
(∇xP(x))Ik

.
(∇xP(x))Il

.

⎞
⎟⎟⎟⎟⎠ · ... (21)

⎛
⎜⎜⎜⎜⎝

∗
... −(M)Ik,Ik ... −(M)Ik,Il ...

∗
... −(M)Il ,Ik ... −(M)Il ,Il ...

∗

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

.
(∇xP(x))Ik

.
(∇xP(x))Il

.

⎞
⎟⎟⎟⎟⎠

(22)

=
〈

∇xIk
P(x),−MIk,Ik ∇xIk

P(x)T
〉

︸ ︷︷ ︸
Pkk

(23)

+
〈

∇xIk
P(x),−MIk,Il ∇xIl

P(x)T
〉

︸ ︷︷ ︸
Pkl

+
〈

∇xIl
P(x),−MIl ,Il ∇xIl

P(x)T
〉

︸ ︷︷ ︸
Pll

(24)

+
〈

∇xIl
P(x),−MIl ,Ik ∇xIk

P(x)T
〉

︸ ︷︷ ︸
Plk

+...,

we identify

Pkl :=
〈
(∇xP(x))Ik ,−(M)Ik,Il (∇xP(x)T )Il

〉
(25)

as the potential production in Sk by Sl’s variables, or

power acting from subsystem l onto subsystem k. Item

(4) now means that those eliminate in the suggested

scheme, as the exchanging subsystems agree on their

value. So, there is no contribution to Ṗ by the extrapo-

lation during coupling.

Theorem 3.1 For a Lyapunov stable (asymptotically
stable) gradient flow initial value problem (IVP), the
IVP resulting from the energy balancing method as de-
scribed in Section 2.1 is also stable (asymptotically sta-
ble).

4 Discussion, Conclusion and
Future Work

The suggested method overcomes the decade-old issue

of stability in coupled simulation for a huge class of

problems.
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Figure 3: Stability of cosimulation schemes applied to
spring-mass system: Top: Linear extrapolation,
middle and bottom: Power balanced scheme. The
image on bottem is an amplification of the lower
right corner of the image above to confirm that
there is no energy gain. Tend = 75, exchange
stepwidth H = 0.2, subsystems refinement
decisions left to subsystems solvers, stable vode
used on subsystems.

Moreover, the method has a clear interpretation in

physics: the enforcement of the power balance in sys-

tems interactions. It can therefore be implemented by

anyone with understanding of the systems they want to

couple, without deep knowledge of numerical analysis.
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For simulations in industrial research and develop-

ment, the new method enables stable calculations with

big timesteps and few programming effort and is thus a

big step forward.
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Abstract. This paper introduces the concept of hier-
archical co-simulation and presents an investigation on
stability properties of this method. In conventional co-
simulation methods, all participating simulations are ex-
ecuted on the same level via one co-simulation. Hierar-
chical co-simulation, on the other hand, enables the in-
troduction of several levels of co-simulation by allowing
participating subsystems to consist of co-simulated sys-
tems themselves, thus nesting co-simulations within co-
simulations. While on the one hand, certain stability is-
sues can arise by the introduction of more co-simulation
layers, this method enables the usage of different syn-
chronization references for parts of the overall system
according to varying dependencies between the subsys-
tems, which can increase accuracy and numerical stabil-
ity.

Introduction

Co-simulation has become an important instrument to

approach the simulation of large-scale heterogeneous

systems in recent years. While definitions for the term

co-simulation vary depending on the field of origin, in

this paper we refer (in accordance with the terminology

found in [1]) to co-simulation as the coupling of two or

more simulations which differ in at least one aspect out

of simulation tool, solver algorithm or step size.

Hierarchical approaches or multi-level descriptions

have already been introduced in other fields within

modeling and simulation (f.i. DEVS [2], multi-level

agent-based modeling [3], MPC [4] or partitioned

multi-rate approaches [5]). However, hierarchical co-

simulation as explained in the following has to the au-

thors’ knowledge not been investigated up to now, al-

though several frameworks and standards do not pro-

hibit the realization of further co-simulations within a

co-simulation. The idea is illustrated in Figure 1.

Figure 1: Schematic depiction of a hierarchical co-simulation

approach.

In a traditional co-simulation approach all eight par-

ticipating subsystems would have been co-simulated in

one overall co-simulation, probably requiring all sys-

tems to synchronize at the same points in time. In the

hierarchical approach, systems III, VI and VIII are cou-

pled in another co-simulation (2b) as well as systems II

and V, the coupled system of which (co-simulation 3) is

again co-simulated with system VII, before the result-

ing co-simulation (2a) represents a system coupled in

the top-level co-simulation 1.

A coupling structure like this could be motivated by the

usage of different synchronization intervals on every
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co-simulation level, thus enabling frequent exchanges

between subsystems which are sensitive to changes in

their respective exchanged values while allowing larger

communication intervals with other, slower reacting

system parts, which can speed up the overall execu-

tion. In the course of this paper, we will show that these

ideas are valid and that a hierarchically structured co-

simulation approach indeed allows to enhance stability

at a low computational cost.

1 Consistency

A valid method to bound the global co-simulation error

is local error control, which justifies to investigate the

consistency error, i.e. the error of the method in one

step. For traditional co-simulation, it has been shown

that consistency can be maintained, but possibly re-

duced to the extrapolation order of values from other

systems, see for example [6, 17]. Since consistency is

defined locally (i.e. per step), and it is a property re-

garded for the limit of step size h → 0, the value present

at the most recent point in time where the method sets

a step is considered to be the exact solution - a property

that is not affected by the method used in the respective

other subsystems or the time steps and further synchro-

nizations happening there in-between. This means that

consistency in hierarchical co-simulation is also main-

tained with its order depending on the applied extrapo-

lation method.

2 Zero-stability

Zero-stability, i.e. convergence of a method for in-

finitesimal step sizes, has been analyzed for certain co-

simulation approaches in [7], on which we base our in-

vestigation. The mathematical description of coupled

DAEs is given in [7] as follows:

ẋxxi(t) = fff i(xxxi,uuui, t), xxxi(t0) = xxxi
0 (1a)

yyyi(t) = gggi(xxxi,uuui, t) (1b)

with i = I, . . . ,N, xxxi ∈ Rni
x , uuui ∈ Rni

u , yyyi ∈ Rni
y and

uuui = LLLiyyy (1c)

where

LLLi =
[
LLLi,I . . . LLLi,i−1 0 LLLi,i+1 . . . LLLi,N

]
,

yyy =
[
yyyI . . . yyyi−1 yyyi yyyi+1 . . . yyyN

]T

with LLLi, j ∈ Rni
u×n j

y ∀i, j ∈ {I, . . . ,N} and the elements

of LLLi, j being equal to zero or one.

Under certain assumptions (given in [7], p. 100), the

outputs can be written as yyyi =gggi(xxxi)+DDDi(xxxi)uuui, yielding

the discretized output equations

yyyi
k+1 = gggi +DDDiuuui

k (2)

with constant gggi, DDDi. Using this, it holds for the outputs

of global system

yyyk+1 = ggg+

⎡
⎢⎢⎢⎣

000 DDDILLLI,II . . . DDDILLLI,N

DDDIILLLII,I 000 . . . DDDIILLLII,N

...
...

. . .
...

DDDNLLLN,I DDDNLLLN,II . . . 000

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
=:DDD

yyyk

(3)

that stability is guaranteed if the spectral radius ρ
of DDD is less than or equal to 1. This is fulfilled in

particular if ρ(DDD) = 0 which for the case of two partici-

pating subsystems means that there is no algebraic loop.

To determine zero-stability properties of hierarchi-

cal co-simulation, a co-simulation of N systems is con-

sidered, where w.l.o.g. systems M to N are combined in

a second-level co-simulation as depicted in Figure 2.

Figure 2: Hierarchical co-simulation of N systems on two

levels.

System M̂ replaces systems M to N of the original

co-simulation on one level (coupled via 1c and called

CS0 henceforth). We obtain coupling equations (4) for
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the upper co-simulation level CS1:⎡
⎢⎢⎢⎢⎢⎣

uuuI

uuuII

...

uuuM−1

ûuuM

⎤
⎥⎥⎥⎥⎥⎦= L̂1L1L1

⎡
⎢⎢⎢⎢⎢⎣

yyyI

yyyII

...

yyyM−1

ŷyyM

⎤
⎥⎥⎥⎥⎥⎦ (4)

with

L̂1L1L1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

000 LLLI,II . . . LLLI,M−1 L̂LLI,M

LLLII,I 000 . . . LLLII,M−1 L̂LLII,M

...
...

. . .
...

...

LLLM−1,I LLLM−1,II . . . 000 L̂LLM−1,M

L̂LLM,I L̂LLM,II . . . L̂LLM,M−1 000

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and ûuuM as input to the new subsystem M̂, ŷyyM as its

output and

L̂LLi,M =
[
LLLi,M LLLi,M+1 . . . LLLi,N

]
, i = I . . .M−1

L̂LLM,i =

⎡
⎢⎢⎢⎣

LLLM,i

LLLM+1,i

...

LLLN,i

⎤
⎥⎥⎥⎦ , i = I . . .M−1.

Thus, the only difference between LLL and L̂LL1 is the

increased number of zeroes in the lower right corner.

The discretized output equations of CS1 are (5):

yyyI
k+1 = gggI +DDDIuuuI

k
yyyII

k+1 = gggII +DDDIIuuuII
k

...

ŷyyM
k+1 = ĝggM +D̂DDMûuuM

k

(5)

While ŷyyM in general corresponds to the stacked output
vectors yyyM . . .yyyN of CS0, the input vectors don’t as the
coupling with the outputs of systems M to N is consid-
ered within the new system M̂, cf. Figure 2 and (6).
The outputs of the global system can with (5) be written
as⎡
⎢⎢⎢⎢⎣

yyyI
k+1
...

yyyM−1
k+1

ŷyyM
k+1

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

gggI

...

gggM−1

ĝggM

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

DDDI 000

. . .

DDDM−1

000 D̂DDM

⎤
⎥⎥⎥⎥⎦L̂LL1

︸ ︷︷ ︸
=:DDDCS1

⎡
⎢⎢⎢⎢⎣

yyyI
k
...

yyyM−1
k

ŷyyM
k

⎤
⎥⎥⎥⎥⎦

In analogy to the case of one co-simulation level, the co-

simulation of the upper level is stable if ρ(DCS1
) ≤ 1.

The only unknown in comparison to DDD of CS0 is D̂DDM ,

for which we have to take a look at the second-level co-

simulation CS2. The coupling equations within this sys-

tem can be written (cf. Figure 2) as follows:⎡
⎢⎢⎢⎢⎢⎢⎣

uuuM
k

uuuM+1
k
...

uuuN−1
k
uuuN

k

⎤
⎥⎥⎥⎥⎥⎥⎦= L̂2L2L2 ·

⎡
⎢⎢⎢⎢⎢⎢⎣

yyyM
k

yyyM+1
k
...

yyyN−1
k
yyyN

k

⎤
⎥⎥⎥⎥⎥⎥⎦+ ûuuM

k (6)

where

L̂2L2L2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

000 LLLM,M+1 . . . LLLM,N−1 LLLM,N

LLLM+1,M 000 . . . LLLM+1,N−1 LLLM+1,N

...
...

. . .
...

...

LLLN−1,M LLLN−1,M+1 . . . 000 LLLN−1,N

LLLN,M LLLN,M+1 . . . LLLN,N−1 000

⎤
⎥⎥⎥⎥⎥⎥⎦ .

The discretized output equations are

yyyi
k+1 = gggi +DDDiuuui

k, i = M . . .N. (7)

Thus follows for the global output of CS2

ŷyyM
k+1 =

⎡
⎢⎣

yyyM
k+1
...

yyyN
k+1

⎤
⎥⎦= ĝggM +

⎡
⎢⎣

DDDM . . . 000
...

. . .
...

000 . . . DDDN

⎤
⎥⎦ûuuM

k (8)

with

ĝggM =

⎡
⎢⎣

gggM

...

gggN

⎤
⎥⎦+

⎡
⎢⎣

DDDM . . . 000
...

. . .
...

000 . . . DDDN

⎤
⎥⎦L̂2L2L2

⎡
⎢⎣

yyyM
k
...

yyyN
k

⎤
⎥⎦ .

The part containing yyyi
k, i = M . . .N can be included in

ĝggM as these are only internal states of CS2 which are un-

known in CS1. Hence we obtain

D̂DDM =

⎡
⎢⎣

DDDM . . . 000
...

. . .
...

000 . . . DDDN

⎤
⎥⎦ , (9)
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which yields

DDDCS1
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

000 DDDILLLI,II . . . DDDIL̂LLI,M

DDDIILLLII,I 000 . . . DDDIIL̂LLII,M

...
. . . . . .

...

DDDM−1LLLM−1,I . . . 000 DDDM−1L̂LLM−1,M

D̂DDML̂LLM,I . . . D̂DDML̂LLM,M−1 000

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Due to

D̂DDML̂LLM,i =

⎡
⎢⎣

DDDM . . . 000
...

. . .
...

000 . . . DDDN

⎤
⎥⎦ ·

⎡
⎢⎢⎢⎣

LLLM,i

LLLM+1,i

...

LLLN,i

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

DDDMLLLM,i

DDDMLLLM+1,i

...

DDDNLLLN,i

⎤
⎥⎥⎥⎦

and

DDDiL̂LLi,M =DDDi · [LLLi,M LLLi,M+1 . . . LLLi,N
]

=
[
DDDiLLLi,M DDDiLLLi,M+1 . . . DDDiLLLi,N

]
,

the only difference compared to matrix DDD of system

CS0 is the increased number of zeroes in the lower right

corner. In the following, we try to use this to gain in-

formation on the properties of the spectral radius of DDDCS1

using knowledge on ρ(DDD).

We know that for every matrix norm ‖.‖ and arbitrary

matrix AAA = (ai j); i = 1, . . . ,m; j = 1, . . . ,n; m,n ∈ N

ρ(A)≤ ‖AAA‖ (10)

holds ([8], Thm. 5.6.9).

If we consider ‖.‖∞ given as

‖AAA‖∞ = max
i=1,...,m

n

∑
j=1

|ai j|

we see at once that ‖DDDCS1
‖∞ ≤ ‖DDD‖∞. Unfortunately, this

does not imply ρ(DDDCS1
) ≤ ρ(DDD), see f.i. the following

example: Let matrices AAA1 and AAA2 given as

AAA1 =

⎡
⎢⎢⎣

0 0.1 0.5 0

0.1 0 0 0.5

0.2 0 0 0

0 0.2 0 0

⎤
⎥⎥⎦ , AAA2 =

⎡
⎢⎢⎣

0 0.1 0.5 0

0.1 0 0 0.5

0.2 0 0 −0.1

0 0.2 −0.1 0

⎤
⎥⎥⎦ .

Here ‖AAA1‖∞ = ‖AAA2‖∞ = 0.6 but

ρ(AAA1) ≈ 0.3702 > ρ(AAA2) ≈ 0.3317. This means that in

general, stability for hierarchical co-simulation has to be

determined anew, even if the starting point is a zero-stable

co-simulation on one level. An exception is the case

where not only ρ(DDD) ≤ 1 but also ‖DDD‖∞ ≤ 1, as from

this follows further

ρ(DDDCS1
)≤ ‖DDDCS1

‖∞ ≤ ‖DDD‖∞ ≤ 1 (11)

which ensures zero-stability of the co-simulation on the

upper level CS1.

For the stability properties of the coupling in CS2, we

are interested in the input-output dependencies within the

system only, thus we need to look at the spectral radius

of DDDCS2
, which results from (8):

DDDCS2
=

⎡
⎢⎣

DDDM . . . 000
...

. . .
...

000 . . . DDDN

⎤
⎥⎦L̂2L2L2 (12)

Since we see that DDDCS2
is composed of a submatrix of DDD,

here again ‖DDDCS2
‖∞ ≤ ‖DDD‖∞ holds, and thus ρ(DDDCS2

) has

to be determined separately only if ‖DDD‖∞ > 1.

To sum up, we can conclude that zero-stability of hi-

erarchical co-simulation can be determined analogously

to customary co-simulation on one level. To this end, the

matrices referring to the global system outputs on every

co-simulation level have to be examined - except for the

cases where the origin is a stable co-simulation with ma-

trix DDD fulfilling ‖DDD‖∞ ≤ 1, which is satisfied in particular

for couplings where no feed-through occurs in at least one

system, so ‖DDD‖∞ = ρ(DDD) = 0. These considerations, of

course, can directly be taken further and applied to more

than two levels of co-simulation, as well.

3 Numerical Stability

Depending on the coupling method, instabilities can still

occur for zero-stable coupling methods due to the errors

introduced by extra- or interpolation. A weak coupling

approach is called numerically stable if it yields a stable

solution for a finite macro-step size H > 0 [9].

To investigate stability properties for finite communi-

cation step sizes, we consider a three-mass oscillator as

benchmark example, which is illustrated in Figure 3.

Figure 3: Illustration of a three-mass oscillator.
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The underlying equation system can be interpreted as

coupled Dahlquist equations, which can be solved ana-

lytically and thus provide an eminently suitable test case.

The oscillator with two masses has been taken into con-

sideration in numerous investigations on stability of con-

ventional, single-level co-simulation approaches, where

it proves highly sensitive to the choice of parameters and

macro step size [9].

For the intended co-simulation, the system is split

along the individual masses and coupled via force-

displacement-coupling (cf. f.i. [10] for further informa-

tion on the coupling approach), as illustrated in Figure

4.

Figure 4: Force-displacement coupling of the three-mass

oscillator.

By this coupling approach we obtain the subsystem

equations for systems SI , SII and SIII :

SI :
ẋ1 = v1

m1v̇1 =−c1x1 −d1v1 +λ12

(13a)

SII :
ẋ2 = v2

m2v̇2 =−c12(x2 − x̃1)−d12(v2 − ṽ1)+λ23

(13b)

SIII :

ẋ3 =v3

m3v̇3 =− c23(x3 − x̃2)−d23(v3 − ṽ2)

+ c3(−x3)+d3(−v3)

(13c)

With the coupling conditions

λ12 − c12(x2 − x1)−d12(v2 − v1) = 0 (14a)

x̃1 − x1 = 0 (14b)

ṽ1 − v1 = 0 (14c)

λ23 − c23(x3 − x2)−d23(v3 − v2) = 0 (14d)

x̃2 − x2 = 0 (14e)

ṽ2 − v2 = 0 (14f)

Following the considerations from section 2, we ob-

tain for matrix DDD in (3):

DDD =

⎡
⎣ 000 DDDILLLI,II DDDILLLI,III

DDDIILLLII,I 000 DDDIILLLII,III

DDDIIILLLIII,I DDDIIILLLIII,II 000

⎤
⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−c12 −d12 0 0 0 0

0 0 −c23 −d23 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(15)

whence follows ρ(DDD) = 0, thus guaranteeing zero-

stability.

For the hierarchical co-simulation approach, systems

SII and SIII are combined in a second-level co-simulation.

As expected (cf. section 2), we obtain ρ(DDDCS1
) =

ρ(DDDCS2
) = 0 for

DDDCS1
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−c12 −d12 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(16)

and

DDDCS2
=

⎡
⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

−c23 −d23 0 0

⎤
⎥⎥⎦ , (17)

thus the conditions for zero-stability are satisfied for both

levels of co-simulation.

In the following, several scenarios are performed for

both co-simulation approaches to compare numerical sta-

bility properties. For all settings, explicit Euler meth-

ods are used to solve the individual subsystems. These

simple methods have been chosen to enable the focus on

the different methods of co-simulation without additional

corrections (f.i. by step size control). As synchroniza-

tion method, Jacobi-type coupling without iteration using

zero-order extrapolation for external variables has been

used. The initial conditions for all scenarios have been

chosen as x1 = 1, x2 = 2, x3 = 3 and v1 = v2 = v3 = 0.

Scenario 1. The parameters for the first scenario to be

considered are given in Table 1.
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c1 c12 c23 c3 d1 d12 d23 d3 m1 m2 m3

1E-02 1E-01 1 10 0.1 0.4 1 2 10 10 10

Table 1: Parameter settings for Scenario 1.

As can be seen, the spring stiffnesses are chosen to in-

crease from left to right (cf. Figure 3) to result in slower

and faster varying subsystems. The step sizes for the in-

dividual subsystem solvers are chosen accordingly with

h1 = 0.005, h2 = 0.0025, h3 = 0.00125. The monolithic

reference system is of the form ẏyy = AAA ·yyy and can thus be

solved analytically. In addition to the analytical solution,

the results of the hierarchical co-simulation are compared

to a conventional single-level co-simulation. For the lat-

ter, a macro step size H of 0.1 seconds is chosen. The

results in Figure 5 show that even if the overall communi-

cation step size H1 is doubled in comparison to the tradi-

tional co-simulation, the hierarchical approach yields sig-

nificantly more accurate results for systems SII and SIII if

the step size for the second-level co-simulation is chosen

adequately (H1 = 0.2s, H2 = 0.05s).

0 0.2 0.4 0.6 0.8 1
time [s]

1

1.001

1.002

1.003

1.004

x1
 [m

]

reference solution
one-level co-sim.
hierarchical co-sim.

0 0.2 0.4 0.6 0.8 1
time [s]

1.99

1.995

2

2.005

2.01

x2
 [m

]

0 0.2 0.4 0.6 0.8 1
time [s]

1.5

2

2.5

3

x3
 [m

]

Figure 5: Trajectories of x1, x2 and x3 for Scenario 1 with

H = 0.1s, H1 = 0.2s and H2 = 0.05s.

In spite of plainly distinct errors in specific phases,

both approximations remain stable, as can be seen in sim-

ulations over a longer period of time.

The maximum absolute errors and elapsed time for

several different settings are given in Table 2.

appr. tend H |H1 H2 errx1
errv1

errx2
errv2

errx3
errv3

el. time

trad. 1 0.1 1.21E-04 5.30E-04 8.05E-03 1.53E-02 9.51E-04 6.32E-04 0.0066

hier. 1 0.1 0.025 4.52E-05 2.89E-04 2.10E-03 3.67E-03 8.22E-04 1.38E-03 0.0161

hier. 1 0.2 0.05 8.26E-05 5.34E-04 4.08E-03 7.44E-03 8.51E-04 1.06E-03 0.0099

trad. 25 0.1 3.96E-02 7.13E-03 9.35E-02 3.68E-02 1.78E-02 1.24E-02 0.1845

hier. 25 0.1 0.025 1.76E-02 3.29E-03 2.14E-02 8.75E-03 6.63E-03 5.48E-03 0.4018

hier. 25 0.2 0.05 3.53E-02 6.64E-03 4.28E-02 1.75E-02 9.67E-03 7.20E-03 0.2514

Table 2:Maximum error and elapsed time for the traditional
and hierarchical co-simulation approach in Scenario
1.

We see that while the execution time is significantly

higher in case of the same step size on the upper level and

the traditional co-simulation - which has to be expected

due to the additional synchronization on the lower level -

the high difference can be overcome while still maintain-

ing better accuracy by increasing both macro step sizes in

the hierarchical approach.

Scenario 2. In Scenario 2, the stiffnesses differ to a

greater extent (see parameters in Table 3), which can lead

to stability issues if communication step sizes are chosen

too large. The conventional co-simulation already yields

unstable results for the same step size as in Scenario 1

(H = 0.1). The solution obtained by the hierarchical ap-

proach with the same upper-level communication step

size but additional synchronization between subsystems

SII and SII remains stable.

c1 c12 c23 c3 d1 d12 d23 d3 m1 m2 m3

1E-03 1E-01 10 100 0.1 0.4 1 2 10 10 10

Table 3: Parameter settings for Scenario 2.

Even for a larger communication step size on the up-

per level (H1 = 0.2), stability is maintained with the hi-

erarchical approach, as the coupling between systems SII

and SII is the crucial one (cf. Figure 6).

If the synchronization time on the second level is

also increased (to H2 = 0.05), qualitative behavior is still

maintained but errors are too high to consider the solution

still acceptable (cf. Table 4).
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Figure 6: Trajectories of x1, x2 and x3 for Scenario 2 with
H = 0.1s, H1 = 0.2s and H2 = 0.025s from tstart = 0s to
tend = 100s.

Scenario 3. In Scenario 3, the stiffnesses for the

springs attached to mass m1 are increased, too (see Ta-

ble 5), which leads to unstable results for the traditional

as well as hierarchical approach with step sizes H = 0.1s,

H1 = 0.1s and H2 = 0.025s, see Figure 7. This makes

sense as the increased stiffness for System I can not be

compensated by closer communication of Systems II and

III.

The macro step sizes H and H1 would have to be cho-

sen as low as 0.03 to keep the error in bounds at all, even

though results are still too far from the reference solution

to be of use.

4 Conclusion
In this paper, the method of hierarchical co-simulation

has been presented and investigated with respect to sta-

bility properties. In comparison to hierarchical multirate

approaches as presented in [5, 12], the application of the

hierarchical co-simulation method presented in this paper

appr. tend H |H1 H2 errx1
errv1

errx2
errv2

errx3
errv3

el. time

trad. 3 0.1 1.19E-02 1.56E-02 4.03E-01 4.61E-01 9.78E-02 2.37E-01 0.0202

hier. 3 0.1 0.025 7.59E-03 7.01E-03 9.54E-02 1.10E-01 5.01E-02 1.33E-01 0.0376

hier. 3 0.2 0.025 1.54E-02 1.44E-02 1.94E-01 2.24E-01 6.56E-02 1.66E-01 0.0372

hier. 3 0.2 0.05 1.46E-02 1.29E-02 9.48E-02 1.10E-01 5.00E-02 1.33E-01 0.0258

trad. 100 0.1 2.37E-01 2.28E-01 5.38E+00 5.06E+00 5.35E-01 5.06E-01 2.2885

hier. 100 0.1 0.025 2.57E-02 1.30E-02 2.90E-01 2.79E-01 6.86E-02 1.98E-01 6.4143

hier. 100 0.2 0.025 5.81E-02 3.08E-02 6.96E-01 6.64E-01 1.06E-01 2.53E-01 5.3847

hier. 100 0.2 0.05 3.90E-02 1.47E-02 2.88E-01 2.77E-01 6.85E-02 1.98E-01 2.5811

Table 4:Maximum error and elapsed time for the traditional
and hierarchical co-simulation approach in Scenario
2.

c1 c12 c23 c3 d1 d12 d23 d3 m1 m2 m3

1 10 10 100 0.1 0.4 1 2 10 10 10

Table 5: Parameter settings for Scenario 3.
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Figure 7: Trajectories of x1, x2 and x3 for Scenario 3 with
H = 0.1s, H1 = 0.1s and H2 = 0.025s from tstart = 0s to
tend = 100s.

does not require any knowledge on the underlying system

per se. The subsystems can, as in common co-simulation

methods, be treated as black boxes with information on

the input and output dependencies without interfering
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with the subsystem solvers. This can be beneficial when

using co-simulation platforms like the BCVTB [11] or

standards like the FMI1, and in particular for interdis-

ciplinary collaborative projects where partial systems

are developed independently and possibly protected by

company-specific privacy agreements.

While in the experiments above, quite simple subsystem

solvers and coupling methods are chosen, improvement

methods commonly used in single-level co-simulation

approaches like variations of extrapolation order, cou-

pling methods (sequential or mixed algorithms and

waveform iteration) and stabilization techniques can of

course be utilized in hierarchical co-simulation as well.

Detailed studies on the advantages of said techniques for

traditional co-simulation are ample in the literature (see

for example [13, 14, 15, 16]). In addition, the results

from section 3 show that stability issues can be tackled by

introducing another layer of communication instead of

having to decrease the overall communication step size,

thus providing an innovative method for stabilization.
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Abstract. This paper deals with the extension of a
Python-based infrastructure for studying the character-
istics and behavior of families of systems. The infras-
tructure allows automatic execution of simulation exper-
iments with varying system structures as well as with
varying parameter sets in different simulators. Special
focus is put on the support of different simulation en-
vironments by creating models implementing the Func-
tional Mockup Interface (FMI). Possible system structures
and parameterizations are defined using a System En-
tity Structure (SES). The SES as a high level approach for
variability modeling, particularly in simulation engineer-
ing, describes a set of system configurations, i.e. differ-
ent system structures and parameter settings of system
components. In combination with a Model Base (MB),
executable models can be generated from an SES. Based
on the extended SES/MB approach, tool-supported vari-
ability modeling and automatic model generation and
execution in different simulation environments using FMI
is described. This is done bymeans of an engineering ap-
plication.

Introduction

This paper is based on [1] and [2]. It focuses on the

more general approach using the tools for variability

modeling introduced there by integrating with the Func-

tional Mock-up Interface (FMI) instead of just offering

simulator specific solutions.

The high variant diversity with components of dif-

ferent application fields in today’s technical systems

leads to the need for variability modeling and integra-

tion of varying simulation platforms. One application

area for variability modeling is e.g. the generation of

software for electronic control units, which is often gen-

erated by underlying models. Those models are usu-

ally of similar type, but still differ in structure and pa-

rameterization. To handle modeling and simulation of

these so called families of systems, several approaches

for variabilty modeling exist. Most approaches make

use of 150% models, which means that all possible be-

havior is put into just one large and complex model and

functionality is then adjusted by switching off unneeded

model parts. In contrast to 150% modeling, in this pa-

per we describe a method to define, generate and sim-

ulate well-tailored and therefore lean models by mak-

ing use of the System Entity Structure / Model Base

(SES/MB) approach. The SES/MB approach [3] origi-

nates in the systems theory community and has under-

gone many extensions over the years [4, 5]. It allows

platform-independent variability modeling with subse-

quent platform-dependent model generation of specific

variants. The structures of systems are coded in an SES,

while the dynamic models are organized in an MB. The

SES links to these dynamic models.

For this approach, a proposal for using one MB in

several simulators is detailed. This is achieved by cre-

ating an MB of models which implement the FMI. The

general tool independent standard for model exchange
and co-simulation FMI [6, 7] enables the exchange of

models between different simulators. This makes it pos-

sible to combine models from different domains and ex-

ecute them in several simulation environments.

After the extended SES/MB approach is briefly in-

troduced, the paper presents some software tools imple-

menting the theory. An engineering application exam-

ple is then discussed in detail to clarify the process of

model definition and model generation using FMI.
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1 SES/MB Theory and
Implementation

This section briefly discusses the general SES/MB the-

ory and the derived extended SES/MB (eSES/MB) in-

frastructure. Subsequently, an implementation of the

infrastructure is presented.

1.1 SES/MB Basics and the eSES/MB
Infrastructure

An SES is represented by a tree structure comprising

entity nodes, descriptive nodes and attributes. A num-

ber of different system structures can be coded in one

SES tree. In the context of modeling and simulation

entity nodes are linked to basic models organized in

an MB. Attributes of an entity node correspond to the

parameters of the associated basic model. Descriptive
nodes describe the relations among at least two entities

and are divided into aspect, multi-aspect and special-
ization nodes.

In order to derive a specific system configuration

all variation points are resolved by evaluating the rules

at the descriptive nodes of the SES. This procedure is

called pruning.

The resulting Pruned Entity Structure (PES) repre-

sents exactly one system configuration. In conjunction

with an MB, a fully configured and executable model

can be generated from the PES.

The basic SES/MB framework introduced in [3] was

extended by new modeling features, methods and com-

ponents [4, 5], such as an Experiment Control (EC) and

an Execution Unit (EU) as shown in Figure 1. In this

eSES/MB infrastructure, the EC uses an interface to the

SES and its methods to derive goal-driven system con-

figurations and to generate models, which are executed

by the EU. The results returned by the EU are collected

and analyzed by the EC. Thus, the derivation and gener-

ation of subsequent system configurations can be con-

trolled reactively based on experiments already carried

out.

A set of variables with global scope establish the in-

terface to the SES. They are called SES variables (SES-

var). Semantic conditions can be used to specify permit-

ted value ranges and dependencies between SESvars.

SES functions (SESfcn) are introduced for the speci-

fication of procedural knowledge. Complex variabil-

ity can often be described more easily with SESfcns.

Typical examples include the definition of varying cou-

pling relations or the definition of variable parameter

Figure 1: The eSES/MB infrastructure.

configurations in attributes. For automatic pruning, se-
lection rules at descriptive nodes need to be defined,

such as aspectrules for aspect and multi-aspect siblings

or specrules at specialization nodes. A special manda-

tory attribute of multi-aspects is the attribute number of
replications (numRep). The numRep attribute specifies

the number of entities to create at a multi-aspect node

during pruning. The mb-attribute of leaf entity nodes

connects the entity node to a basic model in the MB.

Attribute values and selection rules can be specified us-

ing SESvars or SESfcns.

1.2 Software Tools

The eSES/MB framework as presented in the lower left

part of Figure 1 was implemented in a prototype soft-

ware tool in MATLAB [8]. The focus of this tool is the

modeling and generation of MATLAB/Simulink mod-

els. In contrast to the MATLAB prototype, the objective

of the software used in this paper is to support the gen-

eration and execution of models for different simulation

environments. The infrastructure in Figure 1 is imple-

mented as a Python framework as presented in Figure 2.

The tools are called SESToPy, SESMoPy, and SESEuPy
[9].

SESToPy (System Entity Structure Tools Python)

implements a graphical editor and all SES related meth-

ods. In the editor an SES tree can be specified interac-

tively in a file browser view and attributes and rules can

be defined for every node. In addition to the pruning

method already mentioned, SESToPy supports some

more methods such as merging different SES and flat-
tening for removing the hierarchy information. Apply-

ing the flattening method, a Flattened Pruned Entity
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Figure 2: Python-based eSES/MB infrastructure for multiple EUs.

Structure (FPES) is derived.

For generating executable models, SESMoPy

(System Entity Structure Model builder Python) was

developed. SESMoPy is a model builder, which im-

plements the build method in two different ways and

supports several simulation environments. For both ap-

proaches, all corresponding basic models must be or-

ganized in MBs, as shown in Figure 2. The first ap-

proach, called native model generation, is the genera-

tion of executables for a specific EU using a simulator

specific MB. The second approach, this paper focuses

at, is the model generation based on FMI. A Functional

Mock-up Unit (FMU) is a model that implements an

FMI [10]. In an FMU models are described by differ-

ential, algebraic, and discrete equations with time, state,

and step events. In the scope of SESMoPy FMI for
Model Exchange is used, which enables the simulation

environment to generate C code of the FMU. FMI for

Co-simulation is not discussed in this paper. The gen-

eralized interface FMI is supported by a number of es-

tablished simulators [11], such as Simulink, OpenMod-

elica or Dymola discussed for the use with SESMoPy.

Using the FMI-based approach, an MB with basic mod-

els from the simulator OpenModelica and/or an MB

with FMUs are defined. SESMoPy creates an Open-

Modelica model and configures it according to the in-

formation passed in the FPES. Thus FMUs in an MB

need to be imported into OpenModelica. The config-

ured OpenModelica model is exported as FMU. De-

pending on the target simulator a specific Simulation

Model Executable (SME) or Simulation Model Repre-

sentation (SMR) is created. Finally SESMoPy returns

a link to a directory, where the SME or SMR is placed

together with a configuration file with information on

the SME or SMR.

Information about the way the model is created can be
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provided in the EC calling SESMoPy or at the SES level

according to the SES enhancements in [4].

The Python software tool SESEuPy (System Entity

Structure Execution unit Python) acts as a general EU.

It implements a kind of wrapper for the integration of

different simulation environments into the framework.

SESEuPy takes the link to the directory with the SME

or SMR and reads the configuration file. If the model is

given as SMR, an SME needs to be built. The SME then

can be simulated in the target simulator and simulation

results are returned.

In the next section, the components and function-

ality of the Python framework are explained using the

example of an engineering application.

2 Engineering Application

A feedback control system can be modeled using trans-

fer functions describing the behavior of the components

in frequency domain. Controlled variables in a feed-

back control system are usually influenced by distur-

bances. A common approach for minimizing the in-

fluence of predictable disturbances is adding a feedfor-

ward control. The system can be mapped to a signal-

flow oriented model. In the following paragraphs it is

described how the eSES/MB infrastructure can be used

to design and test such a system using the introduced

tools and FMI-based model generation in combination

with the simulation programs Matlab/Simulink, Open-

Modelica, and Dymola.

2.1 Problem Description

A process unit with a PT1 behavior shall be controlled

using a PID controller. A disturbance with a PT1 be-

havior affects the output of the process unit. Different

configurations of the PID controller shall be tested. If a

defined regulatory goal is met, the current configuration

of the PID controller is taken. Otherwise the structure

is varied by adding a feedforward control to the system

and different configurations of the PID controller are

analyzed again. Figure 3 depicts a schematic represen-

tation of the application.

The system’s behavior follows the PT1 transfer

function in Equation 1 and the step-shaped disturbance

affects the output of the process unit with a PT1 behav-

ior according to Equation 2. The optional feedforward

control is realized by subtracting the disturbing signal

calculated by Equation 3 from the manipulated variable.

Figure 3: Structure of the feedback control system with

optional feedforward control.

The control goals are a settling time of less than 15 sec-

onds and a maximum overshoot of less than 5% after a

disturbance.

The system has two structure variants, either with-

out or with the feedforward control part, and a range

of different configurations for the PID controller can be

applied for each structure variant. In the next section,

the two structure variants and their possible configura-

tions are specified as an SES.

GSu(s) =
1

20 · s+1
(1)

GSz(s) =
1

10 · s+1
(2)

GSt(s) =
GSz(s)
GSu(s)

=
20 · s+1

10 · s+1
(3)

2.2 Variant Modeling with SESToPy

The specification of the SES describing the feedback

control system is done with the tool SESToPy. The tree

and all attributes are defined via a graphical user inter-

face. During modeling the SES with SESToPy, checks

on the SES and plausibility tests are executed indicating

model errors. The SES is saved as a JSON structure.

Figure 4 depicts the SES and its representation in

SESToPy. The SES uses some extensions introduced

in [5]. In addition to the different system configura-

tions, essential parts for the configuration of simulation

experiments are defined.

The root node exp of the SES and its subsequent as-

pect node expDEC describe a set of simulation based

parameter studies for different system structures. The

subtree of the entity node simModel-ctrlSys specifies

the two system structures, i.e. a variant with and a vari-

ant without feedforward controller. The other two entity

nodes specify experiment related information: The en-

tity node simMethod specifies a target simulation envi-

ronment for performing simulation runs using the SES-
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Figure 4: Left: SES specifying the feedback control system study; Right: Part of the SES representation in SESToPy.

var mysim. The SESvar myinterface specifies whether

to use the native or the FMI model generation. Other

simulation execution parameters, such as the simulation

period, are not specified and are set by the EC later. The

entity node expMethod specifies the permitted value

ranges of two parameters for the PID controller. Be-

sides the different system structures, they are the sub-

ject under study. The aspect simModel-ctrlSysDEC de-

scribes that each system variant consists of the follow-

ing entities: feedbackSys, sourceSys, ctrlPIDSys, pro-
cUnitSys, sourceDist, tfDist and addDist. They are

mandatory system elements. The optional feedforward

control is specified by the subtree of entity feedforward-
Ctrl. The coupling relations of both structure variants

are defined in the attribute cplg1 of aspect simModel-
ctrlSysDEC.

According to [12], optional parts in an SES are ex-

pressed by a specialization node where one of its chil-

dren is a NONE element. A NONE element means

that the entity is not included at all. The selection at a

specialization is defined by an attribute called specrule.

The specrule of the specialization feedforwardCtrlSpec
defines that either the entity fc or NONE is selected dur-

ing pruning. The result of evaluating the specrule at

node feedforwardCtrlSPEC depends on the value of the

SESvar feedforward. The SESvar codes the two possi-

ble structure variants as values 1 or 0. Therefore, the

semantic condition f eed f orward ∈ [0,1] applies to the

SESvar. The entity fc and its subsequent aspect fcDEC
specifies the feedforward control structure as a compo-

sition of the two entities tfFeedforward and addFeed-
forward.

Aspects and multi-aspects can define coupling rela-

tions as attribute. Couplings specify a composition of

entities, which can be linked to basic models. Coupling

attributes are abbreviated with cplg in Figure 4. Due to

the varying system structures specified in the SES, the

couplings in attribute cplg1 of aspect node simModel-
ctrlSysDEC are defined using an SESfcn. The coupling

definitions in cplg2 at node fcDEC are invariable and

can therefore be defined without using an SESfcn.

According to Section 1, each leaf node defines an

mb-attribute referring to a basic model in the MB. The

basic model can be an OpenModelica component or an

FMU. The other attributes of the leaf nodes define prop-

erties to configure the linked basic models. The values

for k and Ti specified at node ctrlPIDSys are only de-

fault values, which will be overwritten because they are

parameters under study.
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2.3 Creating an MB

OpenModelica is an open source simulation platform

and defines a set of basic models. It is widely used in

different fields of engineering. In this case study Open-

Modelica basic models as well as FMU basic models

are used. The FMUs define the FMI and can thus be

exported from any simulation environment.

For the OpenModelica MB a package is created that

contains basic models. This package is stored as the file
MB.mo and is referred to as local OpenModelica library
in this paper. Furthermore the FMUs with the fileend-
ing *.fmu are stored in a folder on the local filesystem,

which is referred to as local FMU library in this paper.

The local OpenModelica library is filled with the

following basic models whose names correspond to the

names in the mb-attributes of the leaf nodes in the SES:

• Constant as the setpoint for the controlled variable

• Feedback for closing the feedback control loop

• TransferFunction for representing the process, the

disturbance’s behavior, and the feedforward

• Add for adding signals

In the local FMU library FMUs are placed like listed.

The names correspond to the names in the mb-attributes

of the leaf nodes in the SES.

• Step.fmu for stimulating the disturbance

• PID.fmu is the controller of the feedback control

system

Each basic model can be configured according to the

attributes of the leaf node which they are linked to in

the SES. The local OpenModelica library as well as the

local FMU library act as MB for the basic models.

2.4 Experiment Execution

For executing simulation based experiments the exper-

iment process and its goals need to be defined in a

Python script. This script implements the EC according

to Figure 2. The Python framework provides some EC

related template scripts. The goals of the experiment

were discussed in Section 2.1. The experiment should

start with the study of different PID controller configu-

rations using the control system structure without feed-

forward controller. The simulation is executed with the

simulators OpenModelica, Dymola, and Simulink. In

case that the objectives are not achieved by just varying

the parameters k and Ti of the PID controller, the study

shall be carried out with the additional feedforward con-

trol structure and the simulation programs OpenModel-

ica, Dymola, and Simulink. A snippet of the EC script

with essential steps of the experiment process is given

next.

...

SESfile = ...

if conditions_for_experiment:

#prune, flatten, build, and execute

SESvar = [mysim = <simulator>,

myinterface = "FMI",

feedforward = 0]

PESfile = SESToPy("prune",SESvar,

SESfile)

FPESfile = SESToPy("flatten",PESfile)

smHandle = SESMoPy("build",FPESfile)

sim_param = [solver=<solver>, ...]

results = SESEuPy("simulate",smHandle)

...

elif conditions_for_experiment:

#prune, flatten, build, and execute

SESvar = [mysim = <simulator>,

myinterface = "FMI",

feedforward = 1]

PESfile = ...

...

...

The EC starts the experiment by setting the SESvars

mysim, myinter f ace, and f eed f orward. A target sim-

ulator is set for mysim. Next, the EC calls SESToPy’s

API method for pruning with the current SESvar values

and a reference to the file defining the SES as JSON

structure. The pruning process results in a PES coded

as JSON structure. Afterwards, the EC calls SESToPy’s

API method for flattening the PES. The created FPES

is similar to the FPES shown in Figure 5, which rep-

resents the more complex FPES for the later SESvar

assignment f eed f orward = 1. A reference to the file

containing the FPES as a JSON structure is returned to

the EC. The EC then calls SESMoPy’s API method for

the build method and passes the FPES file handle. SES-

MoPy determines the target simulator from the attribute

at the node simMethod and the value ranges of the PID

controller parameters under study from the attribute at

node expMethod in the FPES.

Based on the information in the FPES and the ba-

sic models from the MB, SESMoPy creates an Open-

SNE 31(1) – 3/2021



31

Folkerts et al. Model Generation for Multiple Simulators Using SES/MB and FMI

Figure 5: Left: FPES to study the feedback control system structure with feedforward; Right: FPES representation in SESToPy.

Modelica model for each configuration of the simula-

tion model of the control system. FMU basic mod-

els need to be imported into OpenModelica. Figure 6

shows the structure of a fully configured OpenMod-

elica model, but with feedforward controller, i.e. for

the SESvar assignment f eed f orward = 1. The config-

ured OpenModelica model is exported as FMU, which

is called model FMU in this context. This model FMU

is simulator independent, since it implements the FMI.

It represents an SM. Thus only one MB needs to be de-

fined for use with multiple target simulators.

Depending on the target simulator different steps are

necessary as discussed before. (i) A Simulation Model

Executable (SME) for the target simulators OpenMod-

elica and Dymola or (ii) a Simulation Model Represen-

tation (SMR) for the target simulator Simulink is cre-

ated.

(i) The SME is built by importing the model FMU into

the target simulator. Using the interface of the FMU

simulator specific code is generated of the model. For

execution a file with simulator specific instructions on

the execution is generated. Furthermore a configuration

file with information about the SME and its target sim-

ulator is created.

(ii) The SMR is a file with simulator specific instruc-

tions for the import of the FMU in the target simulator.

The file is not executed yet. Furthermore a configura-

tion file with information about the SMR and its target

simulator is created.

SMs of one structure variant have different config-

urations of the PID controller. A handle to the direc-

tory with all SMs is returned by SESMoPy to the EC,

referred to as smHandle. The EC extends the configura-

tion file with simulation data, such as the solver to use

or simulation start and stop time. The EC calls the tool

SESEuPy and passes the smHandle as the link to the

SMs and the configuration file. In collaboration with

the target simulation environment, SESEuPy controls

the execution of an SM. An SME can be executed di-

rectly, whereas during execution of an SMR an SME is

built. Finally, SESEuPy returns the simulation results

to the EC.

In case the results meet the experimental goals, the

overall results are calculated and returned by the EC.

In case the goals are not reached, the second system

structure with the additional feedforward controller by

the SESvar assignment f eed f orward = 1 is set and a

new model configuration and generation is started.

If the experimental goals have been achieved, the

overall results of the experiment are the necessary con-

trol structure and the appropriate PID controller param-

eter settings. Otherwise the failure to achieve the objec-

tives may also be established.

In addition simulation with another simulator can

be tested. In the SESvar mysim another simulator is

set and the model generation and simulation process is

started over with the structure variant without feedfor-

ward controller. In this way, model by model validation

is achieved using different simulators.

3 Conclusion

In this paper the extension for working with FMI of

some Python-based software tools for variant modeling

are presented. The entire process of variability model-

ing beginning with the system specification with an SES

up to automatic variant derivation, model building, and

execution is described. The proposed eSES/MB infras-

tructure makes it possible to model and simulate engi-

neering problems using different target simulation envi-

ronments.
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Figure 6: OpenModelica SM of the feedback control system with feedforward control.
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Abstract. To pinpoint the problems that come with
the modeling and simulation of hybrid systems, the
ARGESIM C21 benchmark ’State Events and Structural-
dynamic Systems’ describes three such systems and a
lot of corresponding tasks. It is solved here using the
well-known simulation environment Simulink, the solu-
tions are based on a direct modeling of the ODEs or DAEs
describing the systems. To this end, special schemes
have been necessary sometimes, some of which are al-
ready provided by Simulink, others had to be modeled
explicitely.

Introduction
The Argesim C21 benchmark [1] requires to study three

different examples of hybrid systems: a bouncing ball,

an RLC circuit with a diode and a rotating pendulum

with a free flight phase. A complete solution has been

published before that is based on Modelica compo-

nents [2]. The results presented in the following use

the well-known Simulink simulation environment from

Mathworks [3] without relying on additional packages

for discrete system modeling such as Stateflow [4] or

SimEvents [5]. Unlike in [2] modeling doesn’t start

with the physical components, but from the differential

equations that are used to describe the systems.

The complete definition of the example systems and

the tasks can be found in the benchmark definition [1].

For conciseness we will not reproduce results that are

identical to those in [2], but simply quote the corre-

sponding plots and tables. Instead we will concentrate

mainly on the different implementation methods.

All models and scripts necessary to reproduce the

results presented here are available from [6]. They have

been prepared using Simulink Version 10.1 (R2020a)

under Kubuntu 18.04.

1 Case Study Bouncing Ball
The first example describes a mass falling under gravity

and air drag, which bounces off the ground. The bounc-

ing process is described either as a simple event or as a

continuous process, using a basic material model.

1.1 Event Contact Model

Description of model implementation. The

bouncing ball model (without air drag) and the diffi-

culties it poses for zero-crossing detection, have been

widely studied by Mathworks [7]. In fact it is used as

an example in Simulink that is discussed at length in the

documentation. It is implemented there in two different

ways. The first one with two separate integrators (and

parameters adapted to the benchmark) is shown in Fig-

ure 1. It uses a lower saturation limit of the x integrator

and external resets of x and v integrators to create the

bounce event.

Figure 1: Bouncing ball with event contact and two

integrators ([8], parameters adapted).
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With standard solver parameters it stops with an

error (“too many consecutive zero crossing events”),

when approaching the Zenon point. To overcome this

problem one can use the optional adaptive algorithm

for zero-crossing. It stops bracketing the event after too

many events in a short time or if the function variation

becomes too small. This works in principle, but the ve-

locity results show a lot of remaining chatter. Changing

the relative tolerance of the solver from 1e-3 to 1e-6

and manually adapting the signal threshold of the zero-

crossing algorithm, the chatter amplitude is reduced by

a factor of 20.

To get rid of the chatter the Simulink library con-

tains a second-order integrator, which is mainly the

combination of two connected integrators. The exter-

nal reset of v, when x reaches 0, is done internally, and

a consistent behaviour of x and v at saturation is en-

forced. With this block the benchmark model including

air drag becomes very simple (cf. Figure 2). It uses the

standard zero-crossing algorithm, but works fine never-

theless: x and v are exactly zero after the Zenon point.

Figure 2: Bouncing ball with event contact and second-order

integrator.

Simulation until last bounce – scattering pre-
vention. The Zenon point in the free fall case (with-

out air drag) is easily computed from [1, eq (16)] giv-

ing tB,∞ = 27.129019 s. A workaround to prevent event

scattering is not necessary, the standard model shown in

Figure 2 just works fine. It uses the ode23 solver and a

relative and absolute tolerance of 10−6. A simple Mat-

lab script that finds the start time of the final zero values

of x gives the results tB,∞ = 27.129019 s for the free fall

case and tB,∞ = 25.589465 s when adding air resistance.

Testing accuracy of event handling. To deter-

mine the bounce times the standard model exports the

simulated values of x and a Matlab script extracts the

times where x equals 0.0. This is possible easily in spite

of the usual floating point problems, since the saturation

event enforces the exact value of 0. Figure 3 shows the

difference between the theoretical values and the simu-

lation results for a model without air resistance.

0 20 40 60 80 100
no. bounce

0

5

10

t [
s]

10 -11

Figure 3: Accuracy of bounce times.

Compensation of linear model deviation.
This task asks to introduce an initial velocity v0 to the

linear model so that the same Zenon point is reached as

in the nonlinear model. As has been shown in [2] this is

not possible, but one has to a add a velocity to the non-

linear model instead. Its value has been computed there

as v0 = 4.39563m/s . Using this value in the standard

model, the simulation results are the same as in [2, Fig.

3].

1.2 Model with Continuous Contact

Description of model implementation. The

bouncing ball model with continuous contact is imple-

mented by directly reproducing the differential equa-

tions, where the changing of the right hand sides ac-

cording to the phase is done with Switch components.

The complete model is shown in Figure 4, where the

equation of the ball deformation is hidden inside a sub-

system (cf. Figure 5).

Figure 4: Bouncing ball with continuous contact.
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Figure 5: Ball deformation.

The interesting part is the state switch (cf. Figure

6), which toggles between 0 and 1, when the active

event function – hF or hC according to phase – becomes

negative. The actual toggle switch is implemented in

a typical way as a triggered subsystem containing a

Unit Delay with a feedback loop.

Figure 6: State switch.

The additional Memory component is necessary to

break an algebraic loop, without it the simulation pro-

duces the error “Ambiguous sorted order”. Usually one

tries do avoid such a block, because it introduces an ad-

ditional delay. Here it does no harm, since a few solver

steps will always occur, until the phase changes again.

Quite odd is the appearance of a Hit Crossing
component directly before the trigger input: One would

expect that the toggle switch could be triggered directly

by the event function (i.e. the output of the Switch).

But without the help from the Hit Crossing block,

the corresponding events are missed. Either the authors

are lacking the necessary understanding of the inner

workings of Simulink here – or it is simply a bug!

Since all three state variables are used throughout

and only the forces change according to the phase,

one could call this implementation a “switching model

parts” approach.

Dependency of results from algorithms.
Simulink offers seven adaptive ODE solvers for initial

value problems, among them the Dormand-Prince

solver ode45 and the NDF-based ode15s, which is

recommended as standard solver for stiff problems. All

solvers are well-known and extensively documented

[9].

To compare them, the standard model has been sim-

ulated with output values at fixed steps of 1e-3 s using

εabs = 1e-12, εrel = 1e-12 for a reference solution with

ode45 and εabs = 1e-6, εrel = 1e-6 for the actual com-

parison. Using other solvers for the reference solution

leads to almost identical results. A typical error plot is

shown in Figure 7. The large spikes for the velocity er-

rors are due to small timing differences of the bouncing

phases.
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Figure 7: Errors for solver ode45.

The maximal errors against the reference solution

are given in Table 1. The best one by far is the standard

solver ode45, the next best ode23 being far off with

a tenfold error. All other solvers, among them all stiff

solvers, are much worse with errors 60 to 80 times as

large.

s [mm] v [m/s]

ode45 0.0119 0.0090

ode23 0.1146 0.0858

ode113 0.7299 0.5678

ode15s 0.6518 0.4722

ode23s 0.8247 0.6440

ode23t 0.8210 0.6410

ode23tb 0.6442 0.4999

Table 1: Absolute errors for different solvers.
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The effects of changing two very special solver

parameters have been examined, using the ode45
solver and normal tolerances: Switching on the

Shape preservation leads to better use of deriva-

tive information, which – according to the documen-

tation – should increase accuracy for models with

strongly changing derivatives. Looking at the veloc-

ities this is the case here, and the errors decrease

by 25% accordingly. The other parameter is called

MinimalZcImpactIntegration and should “re-

duce the impact of zero-crossing on the integration of

continuous states” [10]. Though this sounds promising,

it has no effects for our model.

Investigation of contact phase. For this task an

additional HitCrossing block has been added to the

standard model that outputs a signal whenever the ve-

locity becomes zero (in either direction). This allows to

extract the maximal and minimal heights easily. To get

plots of the state and output variables during the three

phases the high accuracy of εabs = εrel = 1e-10 (as in

the corresponding task of [2]) has been used. Figure

8 shows the first contact phase, it and the plots of the

other two phases are identical to [2, Fig.7 - Fig.9].
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Figure 8: First contact phase.

The first ten values for the maximal height and

maximal depression are shown in Table 2. Additional

21 values describe vibrations during the final contact

phase.

In spite of the high accuracy the values given here

differ from those in [2] by up to 0.05%. To find out,

which results are better, additional values have been

n hmax [m] wmax [mm]

1 10.00000000000 9.87399975

2 2.49475864884 4.97196356

3 0.63279737764 2.51186760

4 0.16059402954 1.26915027

5 0.04046743537 0.64034298

6 0.01002956662 0.32202875

7 0.00239944058 0.16086111

8 0.00053018975 0.07923061

9 0.00009492532 0.03784056

10 0.00000588511 0.01701582

Table 2:Maximal heights and depressions.

computed with an even higher accuracy of 1e-12 in

Simulink and Maplesim. While the relative error be-

tween both Simulink results is only 1e-6, the Maplesim

results differ by 1e-4. Furthermore the difference be-

tween the higher accuracy results in Simulink and

Maplesim stays the same as before. This suggests that

the Simulink results have the higher accuracy. This is

confirmed by the general behaviour of the solvers that

are used here: While ode45 is known to be generally

quite accurate, the Maplesim computations have been

done with one of the stiff solvers, which are generally

less accurate.

Parameter studies. Changing the values of k or d

in the standard model reproduces the results from [2,

Fig.10, Fig.11]. The only interesting observation here

is the behaviour of the stiff version (k = 1e8, d = 500):

With the standard solver ode45 and accuracy 1e-6 the

simulation produces a fall-through behaviour. Decreas-

ing the tolerance to 1e-8, the model works fine. Of

course, for this model one would prefer a stiff solver

anyhow in order to decrease the computation time.

Bouncing ball on Mars. The standard model re-

produces the results from [2, Fig.12].

2 Case Study RLC Circuit with
Diode

The second test case of the benchmark is an RLC circuit

containing a diode, where several models for the diode
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have to be studied: a simple shortcut model, the well-

known Shockley model and an approximation thereof.

Description of model implementations. The

model of the shortcut diode implements the differen-

tial equations directly. It computes the event function

and uses the Simulink Switch component to change

between the locking and the conducting phase. There-

fore it is a classical “switching model parts” approach

(cf. Figure 9).

Figure 9: Short cut diode.

To model the Shockley diode one can eliminate the

variable iD from [1, eq. (28)] using the defining relation

[1, eq. (34)] to get a semi-explicit DAE system of index

1 for the state variables uC and i and the algebraic vari-

able uD. This can be modeled in Simulink in a standard

way [11] by using algebraic loops to solve the constraint

equation g(uC, i,uD) = 0 (cf. Figure 10). The discontin-

Figure 10: Shockley diode with implicit computation of uD.

uous constraint can be written with the Heaviside step

function and easily implemented with Simulink’s stan-

dard Signum component (cf. Figure 11).

Figure 11: Algebraic constraint of Shockley diode.

So instead of the “switching model parts” approach

used before, this is just an ordinary DAE system with a

discontinuous constraint equation. It works fine in spite

of a warning ("Discontinuities detected within algebraic

loop(s), may have trouble solving") and produces the

expected results. But: If one deletes the output block

out.iD, the warning becomes an error ("2 zero cross-

ing signal(s) identified below caused 1000 consecutive

zero crossing events..."). Though this can be cured by

changing the zero-crossing control algorithm to “adap-

tive”, for the user it is impossible to understand what

is going on in detail, why one model works while the

other doesn’t.

Alternatively one could write the equations of the

Shockley diode using an implicit computation of iD
and adopt the same approach as before. The constraint

equation is now implemented with a Switch block to

set g(uC, i, iD) = iD
!
= 0 in the locking phase.

The implementation of the interpolated Shockley

diode looks exactly like Figure 10, only the Fcn block

that computes the iD(uD) function in Figure 11 is re-

placed by a Lookup Table. The necessary table

values are computed in the Init Fcn callback. The

model doesn’t run with the ode45 solver, but needs the

stiff solvers ode23t or ode23tb.

One way to cope with DAEs is to simply differenti-

ate the constraint equation, giving the “explicit Shock-

ley diode” model that again can be implemented with

the “switching model parts” approach (cf. Figure 12).

The problem here is that the variable uD only be-

comes a state variable in conducting phase, while it still

is an algebraic variable in locking phase. Therefore the

uD_conducting block has an additional integrator

block, while the uD_locking subsystem only con-

tains algebraic computations. In spite of this strange
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Figure 12: Explicit Shockley diode.

construction the model works without problems.

Dependency of results from algorithms. Fol-

lowing the same procedure as in Section 1.2 the re-

sults for the interesting variables iL, uC, iD and uD have

been computed using the seven Simulink solvers and

are shown in Table 3 for the shortcut diode and in Table

4 for the Shockley diode.

εiL εuC εiD εuD

ode45 0.0435 0.0000 0.0435 0.0011

ode23 30.5122 0.0173 30.5123 0.8522

ode113 50.6304 0.0239 50.6305 0.5859

ode15s 444.0654 181.7101 444.0668 137.8873

ode23s 57.0346 3.2628 57.0348 4.9717

ode23t 283.6237 17.7122 283.6245 13.2222

ode23tb 57.1190 4.0521 57.1192 2.8067

Table 3: Shortcut diode: Relative errors [in 1e-6].

According to these results the solvers can be

grouped as follows:

• ode45 is by far the most accurate solver,

• ode23, ode113 have medium errors for i, iD and

uD, but small errors for uC,

• ode23s, ode23tb have medium errors through-

out,

εiL εuC εiD εuD

ode45 0.0470 0.0006 0.0146 0.0286

ode23 31.5010 0.3780 9.7677 19.1429

ode113 51.7119 0.6202 15.9115 31.4251

ode15s 454.1598 1045.878 765.7054 651.4087

ode23s 57.4423 3.7010 17.8112 34.9072

ode23t 565.4285 59.3439 177.6517 350.7907

ode23tb 57.5270 3.5943 17.8380 34.9595

Table 4: Shockley diode: Relative errors [in 1e-6].

• ode15s, ode23t have large errors throughout.

Usually one would choose a stiff solver for a DAE

system, therefore this behaviour comes unexpected.

Apparently, the combination of ode45 with a Newton

solver for the algebraic loops does a good job here.

The time behaviour of the errors is quite different

for different solvers and variables. Figure 13 shows a

few examples for the shortcut diode and the variable id .
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Figure 13: Shortcut diode: Relative errors for iD

Comparison of shortcut and Shockley diode
model. Comparing the results of the shortcut and

Shockley diode model leads to the same results as in

[2, Fig. 15].

To get accurate simulation times, both models have

been run seven times and the mean value of the last five
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values has been computed. The corresponding results

are shown in Table 5.

shortcut
[s]

Shockley
[s]

Sh / sc
[%]

ode45 1.0377 2.6004 250.59

ode23 0.7594 1.7771 234.02

ode113 0.6529 1.4567 223.10

ode15s 1.2696 2.9795 234.67

ode23s 7.4267 2.4208 32.60

ode23t 0.8030 1.6715 208.16

ode23tb 0.9082 2.0373 224.33

Table 5: Simulation times for different solvers.

The differences between the solvers are astonish-

ingly small (with the exception of ode23s) – one

would expect that the stiff solvers like ode15s or

ode23s are much faster for the implicit Shockley

model. This is even more surprising in view of the much

better accuracy of the ode45 results.

Approximation of Shockley diode model. The

comparison of the Shockley and approximated Shock-

ley diodes (cf. Figure 14) almost reproduces the results

shown in [2, Fig. 16]. Only the errors differ: They again

have the form of spikes, but they are much more pro-

nounced here.

The real problem is to get the approximated model

to run at all: Trying different solvers and precisions and

all three values for the number N of breakpoints, one

very often gets an error. The proposed solution to use

a higher accuracy or switch to a LineSearch-based al-

gorithm usually makes things worse. The only solvers

that are working for all N with standard parameters are

ode23t and ode23tb. Since ode23t has shown to

be very inaccurate, ode23tb is used for the task.

Relevance of choice of algebraic state. The

Shockley models using uD or iD as algebraic variable

produce the same results, with differences much lower

than the solver tolerance. The runtimes are different,

though: The iD model is 2.4 times slower than the uD
version.

Quite interesting is the warning that appears, when

using the Runge-Kutta solvers ode45 or ode23 for

the iD version: It states a convergence problem when
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Figure 14: Comparison of Shockley and approx. Shockley

diode.

solving the algebraic loop, and falls back to a strategy

from an older Simulink version.

Investigation for real-time simulation. Differ-

entiating the constraint equation of uD for the Shockley

diode and replacing the appearing time derivatives, one

gets

u̇D =

[(
(R1 +R2)R2

L
− 1

C

)
i+

R2

L
uC

+

(
R2

2

L
− 1

C

)
IS

(
euD/UT −1

)
− R2

L
u0

]

·
(

R2IS

UT
euD/UT +1

)−1

This equation is hidden inside the uD_conducting
subsystem in Figure 12.

The three models of the shortcut, approximated and

explicite Shockley diode have been run each with a

variable step solver (ode45, εrel = 1e-6) and a fixed

step solver (ode4, εrel = 1e-8). As before the ap-

proximated model needed special attention: The alge-

braic loop solver had to use the TrustRegion algorithm

with ode45 and the LineSearch algorithm with ode4.

The differences between both runs are smaller than the
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solver tolerances for all models.

In addition, the explicit model using uD as state vari-

able and its alternative version based on iD have been

compared to the results of the implicit Shockley model.

Again all results agree, especially there is no drift of the

diode current as has been seen in [2].

3 Case Study Rotating
PendulumWith Free Flight
Phase

The third test model is a point mass swinging on a rope

of fixed length. According to the forces acting on the

mass, the movement can switch between swinging and

falling phases.

Description of model implementations. For

the implementation of the swinging mass a classic hy-

brid decomposition method is applied (cf. Figure 15).

The two subblocks Swinging and Falling model

the corresponding differential equations, they both out-

put the current state values and have control inputs to

enable or disable them. When enabled, new initial val-

ues are supplied by another input.

Figure 15: Rotating pendulum model.

The interesting part is the System Switch com-

ponent (cf. Figure 16). It gets the current values of the

state variables and outputs the control signals and new

initial values for the two “physical” subsystems. To this

end it computes the values of the event functions hF
(the rope force) and hS (the rope slack) and uses them

to trigger a state switch, which stores the current state.

Such a component has already been used in the bounc-

ing ball model (cf. Figure 6). Again Memory blocks

are necessary to break the algebraic loops.

Figure 16: System switch.

Basic simulation of phases. The basic model is

extended by a stop mechanism in the Output compo-

nent: A small subsystem stops the simulation, when the

angle ψ (measured against the lowest point) is below

π/10. This subsystem is triggered, when the angular

velocity goes through zero (at either direction). Run-

ning this model produces the results shown in Figure

17, which coincide with those in [2, Fig. 19]. The stop

time differs slightly, here it is t = 7.5965376 s, compared

to the value t = 7.5962714 s in [2].

Dependency of results from algorithms. The

standard procedure for comparing solver precisions has

been used again, the results are shown in Table 6. All

solvers are very precise here with the notable exception

of ode15s. Figure 18 displays some plots showing the

error over time.

x [1e-6 m] y [1e-6 m] ψ [1e-6]

ode45 0.0000 0.0000 0.0000

ode23 0.0001 0.0000 0.0001

ode113 0.0287 0.0080 0.0298

ode15s 35.3295 9.8355 36.6730

ode23s 0.0681 0.0504 0.0707

ode23t 0.5685 0.4418 0.5901

ode23tb 0.0535 0.0445 0.0555

Table 6: Absolute errors (compared to reference solution).

SNE 31(1) – 3/2021



41

Heitmann et al. Solving ARGESIM Benchmark C21 with Simulink

0 1 2 3 4 5 6 7 8
t [s]

-200

-100

0

100

200

 [°
]

Angle 

0 1 2 3 4 5 6 7 8
t [s]

-1

-0.5

0

0.5

1

x,
y 

[m
]

Position (x,y)

x
y

0 1 2 3 4 5 6 7 8
t [s]

0

100

200

300

400

h F [N
]

Rope force h F

0 1 2 3 4 5 6 7 8
t [s]

0

0.5

1

h S
 [m

2
]

Rope slack h S

Figure 17: Results of pendulum model.

Additionally, the impact of the tuning parameters

“Shape preservation” and “MinimalZcImpactIntegra-

tion” has been studied. While the second one has no

consequences, the first one has interesting effects: The

results of ode113 get better by more than a factor of

100, while those of ode15s get even worse by a factor

of 10.

External energy supply. The kick factor γ is de-

termined with a backwards running pendulum model,

which gives the same results as in [2, Table 6].

The real challenge here is the implementation of the

kick mechanism with its chain of interdepending events.

Since there are several very different mechanisms in

Simulink to create events, there are often special tricks

which make models simpler - but which are hard to

come up with. Instead we will try to design the model

in an as simple and straightforward manner as possible.

The kick is realized inside the Swinging block by

using the reset mechanism of the omega integrator and

providing two different initial values: one that is de-

fined by the System Switch when changing back to

the “swinging” phase, the other one is used at the kick
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Figure 18: Absolute errors in x for three solvers.

(cf. Figure 19). The signal isKick is used here in two

ways: Its value (0 or 1) switches between the two differ-

ent initial values, its change (0 → 1) triggers the kick.

To make this work, the signal has to return to 0 quickly

to make way for the usual system switching mechanism.

Figure 19: Swinging component with kick.

The chain of events is handled inside the Kick sub-

system (cf. Figure 20): As a first step the awaitKick
block outputs 1 as soon as the ψ amplitude gets small

enough, and enables the doKick block, which outputs

1 when ψ reaches 0 afterwards. Both blocks contain

only a Constant 1 and their output is initialised to

0. To guarantee that isKick returns to zero as fast as

possible a Hit Crossing block is added that creates
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an “infinitely short” signal at the time of the 0 → 1 tran-

sition.

Figure 20: Kick subsystem.

4 Conclusions

Simulink provides a lot of different tools to create

events and react to them together with special tricks

such as the second-order integrator component or tun-

ing parameters for the zero-crossing algorithm. But

sometimes they behaved inconsistently, without any

reason apparent to the user. Even worse, a few models

only ran after playing with different workarounds, like

adding Hit Crossing components or using very

special implementations of simple subtasks.

In every simulation environment one runs into a set

of typical problems, when the implementation of simple

ideas collides with basic patterns or paradigms within

the environment. Usually one builds up a collection

of workarounds for common problems. One goal of

the ARGESIM benchmarks is to provide a collection

of such solutions, maybe in the spirit of the Design Pat-
terns of object-oriented programming [12]. But unlike

in the OO world, the solutions found in modeling usu-

ally are bound to the specific simulation environment –

or even to a specific version.

Comparing the mathematical description of the

models and their implementation in Simulink, one finds

a lot of components that have no direct mathematical

counterpart. It would be much better if basic mathe-

matical ideas could be implemented in standard ways,

independent of the concrete environment used. But this

still remains a task for future simulation programs.
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Abstract.  Modelling of mechatronic systems often results 
in implicit model description. Simulation systems provide 
different strategies to deal with this kind of problem, re-
sulting in different modelling approaches. For this pur-
pose, Mathwork’s MATLAB system offers in its basic 
MATLAB system at programming level implicit ODE solv-
ers, and in its toolboxes Simulink and SimMechanics (on 
basis of the Modelica-like system SimScape) graphical 
modelling environment. This Benchmark Study compares 
these modelling approaches and the simulation efficiency 
and results on basis of the ARGESIM Benchmark C11 
‘SCARA Robot’. Additionally, the contribution’s investiga-
tions present a tuning of the PID control for point-to-point 
movement with and without collision prevention and in-
troduce a trajectory tracking control with collision preven-
tion, which improves the performance essentially. 

Introduction 
Classical derivation of models for mechanic systems re-
sults first in implicit models for the generalized coordi-
nates  , with mass matrix ,  , and with generalized 
forces , ,  with input (feedforward control :  , , ,  

Second, feedback control with actuators adds (state) 
equations for the actuators and feedback functions for 
control:   , ,   , ,  

And third, these implicit equations have to be trans-
formed into at least semi-linear state space form with 

‘combined’ state vector  , to be understood by an ODE 
solver of a ‘basic’ simulation system:          , , ,  , ,  

On the other side, today simulation environments offer 
graphical physical modelling with mechanical elements 
for the mechanical part following the Modelica concept 
[1] and graphical signal-oriented block modelling for the 
control part, as sketched in the following figure: 

 

 
 

1 Mechatronics in MATLAB 
MATLAB [7] offers modelling and simulation on all these 
above cited levels, from basic use of ODE solvers for the 
semi-linear state space form in basic MATLAB directly, 
via signal-oriented graphical modelling for the control 
part as well as for the mechanical part in Simulink, up 
until to use of SimMechanics for the mechanicals in com-
bination with Simulink for the control part. 

The user clearly expects that all approaches give the 
same simulation results. But as ‘higher’ modelling tech-
niques generate equations ‘automatically’ (a big comfort 
for the user), the models may differ in comparison with a 
‘laborious manually’ model setup. Consequently, sub-re-
sults may differ, especially if discrete elements and/or 
boundaries are implemented into the overall system. 

SNE 31(1), 2021, 43 - 51,  DOI: 10.11128/sne.31.bne11.10557 
Received: October 25, 2018; Revised: July 15, 2019;  
Revised: December 15, 2020; Accepted: January 20, 2021 
SNE - Simulation Notes Europe, ARGESIM Publisher Vienna 
ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org 



Batliner et al.   Benchmark C11 ‘SCARA Robot’ – MATLAB vs Simulink vs SimMechanics 

44     SNE 31(1) – 3/2021 

B N E 

The following investigations discuss alle three 
MATLAB modelling techniques in a case study with a 
specific SCARA robot and its environment, as defined in 
ARGESIM Benchmark C11 ‘SCARA Robot’, dealing 
with mechanics, control, and collision prevention for 
such type of robot [2]. Additionally, control is extended 
from point-to-point control to trajectory tracking control, 
increasing the complexity of both control and mechanical 
model. 

2 SCARA Robot Benchmark 

2.1 System Definition 
Following the definition of the ARGESIM Bench-
mark C11 ‘SCARA Robot’, the three axis SCARA robot 
type as shown in Figure 1 has two vertical revolute joints 
and one vertical prismatic joint. The axes of all three 
joints are parallel to the z-axis. 

 
Figure 1: Kinematic structure of a SCARA robot. 
 

The joint vector   consists of the joint angles q1 and q2 
and the joint distance q3. The equations of motion are 
given in the form ,  

The calculation of the moments of inertia is based on the 
assumption that the rods have a homogeneous mass dis-
tribution. The right hand side of the dynamic equation in-
cludes the joint torques and joint forces. The electric re-
lationship of the armature of a robot servo motor is given 
by the first order differential equation 1

 

where Uai is the applied armature voltage. The resulting 
armature current Ii is limited to maximum values Imax. 

The joint torques (forces) of a motor are proportional 
to the armature current Iai and given by 32  

The detailed equations and numerical data are taken from 
the definition ARGESIM Benchmark C11, see [2]. 

2.2 Implementation 
First, the simulators and their respective solvers are 
shortly portrayed and their handling of implicit systems. 
Then the basic model is implemented with the three sim-
ulators Simulink, SimMechanics and in MATLAB with 
solver ode15i. 

2.3 Point-to-point motion 
In order to control the point-to-point motion of the robot 
a single-axis PD-controller is employed for the control 
voltage: 

 
Initial values are q1 = q2 = q3 = 0, and the target values are 
q1 = q2 = 2 and q3 = 0.3. The velocities should be zero at 
start and end. 

2.4 Collision avoidance 
Based on the point-to-point motion now an obstacle has to 
be avoided. The obstacle is given by an elevated area with 
the height hobs and the borderline xobs (Figure 1). The bor-
der represents an obstacle for the end-effector of the robot 
arm. Possible contact has to be avoided and must be de-
tected during robot motion.  

Therefore, an obstacle sensor should measure the dis-
tance between end-effector and obstacle and if that falls 
below a critical value dcrit the controls of rotational drives 
must be changed until the tool tip has cleared the obstacle 
height. Maximum voltage may be used in this situation 
for motor 1 and motor 2 to obtain maximum deceleration. 

2.5 Trajectory tracking control 
Additionally to the tasks presented in ARGESIM Bench-
mark C11, we now introduce another task: a trajectory 
tracking control should be implemented to keep the end-
effector on a desired trajectory. The robot is assumed to be 
in the same environment with the obstacle as before.  

The foreseen trajectory should not only execute the 
point-to-point motion, but also bypass the obstacle 
providing a path which is planned from desired accelera-
tions. Both a PD and a PID controlled are implemented 
and compared. 
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3 Implementation 
3.1 Simulink 
Simulink is a widely used tool for modelling and simulat-
ing multidomain dynamic systems. It is integrated in the 
MATLAB environment and can be scripted from it. 
MATLAB is used here to parameterise the model and an-
alyse data. 

Simulink provides as primary interface a graphical 
block diagram tool. The blocks used treating this problem 
can be found in the model library. The chosen ODE solver 
is the variable step size, one step solver ode45, which is 
based on the Dormand-Prince pair. It is based on an ex-
plicit Runge-Kutta formula and calculates the 4th and 5th 
order accurate solution and takes the difference to be the 
fourth order error to estimate the adaptive step size [8].  

Implicit systems cannot be solved directly. Neverthe-
less, the implicit equation ,  was im-
plemented directly, but an algebraic loop break had to be 
added (Figure 2), which finds a solution for the system 
for every integration step. This is also possible in the 
presence of a hit-crossing block which is used in Sec-
tion 5 and works similar to the zero-crossing in the event 
function discussed in Section  3.3 [3]. 

Additionally, the model was implemented in an ex-
plicit form: the mass matrix M was inverted manually us-
ing the symbolic computation in MATLAB and conse-
quently the system  ,  was set up in 
Simulink using the graphical block diagrams (Figure 3).  

 
Figure 2: Implicit model description with Simulink. 

 
Figure 3: Explicit model description with Simulink. 

3.2 SimMechanics 
SimMechanics extends Simulink with tools for modelling 
three-dimensional mechanical systems within Simulink – 
being based on the general Modelica-like modelling sys-
tem SimScape. Instead of deriving and programming 
equations this multibody simulation tool can build mod-
els composed of bodies, joints, constraints and force ele-
ments which reflect the structure of the system. It is inte-
grated in Simulink and can be treated as a Simulink block, 
enabling physical model and control environment in one 
single system [6]. 

Consequently, simulating a SimMechanics model is a 
cooperative effort and consists of four steps: 

• model validation 
• machine initialisation 
• force analysis and motion integration 
• stiction mode iteration 

whereby although the last step being negligible for the 
given problem as stiction is not treated.  

The first two steps occur before the machine motion 
actually starts and checks all data entries, connections, 
assembly tolerances and validates the geometries and 
model topology. Moreover, machine initialisation cuts 
every closed loop and replaces it with a cut joint, con-
straint or driver block and checks all constraints and driv-
ers for mutual consistency and eliminates redundant con-
straints. In force analysis mode and motion integration, 
Simulink steps up in simulation time and solves the sys-
tem for every step while SimMechanics imposes assem-
bly tolerances and a constraint solver [5]. Unfortunately, 
an analytic model cannot be derived from the SimMe-
chanics block diagram. 

The problem was implemented by setting up the block 
model in Figure 4. Rigid bodies are connected through 
joints which can be selected from the model library. The 
model properties such as mass, inertia and geometry can 
be set in the model blocks. The blocks, however, must be 
steered and measured with actuators and joint sensors 
which are connected to the free docks in Figure 4. These 
can be integrated into the Simulink workflow. 

 
Figure 4: SimMechanics model. 
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3.3 MATLAB 
For comparison a model in MATLAB was imple-

mented. The solver ode15i in MATLAB can solve fully 
implicit differential and differential algebraic equations 
of the form  , , 0. 
Additionally, to the initial values the solver needs the in-
itial derivatives and the initial conditions must be con-
sistent, meaning , , 0. If needed they can be 
computed using the function decic in MATLAB.  

The solver uses a fixed leading coefficient implemen-
tation of the BDFs (backward differentiation formulas) in 
a Lagrangian form for the polynomial interpolation [6]. 
This leads to simple expressions, evaluated efficiently in 
MATLAB and convenient for event localisation. 

For the detection of state events the 'Events' property, 
in options set to function events, solves the system while 
also finding where user defined functions, called event 
functions, are zero. The event functions used for this 
problem are displayed in Section 5.2. At this point the 
system can come to a halt or is terminated. The event 
function is defined over a zero crossing, thus enabling the 
detection of the crossing through a change of sign [7]. 

Integrating the equations the solver passes the zero-
crossing, consequently missing the exact value of the 
zero-crossing. But the solver automatically goes back and 
iterates back and forth to find the exact whereabouts of 
the zero-crossing within a set tolerance. 

The system had to be reduced to a set of first order 
differential equations. Both sides of the equations have to 
be one as shown below. Hereby, T and O denote the joint 
torque (force) and the non-linear terms of the right-hand 
side of the equation: 

y=[q(4)-qdot (1);… 
q(5)-qdot(2);… 
q(6)-qdot(3); … 
ma11*qdot (4)+ma12*qdot (5)-T(1)-O(1);… 
ma21*qdot (4)+ma22*qdot (5)-T(2)-O( 2 );... 
ma33*qdot (6)-T(3)-O(3) ] 

4 Point-to-point Motion 
4.1 Simulink/SimMechanics 

For the point-to-point movement (Figure 5) both Sim-
ulink and SimMechanics use the same controller, as the 
SimMechanics model is treated as a Simulink block. The 
model with controller and plant, which consists of the 
electrical and the mechanical model, is displayed in Fig-
ure 6. A target vector is the input for submodel control 
model which contains the PD-controller.  

 
Figure 5: Point-to-point motion. 

 
Figure 6: Control model in Simulink. 

This was realised using the corresponding block from the 
Simulink library. 

The output voltage U is fed into submodel electric 
model (Figure 6), which models the servo motor. The re-
sulting torque T drives the mechanical system.  

To incorporate the boundaries of voltages and cur-
rents and subsequently torque, Simulink offers the option 
to comfortably set the saturation limits as displayed in the 
electrical model in Figure 7 by a saturation block. 
 

 
Figure 7: Electrical model. 

4.2 MATLAB 
For the point-to-point motion the model had to be ex-

tended by a control and servo motor model. These were 
integrated in the function deSCARA containing the robot 
equations. Moreover, armature current limits had to be 
implemented explicitly.  

This was put into effect using simple if - clauses in the 
function containing the system equations. The function is 
called by 

[ t q ] = ode15i (@deSCARA,… 
        …[ t0 tend ], q0, qdot0 ); 

where the timespan, initial values and derivatives have to 
be implemented in consistent form. 
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5 Collision Avoidance 

5.1 Simulink/SimMechanics 
For collision avoidance (Figure 8) a block called state con-
trol was added to the submodel control model in Figure 9. 

 
Figure 8: Collision avoidance. 

 
Figure 9: Extended control model. 

The distance between the obstacle and the tool tip is per-
manently checked. If it falls under the critical distance 
the target positions for q1 and q2 are changed to the cur-
rent position and the emergency maximum voltages are 
allowed. This is realised through a logic circuit which 
checks two conditions: One, is the robot in critical zone, 
and two, is the robot under hobs. If both conditions apply 
new set-points for q1 and q2 are enforced. For robot arm 
1 and arm 2 maximum voltage may be used to slow down 
and return to the position where the danger and subse-
quently a zero-crossing has been detected (as denoted in 
Section 3.1). Just after the tool tip of the robot has 
reached the height of the obstacle, at which only one of 
the two conditions applies, original target positions are 
reactivated for the arm 1 and arm 2. 

How this is realised displays Figure 10 which shows 
in detail the state control from Figure 9. The block state 
control checks if one or both conditions mentioned before 
apply. If they do, they change their respective value from 
0 to 1 and add up in block Add2. This sum now is the 
reference for the blocks threshold and Switch. Block 
threshold checks if this sum adds up to 2. If so, the switch 
forwards new set-points to the PD controller. 

 
Figure 10: State control. 

This point in time is determined accurately as the block 
enables zero-crossing detection.  

The new set-points forwarded to the block threshold 
do not have to be specified by the user, but are deter-
mined through another circuit which localises the joint 
position of arm 1 and arm 2 when they enter critical zone. 
This is done by the block Switch. It has as input the cur-
rent position and via a loop the last position. In critical 
zone, Switch forwards the looped values for q1 and q2 

while looping the same value. If one of the two condi-
tions is no longer fulfilled, the block threshold switches 
back to the original set-points.  

For the saturation limits in the controller, the state of 
the system is forwarded trough the output state and the 
change of saturation limit in the PD-controller is subse-
quently realised with a switch block. This way the user is 
not required to specify way-points for the case that the 
robot enters the critical zone. 

5.2 MATLAB 
Additionally to the PD-controller in Section 4.2, collision 
avoidance has to be implemented employing the event 
property in the options of the solver shown in code below 
and implementing two event functions (cf. Section 3.3). 
The event functions for the given problem are: cos cos  0 

Event specific parameters are returned from the function 
such as time and solution at a zero crossing and the cor-
responding type of event. This allows to stop the simula-
tion at the occurrence of an event and restart the simula-
tion with new setpoints.  

Other than in the models implemented with Simulink 
and SimMechanics, these new set-points were added man-
ually. Changing of set-point occurs twice: for entering crit-
ical zone and subsequent to reaching the admissible height, 
setting the setpoints back to the initial set-points.  
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The simulation runs until tend when the counter equals 1 
and the while-loop stops. Time and output vector are con-
catenated respectively every time the simulation is restarted: 

options = odeset ( ' Events ' , @eventFun ) ; 
while count==1 
[ t q te xv ereig ]=ode15i ( @deSCARA,… 
… [ t(end) tend ], q0, qdot0, options ) ; 
qout=[ qout; q( : , 1 ) ]; 
tout=[ tout; t ]; 
if ( t( end)>=tend ) 
     count=0; 
else 
     telen=length( te ); 
     if ereig( telen )==1 
         q1=1; q2=1; 
     else ereig ( telen )==2; 
         q1=2; q2=2; 
     end;  
end; end 

6 Trajectory Tracking 
6.1 Trajectory planning 
The trajectory control problem in the joint space consists 
of following a given time-varying trajectory qd (t) and its 
successive derivatives which respectively describe the 
desired velocity and acceleration [9]. The planned path 
(Figure 11) will execute the point-to-point movement 
treated earlier with a way-point at q1 = q2 = 1 and q3 = 0.3 
to avoid collision with the obstacle described in the prob-
lem definition.  

The velocities for start and end should be zero and 
naturally, the trajectories for the positions have to be 
smooth. For robot arm 1 two quadratic splines were cho-
sen. These lead to linear velocities and constant acceler-
ations. Robot arm 2 should have constant velocity, which 
leads to linear motion. To ensure smooth transition cubic 
splines were chosen for the path. Arm 3 has one cubic 
spline to the way-point and then stops. This results in lin-
ear acceleration. These variations in velocities and accel-
erations should unveil the capabilities and limits of the 
controller. For that purpose the SimMechanics model 
from the point-to-point motion is extended where the 
voltage restrictions still apply. 

6.2 PD-Control 
Based on PD-controller used earlier the tracking control-
ler has the form 

, ,  

where d marks the desired terms and the equations com-
putes the control voltage from the position and velocity 
errors while feeding forward the desired acceleration.  

 

 

 
Figure 11: Planned trajectories. 

Apart from the feed-forward acceleration it is the same 
closed loop behaviour as seen earlier and consequently 
the well-tuned parameters Pi and Di from the point-to-
point motion are used. 

6.3 PID-control 
The given problem with PD-control has global integral 
behaviour. This can be seen from the open-loop transfer 
function e.g. for arm 3 (gravity is unaccounted for) 

G 32  

or can be seen in the results of the point-to point move-
ment in Section 7.2 as no steady-state errors remains. 

To zero the velocity error for constant velocity [10] 
and consequently increase the overall performance a PID 
controller is implemented in the form 

, , ,  

where the coefficients given in Table 1 were found 
through pole placement and subsequently were tuned man-
ually. 
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Gains q1 q2 q3 
Proportional 1500 1000 15000 
Integral 10000 7500 5000 
Dervivative 10 25 10 

Table 1: Coeffcients for PID controller. 

7 Results 

7.1 Implementation 
The three implementations differ considerably in their 
modelling approach. In the Simulink block diagram mod-
elling approach the user has always the overview of the 
problem, even bigger problems can be well arranged, alt-
hough, setting up equations by blocks is comparably 
cumbersome. Even more, Simulink unveils its strength in 
handling the control model, as it offers out of the box 
blocks for most applications like saturation limits, and 
ready controller blocks. Zero-crossing for state events are 
detected automatically and offer the user a rather com-
fortable experience. 

For modelling a mechanical system from scratch, 
SimMechanics offers the quickest and most intuitive ap-
proach to model the physical system as there is not even 
the need to derive equations. However, other than the 
other simulators one has to deal with the geometric prop-
erty of the model, as the geometric relations of the joints 
and bodies have to be specified explicitly in the coordi-
nate system. In recent MATLAB versions SimMechanics 
has been based on SimScape, a general denominator for 
‘physical’ modelling in mechatronics, electrical engi-
neering and other domains, following the Modelica ap-
proach; as consequence, coordinate systems can be 
avoided. A big advantage is that SimMechanics is fully 
integrated over the actuators and sensors in the Simulink 
control environment where it is treated as another block. 
It therefore uses all the Simulink functionality regarding 
state detection, but it does in turn not offer full insight in 
the process running in the background setting up the me-
chanical model. 

For a given problem with given equations basic 
MATLAB offers with solver ode15i a reliable and reason-
ably quick implementation for the experienced user to di-
rectly compute the given fully implicit equations. The 
state event property is well integrated in the solver, which 
is specified over the option set. 

 

However, out of all three approaches the user proba-
bly spends the most time debugging in MATLAB, as one 
could easily lose track in the vast amount of variables to 
be defined. The control law and saturation limits have to 
be integrated additionally into the functions containing 
the set of equations which enlarge the formulas and less-
ens the overview. 

7.2 Point-to-point motion 
All three approaches execute the point-to-point motion as 
expected. The result for the Simulink model can be seen 
in Figure 12. 

 
Figure 12: Point-to-point motion in Simulink. 

Model description Norm. CPU-time 
Simulink explicit 1 
Simulink implicit 3.7 
MATLAB ode15i 4.6 
SimMechanics 6.5 ( 4.2) 

Table 2: Computation time. 

Table 2 shows the normed computation time of the ap-
proaches for this task. The processing times were meas-
ured from MATLAB using the tic and toc command. Nat-
urally, the explicit model description with Simulink with 
inverted mass matrix takes by far the least computation 
time. The implicit description from Simulink with alge-
braic loop breaking and MATLAB with implicit solver 
ode15i are comparable. However, the model imple-
mented with SimMechanics almost doubles the time of 
the Simulink implicit model although it uses the same 
solver and no model manipulation was done beforehand. 
Recent developments with the SimScape basis have done 
significant improvement and increased the speed (time in 
parenthesis). 
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Figure 13: Comparison of stepsize. 

 
Figure 14: Comparison detail plot. 

 
Figure 15: Differences Simulink - SimMechanics 

Figure 13 shows the comparison of adaptive stepsizes the 
ODE solver ode45 used for the Simulink implicit model 
and the SimMechanics model. They not only use the same 
default solver but also have roughly the same step size. 

Therefore, the higher computation time results from 
the premotion model validation and the cooperative solv-
ing effort discussed in Section 3.2.  

Additionally, in Figure 14 a detail plot of coordinate 
q3 for the point-to-point motion in Simulink, SimMechan-
ics and MATLAB ode15i is shown. One can easily see that 
Simulink and MATLAB results are matching; interest-
ingly, the SimMechanics result is a bit off – reason may 
be a difference in the equations fixed before or automat-
ically derived, resp. A comparison of the three angles be-
tween Simulink and SimMechanics is depicted in Fig-
ure 15: Again, it shows the difference in q3, which gives 
a hint for a different integration of the controller in the 
SimMechanics model. 

7.3 Collision avoidance 
Both Simulink and MATLAB deliver the same results 
within a numerical tolerance. This comes as no surprise for 
the implicit Simulink model and the implementation with 
MATLAB ode15i as they solve the same set of equations, 
but it verifies the SimMechanics model in its accuracy. 

Figure 16 shows result of the collision avoidance in 
SimMechanics with the path of the tool-tip in x-direction 
and the overlay of the obstacle. The plot shows particu-
larly well that the end-effector stabilises on the edge of 
the critical zone while robot arm 3 gains height. The 
adaptive stepsize of the solver ode45 can be seen from 
the Figure 17 which is a detail plot of Figure 16 and it 
clearly shows how the stepsize is reduced at a detection 
of a state event. 

 
Figure 16: Collision avoidance in SimMechanics. 

 
Figure 17: Step size at event detection. 
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7.4 Trajectory tracking 
The deviations of the desired path can be seen in Fig-
ure 18 for PD control. It can be seen that for constant ve-
locity for link 2 the deviation is proportional to the veloc-
ities. The position error however, decreases with decreas-
ing velocities to zero as the global integral behaviour of 
the plant suggests. 

 
Figure 18: Position error PD-controller. 

Figure 19 shows the deviations for the PID controller. 
When link 2 enters the part with constant velocity at t = 1, 
the position error for link 2 stabilises on zero after an in-
itial overshoot. Here the PID-control comes into effect 
(as denoted in Section 6.3), zeros the velocity error for 
constant velocity and consequently the position error. 

 
Figure 19: Position error PID-controller. 

This can be shown with the response to a ramp input (Fig-
ure 20) for e.g. q2 as the deviation for PID control to the 
ramp input vanishes [10]. 

 
Figure 20: Ramp response. 

As the two links are coupled, a little disturbance occurs 
when link 1 changes the sign of acceleration which is 
consequently absorbed by the controller. However, the 
position error of q3 has an unexpected behaviour, which 
could result from the unaccounted gravity term. In Fig-
ure 19 it can be seen that at tend = 4 for PID controller the 
model deviates from the trajectory, which consequently 
disappears as the controller integrates the position error 
and no steady state error remains. 

Summing up it can be said that the error polynomials 
from Figure 18 are reduced one order to Figure 19 and 
the deviations are reduced approximately one order of 
magnitude due to the additional integrative term of the 
PID-controller. Hence, the overall performance has in-
creased significantly. 
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VESS – Virtual EUROSIM Seminar 
Virtual Simulation Presentations, since June 2020   www.eurosim2023.eu 

 

  
SIMS EUROSIM Conference 2021 
Sept. 21-23, 2021, Oulu, Finland      www.scansims.org 

 

   
MATHMOD Vienna 2022 
Feb. 16-18, 2022, Vienna, Austria        www.mathmod.at 

 

  
EUROSIM CONGRESS 2023 
Spring/Autumn 2023, Amsterdam, The Netherlands  www.eurosim2023.eu 
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Simulation Notes Europe  SNE  is the official member-
ship journal of EUROSIM and distributed / available to 
members of the EUROSIM Societies as part of the mem-
bership benefits.  
If you have any information, announcement, etc. you 
want to see published, please contact a member of the ed-
itorial board in your country or the editorial office. For 
scientific publications, please contact the EiC. 
This EUROSIM Data & Quick Info compiles data from 
EUROSIM societies and groups: addresses, weblinks, and 
officers of societies with function and email, to be pub-
lished regularly in SNE issues. This information is also 
published at EUROSIM’s website www.eurosim.info. 

SNE Reports Editorial Board 
EUROSIM  Miguel Mujica Mota, m.mujica.mota@hva.nl 
                  Nikolas Popper, niki.popper@dwh.at 
ASIM  A. Körner, andreas.koerner@tuwien.ac.at 
CEA-SMSG  Emilio Jiménez, emilio.jimenez@unirioja.es 
CSSS  Mikuláš  Alexík, alexik@frtk.utc.sk 
DBSS  M. Mujica Mota, m.mujica.mota@hva.nl 
LIOPHANT  F. Longo, f.longo@unical.it 
LSS  Juri Tolujew, Juri.Tolujew@iff.fraunhofer.de 
KA-SIM  Edmond Hajrizi, info@ka-sim.com 
NSSM  Y. Senichenkov, senyb@dcn.icc.spbstu.ru 
PSCS  Zenon Sosnowski, zenon@ii.pb.bialystok.pl 
SIMS  Esko Juuso, esko.juuso@oulu.fi 
SLOSIM  Vito Logar, vito.logar@fe.uni-lj.si 
UKSIM  David Al-Dabass. david.al-dabass@ntu.ac.uk 
ROMSIM  Constanta Zoe Radulescu, zoe@ici.ro 
ALBSIM  Majlinda Godolja, majlinda.godolja@feut.edu.al 

SNE Editorial Office /ARGESIM     
 www.sne-journal.org, www.eurosim.info 
  office@sne-journal.org, eic@sne-journal.org 
  SNE Editorial Office 

       Johannes Tanzler (Layout, Organisation) 
       Irmgard Husinsky (Web, Electronic Publishing) 
       Felix Breitenecker EiC (Organisation, Authors) 
       ARGESIM/Math. Modelling & Simulation Group,  
       Inst. of Analysis and Scientific Computing, TU Wien 
       Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria 
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EUROSIM 
Federation of European 
Simulation Societies 

General Information.   EUROSIM, the Federation of Eu-
ropean Simulation Societies, was set up in 1989. The pur-
pose of EUROSIM is to provide a European forum for 
simulation societies and groups to promote modelling 
and simulation in industry, research, and development – 
by publication and conferences.  www.eurosim.info 
Member Societies.   EUROSIM members may be na-
tional simulation societies and regional or international 
societies and groups dealing with modelling and simula-
tion. At present EUROSIM has Full Members and Ob-
server Members (*), and Member Candidates (**). 

 

ASIM Arbeitsgemeinschaft Simulation 
Austria, Germany, Switzerland 

CEA-SMSG Spanish Modelling and Simulation Group; Spain 
CSSS Czech and Slovak Simulation Society 

Czech Republic, Slovak Republic 
DBSS Dutch Benelux Simulation Society 

Belgium, Netherlands 
KA-SIM Kosovo Simulation Society, Kosovo 

LIOPHANT LIOPHANT Simulation Club; Italy & International 
LSS Latvian Simulation Society; Latvia 
PSCS Polish Society for Computer Simulation; Poland 
NSSM Russian National Simulation Society 

Russian Federation 
SIMS Simulation Society of Scandinavia 

Denmark, Finland, Norway, Sweden 
SLOSIM Slovenian Simulation Society; Slovenia 
UKSIM United Kingdom Simulation Society 

UK, Ireland 
ALBSIM Albanian Simulation Society*; Albania 
ROMSIM Romanian Society for Modelling and  

Simulation*; Romania 
Societies in Re-Organisation: 
CROSSIM Croatian Society f. Simulation Modeling; Croatia 

FRANCOSIM Société Francophone de Simulation 
Belgium, France 

HSS Hungarian Simulation Society; Hungary 
ISCS Italian Society for Computer Simulation, Italy 

EUROSIM Board / Officers.   EUROSIM is governed by a 
board consisting of one representative of each member soci-
ety, and president, past president, and SNE representative. 
The President is nominated by the society organising the 
next EUROSIM Congress. Secretary, and Treasurer are 
elected out of members of the board. 

President M. Mujica Mota (DBSS), 
m.mujica.mota@hva.nl 

Past President Emilio Jiménez (CAE-SMSG), 
emilio.jimenez@unirioja.es 

Secretary Niki Popper, niki.popper@dwh.at  

Treasurer Felix Breitenecker (ASIM) 
felix.breitenecker@tuwien.ac.at 

Webmaster Irmgard Husinsky,  
irmgard.husinsky@tuwien.ac.at 

SNE Editor F. Breitenecker, eic@sne-journal.org 
 
SNE – Simulation Notes Europe.   SNE is EUROSIM’s scien-
tific journal with peer reviewed contributions as well as a 
membership journal for EUROSIM with information from 
the societies. EUROSIM societies distribute SNE (electronic 
or printed) to their members as official membership journal. 
SNE Publishers are EUROSIM, ARGESIM and ASIM. 

SNE   
  Editor-in-Chief 

Felix Breitenecker 
eic@sne-journal.org 

 www.sne-journal.org,                 office@sne-journal.org 

EUROSIM Congress and Conferences.    
Each year a major EUROSIM event takes place, the EUROSIM 
CONGRESS organised by a member society, SIMS EUROSIM 
Conference, and MATHMOD Vienna Conference (ASIM). 

EUROSIM Congress 2019, the 10th EUROSIM Congress, 
was organised by CEA-SMSG, the Spanish Simulation Soci-
ety, in La Rioja, Logroño, Spain, July 1-5, 2019;  

Due to Covid-19 virus in 2020 no EUROSIM events take 
place. To bridge this gap, EUROSIM is organising the series 
VESS - Virtual EUROSIM Simulation Seminar – seminars by 
simulation professionalists (2 hours via web), in preparation 
for upcoming EUROSIM events.  www.eurosim2023.eu 

Next main event is SIMS EUROSIM Conference 2021, 
September 21–23, 2021, Oulu, Finland. SIMS, the Scandina-
vian simulation society, extends every third year the annual 
SIMS Conference to the SIMS EUROSIM Conference.  

 www.scansims.org 
MATHMOD Vienna. This triennial EUROSIM Confer-

ence is mainly organized by ASIM, the German simulation 
society, and ARGESIM, with main co-sponsor IFAC.  
MATHMOD 2022, the 10th MATHMOD Vienna Conference 
on Mathematical Modelling will take place in Vienna, 
Februray 16-18, 2022.  www.mathmod.at 

EUROSIM Congress 2023, the 11th EUROSIM Congress, 
will be organised by DBSS, the Dutch Benelux simulation 
society, in Amsterdam, Spring/Autumn 2023. 
  www.eurosim2023.eu 

Furthermore, EUROSIM Societies organize also local 
conferences, and EUROSIM co-operates with the organiz-
ers of the  I3M Conference Series.  

 www.liophant.org/conferences/ 
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EUROSIM Member Societies 
ASIM 
German Simulation Society 
Arbeitsgemeinschaft Simulation 

ASIM (Arbeitsgemeinschaft Simulation) is the associa-
tion for simulation in the German speaking area, servic-
ing mainly Germany, Switzerland and Austria. ASIM was 
founded in 1981 and has now about 400 individual mem-
bers (including associated), and 90 institutional or industrial 
members.  

 www.asim-gi.org with members’ area 
 info@asim-gi.org, admin@asim-gi.org  
 ASIM – Inst. of Analysis and Scientific Computing 
Vienna University of Technology (TU Wien) 
Wiedner Hauptstraße 8-10, 1040 Vienna, Austria 

 

ASIM  Officers  

President Felix Breitenecker 
felix.breitenecker@tuwien.ac.at 

Vice presidents Sigrid Wenzel, s.wenzel@uni-kassel.de 
T. Pawletta, thorsten.pawletta@hs-wismar.de 
A. Körner, andreas.koerner@tuwien.ac.at 

Secretary Ch. Deatcu, christina.deatcu@hs-wismar.de 
 I. Husinsky, Irmgard.husinsky@tuwien.ac.at 
Membership 
Affairs 

S. Wenzel, s.wenzel@uni-kassel.de 
Ch. Deatcu, christina.deatcu@hs-wismar.de 
F. Breitenecker, felix.breitenecker@tuwien.ac.at 

Repr. EUROSIM F. Breitenecker, felix.breitenecker@tuwien.ac.at 
A. Körner, andreas.koerner@tuwien.ac.at 

Internat. Affairs 
– GI Contact 

O. Rose, Oliver.Rose@tu-dresden.de  
N. Popper, niki.popper@dwh.at 

Editorial Board 
SNE 

T. Pawletta, thorsten.pawletta@hs-wismar.de 
Ch. Deatcu, christina.deatcu@hs-wismar.de 

Web EUROSIM I. Husinsky, Irmgard.husinsky@tuwien.ac.at 
Last data update April 2020 

 

ASIM is organising / co-organising the following interna-
tional conferences: 
• ASIM Int. Conference ‘Simulation in Production 

and Logistics’ – biannual 
• ASIM ‘Symposium Simulation Technique’  

– biannual 
• MATHMOD Int. Vienna Conference on  

Mathmatical Modelling – triennial 
 
Furthermore, ASIM is co-sponsor of WSC - Winter Simu-
lation Conference, of SCS conferences SpringSim and 
SummerSim, and of I3M and Simutech conference series. 
 

ASIM Working Committees 

GMMS Methods in Modelling and Simulation 
Th. Pawletta, thorsten.pawletta@hs-wismar.de 

SUG 
Simulation in Environmental Systems 
Jochen Wittmann,  
wittmann@informatik.uni-hamburg.de 

STS Simulation of Technical Systems 
Walter Commerell, commerell@hs-ulm.de 

SPL Simulation in Production and Logistics 
Sigrid Wenzel, s.wenzel@uni-kassel.de 

EDU Simulation in Education/Education in Simulation 
A. Körner, andreas.koerner@tuwien.ac.at 

BIG  
DATA 

Working Group Data-driven Simulation in Life  
Sciences; niki.popper@dwh.at 

WORKING 
GROUPS 

Simulation in Business Administration, in Traffic 
Systems, for Standardisation, etc. 

 

CEA-SMSG – Spanish Modelling and 
Simulation Group 
CEA is the Spanish Society on Automation and Control 
and it is the national member of IFAC (International Fed-
eration of Automatic Control) in Spain. Since 1968 CEA-
IFAC looks after the development of the Automation in 
Spain, in its different issues: automatic control, robotics, 
SIMULATION, etc. The association is divided into na-
tional thematic groups, one of which is centered on Mod-
eling, Simulation and Optimization, constituting the CEA 
Spanish Modeling and Simulation Group (CEA-SMSG). It 
looks after the development of the Modelling and Simu-
lation (M&S) in Spain, working basically on all the issues 
concerning the use of M&S techniques as essential engi-
neering tools for decision-making and optimization. 

 http://www.ceautomatica.es/grupos/ 
 emilio.jimenez@unirioja.es 

 simulacion@cea-ifac.es 
 CEA-SMSG / Emilio Jiménez, Department of Electrical 
Engineering, University of La Rioja, San José de Calasanz 
31, 26004 Logroño (La Rioja), SPAIN 

CEA - SMSG Officers 
President Emilio Jiménez, 

 emilio.jimenez@unirioja.es 
Vice president Juan Ignacio Latorre, 

juanignacio.latorre@unavarra.es 
Repr. EUROSIM Emilio Jiménez, emilio.jimenez@unirioja.es 

Edit. Board SNE Juan Ignacio Latorre, 
juanignacio.latorre@unavarra.es 

Web EUROSIM Mercedes Perez mercedes.perez@unirioja.es 
Last data update February 2018 
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CSSS – Czech and Slovak 
Simulation Society 

CSSS -The Czech and Slovak Simulation Society has about 
150 members working in Czech and Slovak national sci-
entific and technical societies (Czech Society for Applied 
Cybernetics and Informatics, Slovak Society for Applied 
Cybernetics and Informatics). CSSS main objectives are: 
development of education and training in the field of mod-
elling and simulation, organising professional workshops 
and conferences, disseminating information about model-
ling and simulation activities in Europe. Since 1992, CSSS 
is full member of EUROSIM. 

 www.fit.vutbr.cz/CSSS 
 snorek@fel.cvut.cz 

 CSSS / Miroslav Šnorek, CTU Prague 
FEE, Dept. Computer Science and Engineering, 
Karlovo nam. 13, 121 35 Praha 2, Czech Republic 

CSSS  Officers 
President Miroslav Šnorek, snorek@fel.cvut.cz 
Vice president Mikuláš Alexík, alexik@frtk.fri.utc.sk 
Scientific Secr. A. Kavi ka, Antonin.Kavicka@upce.cz 
Repr. EUROSIM Miroslav Šnorek, snorek@fel.cvut.cz 
Edit. Board SNE Mikuláš Alexík, alexik@frtk.fri.utc.sk 
Web EUROSIM Petr Peringer, peringer@fit.vutbr.cz 

 Last data update December 2012 

DBSS – Dutch Benelux Simulation Society 
The Dutch Benelux Simulation Society (DBSS) was 
founded in July 1986 in order to create an organisation of 
simulation professionals within the Dutch language area. 
DBSS has actively promoted creation of similar organisa-
tions in other language areas. DBSS is a member of EU-
ROSIM and works in close cooperation with its members 
and with affiliated societies.  

 www.DutchBSS.org 
 a.w.heemink@its.tudelft.nl 
 DBSS / A. W. Heemink 
Delft University of Technology, ITS - twi, 
Mekelweg 4, 2628 CD Delft, The Netherlands 

DBSS Officers 
President M. Mujica Mota, m.mujica.mota@hva.nl 
Vice president A. Heemink, a.w.heemink@its.tudelft.nl 
Treasurer A. Heemink, a.w.heemink@its.tudelft.nl 
Secretary P. M. Scala, p.m.scala@hva.nl 
Repr. EUROSIM M. Mujica Mota, m.mujica.mota@hva.nl 
Edit. SNE/Web M. Mujica Mota, m.mujica.mota@hva.nl 

 Last data update June 2016 

 
LIOPHANT Simulation 

Liophant Simulation is a non-profit association born in 
order to be a trait-d'union among simulation developers 
and users; Liophant is devoted to promote and diffuse the 
simulation techniques and methodologies; the Associa-
tion promotes exchange of students, sabbatical years, or-
ganization of International Conferences, courses and in-
ternships focused on M&S applications.  

 www.liophant.org 
 info@liophant.org 

 LIOPHANT Simulation, c/o Agostino G. Bruzzone, 
DIME, University of Genoa, Savona Campus 
via Molinero 1, 17100 Savona (SV), Italy 

LIOPHANT Officers 
President A.G. Bruzzone, agostino@itim.unige.it 
Director E. Bocca, enrico.bocca@liophant.org 
Secretary A. Devoti, devoti.a@iveco.com 
Treasurer Marina Massei, massei@itim.unige.it 
Repr. EUROSIM A.G. Bruzzone, agostino@itim.unige.it 
Deputy F. Longo, f.longo@unical.it 
Edit. Board SNE F. Longo, f.longo@unical.it  
Web EUROSIM F. Longo, f.longo@unical.it 

 Last data update June 2016 

LSS – Latvian Simulation Society 
The Latvian Simulation Society (LSS) has been founded 
in 1990 as the first professional simulation organisation 
in the field of Modelling and simulation in the post-So-
viet area. Its members represent the main simulation cen-
tres in Latvia, including both academic and industrial 
sectors. 

 www.itl.rtu.lv/imb/ 
 Egils.Ginters@rtu.lv 
 Prof. Egils Ginters, Kirshu Str.13A, Cesis LV-4101,  
Latvia 

LSS Officers 
President Yuri Merkuryev, merkur@itl.rtu.lv 
Vice President Egils Ginters, egils.ginters@rtu.lv 
Secretary Artis Teilans, artis.teilans@rta.lv 
Repr. EUROSIM Egils Ginters, egils.ginters@rtu.lv 
Deputy Artis Teilans, artis.teilans@rta.lv 
Edit. Board SNE Juri Tolujew, Juri.Tolujew@iff.fraunhofer.de 
Web EUROSIM Vitaly Bolshakov, vitalijs.bolsakovs@rtu.lv 

 Last data update November 2020 
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KA-SIM Kosovo Simulation Society 
Kosova Association for Modeling and Simulation (KA-
SIM, founded in 2009), is part of Kosova Association of 
Control, Automation and Systems Engineering (KA-
CASE). KA-CASE was registered in 2006 as non Profit 
Organization and since 2009 is National Member of IFAC 
– International Federation of Automatic Control. KA-SIM 
joined EUROSIM as Observer Member in 2011. In 2016, 
KA-SIM became full member. 
KA-SIM has about 50 members, and is organizing the in-
ternational conference series International Conference in 
Business, Technology and Innovation, in November, in 
Durrhes, Albania, and IFAC Simulation Workshops in 
Pristina. 
 

  www.ubt-uni.net/ka-case 
  ehajrizi@ubt-uni.net 
 MOD&SIM KA-CASE;   Att. Dr. Edmond Hajrizi 

      Univ. for Business and Technology (UBT) 
      Lagjja Kalabria p.n., 10000 Prishtina, Kosovo 
 

KA-SIM Officers 
President Edmond Hajrizi, ehajrizi@ubt-uni.net 
Vice president Muzafer Shala, info@ka-sim.com 
Secretary Lulzim Beqiri, info@ka-sim.com 
Treasurer Selman Berisha, info@ka-sim.com 
Repr. EUROSIM Edmond Hajrizi, ehajrizi@ubt-uni.net 
Deputy Muzafer Shala, info@ka-sim.com 
Edit. Board SNE Edmond Hajrizi, ehajrizi@ubt-uni.net 
Web EUROSIM Betim Gashi, info@ka-sim.com 

 Last data update December 2016 

 

 

NSSM – National Society for Simulation 
Modelling (Russia) 
NSSM - The Russian National Simulation Society 
(    -

 – ) was officially registered in Russian 
Federation on February 11, 2011. In February 2012 NSS 
has been accepted as an observer member of EUROSIM, 
and in 2015 NSSM has become full member. 

 www.simulation.su 
 yusupov@iias.spb.su 
 NSSM / R. M. Yusupov,  
St. Petersburg Institute of Informatics and Automation 
RAS, 199178, St. Petersburg, 14th lin. V.O, 39  

NSSM Officers 
President R. M. Yusupov, yusupov@iias.spb.su 
Chair Man. Board A. Plotnikov, plotnikov@sstc.spb.ru 
Secretary M. Dolmatov, dolmatov@simulation.su 

Repr. EUROSIM R.M. Yusupov, yusupov@iias.spb.su  
Y. Senichenkov,  

senyb@dcn.icc.spbstu.ru 
Deputy B. Sokolov, sokol@iias.spb.su 
Edit. Board SNE Y. Senichenkov, senyb@mail.ru, 

senyb@dcn.icc.spbstu.ru,  
 Last data update February 2018 

PSCS – Polish Society for Computer 
Simulation 
PSCS was founded in 1993 in Warsaw. PSCS is a scien-
tific, non-profit association of members from universi-
ties, research institutes and industry in Poland with com-
mon interests in variety of methods of computer simula-
tions and its applications. At present PSCS counts 257 
members. 

 
 www.eurosim.info, www.ptsk.pl/ 
 leon@ibib.waw.pl 
 PSCS / Leon Bobrowski, c/o IBIB PAN, 
ul. Trojdena 4 (p.416), 02-109 Warszawa, Poland 

 
PSCS Officers 
President Leon Bobrowski, leon@ibib.waw.pl 
Vice president Tadeusz Nowicki,  

Tadeusz.Nowicki@wat.edu.pl 
Treasurer Z. Sosnowski, zenon@ii.pb.bialystok.pl 
Secretary Zdzislaw Galkowski, 

Zdzislaw.Galkowski@simr.pw.edu.pl 
Repr. EUROSIM Leon Bobrowski, leon@ibib.waw.pl 
Deputy Tadeusz Nowicki, tadeusz.nowicki@wat.edu.pl 
Edit. Board SNE Zenon Sosnowski, z.sosnowski@pb.ed.pl 
Web EUROSIM Magdalena Topczewska  

m.topczewska@pb.edu.pl 
 Last data update December2013 
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SIMS – Scandinavian Simulation Society 
SIMS is the Scandinavian Simulation Society with mem-
bers from the five Nordic countries Denmark, Finland, 
Iceland, Norway and Sweden. The SIMS history goes 
back to 1959. SIMS practical matters are taken care of by 
the SIMS board consisting of two representatives from 
each Nordic country (Iceland one board member). 

 
SIMS Structure. SIMS is organised as federation of re-
gional societies. There are FinSim (Finnish Simulation 
Forum), MoSis (Society for Modelling and Simulation in 
Sweden), DKSIM (Dansk Simuleringsforening) and 
NFA (Norsk Forening for Automatisering).  
 

 www.scansims.org 
 bernt.lie@usn.no 
 SIMS / Bernt Lie, Faculty of Technology, Univ.College of 
Southeast Norway, Department of Technology, Kjølnes 
ring 56, 3914 Porsgrunn, Norway 

 
SIMS Officers 
President Bernt Lie, Bernt.Lie@usn.no  
Vice president Erik Dahlquist, erik.dahlquist@mdh.se 
Treasurer Vadim Engelson,  

vadime@mathcore.com 
Repr. EUROSIM Esko Juuso, esko.juuso@oulu.fi 
Edit. Board SNE Esko Juuso, esko.juuso@oulu.fi 
Web EUROSIM Vadim Engelson,  

vadime@mathcore.com 
 Last data update February 2020 

 
 

 

 

SLOSIM – Slovenian 
Society for Simulation 
and Modelling 

SLOSIM - Slovenian Society for Simulation and 
Modelling was established in 1994 and became the 
full member of EUROSIM in 1996. Currently it has 90 
members from both Slovenian universities, institutes, 
and industry. It promotes modelling and simulation 
approaches to problem solving in industrial as well as 
in academic environments by establishing communi-
cation and cooperation among corresponding teams. 
 

 www.slosim.si 
 slosim@fe.uni-lj.si 
 SLOSIM / Vito Logar, Faculty of Electrical  
Engineering, University of Ljubljana,  
Tržaška 25, 1000 Ljubljana, Slovenia 

 

SLOSIM Officers 
President Vito Logar, vito.logar@fe.uni-lj.si  
Vice president Božidar Šarler, bozidar.sarler@ung.si 
Secretary Simon Tomaži , simon.tomazic@fe.uni-lj.si 
Treasurer Milan Sim i , milan.simcic@fe.uni-lj.si 
Repr. EUROSIM B. Zupan i , borut.zupancic@fe.uni-lj.si 
Deputy Vito Logar, vito.logar@fe.uni-lj.si 
Edit. Board SNE R. Karba, rihard.karba@fe.uni-lj.si 
Web EUROSIM Vito Logar, vito.logar@fe.uni-lj.si 

 Last data update December 2018 

UKSIM - United Kingdom Simulation Society 
The UK Simulation Society is very active in organizing 
conferences, meetings and workshops. UKSim holds its 
annual conference in the March-April period. In recent 
years the conference has always been held at Emmanuel 
College, Cambridge. The Asia Modelling and Simulation 
Section (AMSS) of UKSim holds 4-5 conferences per 
year including the EMS (European Modelling Sympo-
sium), an event mainly aimed at young researchers, orga-
nized each year by UKSim in different European cities.  
Membership of the UK Simulation Society is free to par-
ticipants of any of our conferences and their co-authors.  

 

uksim.info 
 david.al-dabass@ntu.ac.uk 

 UKSIM / Prof. David Al-Dabass 
Computing & Informatics,  
Nottingham Trent University 
Clifton lane, Nottingham, NG11 8NS, United King-
domUKSIM Officers 
President David Al-Dabass, 

david.al-dabass@ntu.ac.uk 
Secretary T. Bashford, tim.bashford@uwtsd.ac.uk 
Treasurer D. Al-Dabass, david.al-dabass@ntu.ac.uk 
Membership 
chair 

G. Jenkins, glenn.l.jenkins@smu.ac.uk 

Local/Venue chair Richard Cant, richard.cant@ntu.ac.uk 
Repr. EUROSIM Dr Taha Osman, taha.osman@ntu.ac.uk 
Deputy T. Bashford, tim.bashford@uwtsd.ac.uk 
Edit. Board SNE D. Al-Dabass, david.al-dabass@ntu.ac.uk 

 Last data update March 2020 

 
  



  Information EUROSIM and EUROSIM Societies  

   SNE 31(1) – 3/2021 N 7 

 

EUROSIM Observer Members 
 

ROMSIM – Romanian Modelling and 
Simulation Society 
ROMSIM has been founded in 1990 as a non-profit soci-
ety, devoted to theoretical and applied aspects of model-
ling and simulation of systems. ROMSIM currently has 
about 100 members from Romania and Moldavia. 

 www.eurosim.info/societies/romsim/ 
 florin_h2004@yahoo.com 
 ROMSIM / Florin Hartescu,  
National Institute for Research in Informatics, Averescu 
Av. 8 – 10, 011455 Bucharest, Romania 

 
ROMSIM Officers 
President N. N. 
Vice president Florin Hartescu, 

 florin_h2004@yahoo.com 
Marius Radulescu,  
     mradulescu.csmro@yahoo.com 

Repr. EUROSIM Marius Radulescu,  
     mradulescu.csmro@yahoo.com 

Deputy Florin Hartescu,  
florin_h2004@yahoo.com 

Edit. Board SNE Constanta Zoe Radulescu, zoe@ici.ro 
Web EUROSIM Florin Hartescu, 

florin_h2004@yahoo.com 
 Last data update  June 2019 

 

ALBSIM – Albanian Simulation Society 
The Albanian Simulation Society has been initiated at the 
Department of Statistics and Applied Informatics, Fac-
ulty of Economy at the University of Tirana, by Prof. Dr. 
Kozeta Sevrani.  

The society is involved in different international and 
local simulation projects, and is engaged in the organisa-
tion of the conference series ISTI - Information Systems 
and Technology. In July 2019 the society was accepted 
as EUROSIM Observer Member. 

 
 
 
 
 
 
 
 
 

 
 
 
 

 www.eurosim.info/societies/albsim/ 
 kozeta.sevrani@unitir.edu.al 
  Albanian Simulation Goup, attn. Kozeta Sevrani 
University of Tirana, Faculty of Economy  
 rr. Elbasanit,  Tirana 355  Albania 

 

Albanian Simulation Society-  Officers  
Chairt Kozeta Sevrani,  

kozeta.sevrani@unitir.edu.al 
Repr. EUROSIM Kozeta Sevrani,  

kozeta.sevrani@unitir.edu.al 
Edit. Board SNE Albana Gorishti,  

albana.gorishti@unitir.edu.al 
Majlinda Godolja,  

majlinda.godolja@feut.edu.al 
 Last data update July 2019 

Societies in Re-Organisation /  
Former Societies 
 
The following societies are at present inactive or under 
re-organisation: 

• CROSSIM – Croatian Society for Simulation  
Modelling  
Contact: Tarzan Legovi , Tarzan.Legovic@irb.hr 

• FRANCOSIM – Société Francophone de Simulation 
• HSS – Hungarian Simulation Society 

• ISCS – Italian Society for Computer Simulation 

The following societies have been formally terminated: 

• MIMOS –Italian Modeling & Simulation Association; 
terminated end of 2020. 
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Association 
Simulation News 

 

ARGESIM is a non-profit association generally aiming for 
dissemination of information on system simulation – 
from research via development to applications of system 
simulation. ARGESIM is closely co-operating with EU-
ROSIM, the Federation of European Simulation Societies, 
and with ASIM, the German Simulation Society. AR-
GESIM is an 'outsourced' activity from the Mathematical 
Modelling and Simulation Group of TU Wien, there is 
also close co-operation with TU Wien (organisationally 
and personally). 
        www.argesim.org 

   office@argesim.org 
 ARGESIM/Math. Modelling & Simulation Group,  

       Inst. of Analysis and Scientific Computing, TU Wien 
       Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria 

Attn. Prof. Dr. Felix Breitenecker 
 

ARGESIM is following its aims and scope by the follow-
ing activities and projects: 
• Publication of the scientific journal SNE –  

Simulation Notes Europe (membership journal of 
EUROSIM, the Federation of European Simulation 
Societies) – www.sne-journal.org 

• Organisation and Publication of the ARGESIM 
Benchmarks for Modelling Approaches and Simu-
lation Implementations  

• Publication of the series ARGESIM Reports for  
monographs in system simulation, and proceedings 
of simulation conferences and workshops 

• Publication of the special series  FBS Simulation – 
Advances in Simulation / Fortschrittsberichte Simu-
lation - monographs in co-operation with ASIM, 
the German Simulation Society 

• Support of the Conference Series MATHMOD  
Vienna (triennial, in co-operation with EUROSIM, 
ASIM, and TU Wien) – www.mathmod.at 

• Administration of ASIM (German Simulation Soci-
ety) and administrative support for EUROSIM 
www.eurosim.info 

• Simulation activities for TU Wien 
ARGESIM is a registered non-profit association and a reg-
istered publisher: ARGESIM Publisher Vienna, root ISBN 
978-3-901608-xx-y, root DOI 10.11128/z…zz.zz. Publi-
cation is open for ASIM and for EUROSIM Member Soci-
eties. 

 

SNE – Simulation 
Notes Europe  

The scientific journal SNE – Simulation Notes Europe 
provides an international, high-quality forum for presen-
tation of new ideas and approaches in simulation – from 
modelling to experiment analysis, from implementation 
to verification, from validation to identification, from nu-
merics to visualisation – in context of the simulation pro-
cess. SNE puts special emphasis on the overall view in 
simulation, and on comparative investigations. 
Furthermore, SNE welcomes contributions on education 
in/for/with simulation. 

SNE is also the forum for the ARGESIM Benchmarks 
on Modelling Approaches and Simulation Implemen-ta-
tions publishing benchmarks definitions, solutions, re-
ports and studies – including model sources via web. 
       www.sne-journal.org,  

   office@sne-journal.org, eic@sne-journal.org 
 SNE Editorial Office  

          ARGESIM/Math. Modelling & Simulation Group,  
           Inst. of Analysis and Scientific Computing, TU Wien 
          Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria 

    EiC Prof. Dr. Felix Breitenecker 

SNE, primarily an electronic journal, follows an open ac-
cess strategy, with free download in basic layout. SNE is 
the official membership journal of EUROSIM, the Feder-
ation of European Simulation Societies. Members of EU-
ROSIM Societies are entitled to download SNE in high-
quality, and to access additional sources of benchmark 
publications, model sources, etc. On the other hand, SNE 
offers EUROSIM Societies a publication forum for post-
conference publication of the society’s international con-
ferences, and the possibility to compile thematic or 
event-based SNE Special Issues. 

Simulationists are invited to submit contributions of 
any type – Technical Note, Short Note, Project Note, Edu-
cational Note, Benchmark Note, etc. via SNE’s website:  

 

 



 

    ASIM Books  –  ASIM Book Series  –  ASIM Buchreihen 
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 Simulation in Production and Logistics 2019 – 18. ASIM Fachtagung Simulation in Produktion und Logistik 
18.-20. 9. 2019; M. Putz, A. Schlegel (Hrsg.), Verlag Wissenschaftliche Skripten Auerbach, 2019, 
ISBN print 978-3-95735-113-5, ISBN ebook 978-3-95735-114-2; ASIM Mitteilung AM172 

Tagungsband ASIM SST 2018 - 24. ASIM Symposium Simulationstechnik, HCU Hamburg, Oktober 2018 
C. Deatcu, T. Schramm, K. Zobel (Hrsg.), ARGESIM Verlag Wien, 2018; ISBN print: 978-3-901608-12-4; ISBN ebook: 
978-3-901608-17-9; 10.11128/arep.56; ARGESIM Report 56; ASIM Mitteilung AM 168 

 Simulation in Production and Logistics 2017 – 17. ASIM Fachtagung Simulation in Produktion und Logistik 
Sigrid Wenzel, Tim Peter (Hrsg.); ISBN Print 978-3-7376-0192-4, ISBN Online 978-3-7376-0193-1, Kassel university 
press GmbH, Kassel, 2017; ASIM Mitteilung AM164 

 Tagungsband ASIM SST 2016 - 23. Symposium Simulationstechnik, HTW Dresden, September 2016 
T. Wiedemann (Hrsg.); ARGESIM Verlag Wien, 2016; ISBN ebook 978-3-901608-49-0;  
ARGESIM Report 52; ASIM Mitteilung AM 160 
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 Kostensimulation - Grundlagen, Forschungsansätze, Anwendungsbeispiele 
T. Claus, F. Herrmann, E. Teich; Springer Gabler, Wiesbaden, 2019; Print ISBN 978-3-658-25167-3;  
Online ISBN 978-3-658-25168-0; DOI 10.1007/978-3-658-25168-0; ASIM Mitteilung AM 169 

 Simulation und Optimierung in Produktion und Logistik – Praxisorientierter Leitfaden mit Fallbeispielen. 
L. März, W. Krug, O. Rose, G. Weigert (Hrsg.); ISBN 978-3-642-14535-3, Springer, 2011; AM 130 
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 Methods for Hybrid Modeling and Simulation-Based Optimization in Energy-Aware Production Planning. B. Heinzl, FBS 37 
ISBN ebook 978-3-903347-37-3, DOI 10.11128/fbs.37, ARGESIM Publ. Vienna,2020; ISBN print 978-3-903311-11-4, TUVerlag Wien, 2020 

Konforme Abbildungen zur Simulation von Modellen mit verteilten Parametern. Martin Holzinger, FBS 36 
ISBN ebook 978-3-903347-36-6, DOI 10.11128/fbs.36, ARGESIM Publ. Vienna, 2020; ISBN print 978-3-903311-10-7, TUVerlag Wien, 2020 

Fractional Diffusion by Random Walks on Hierarchical and Fractal Topological Structures. G. Schneckenreither, FBS 35 
ISBN ebook 978-3-903347-35-9, DOI 10.11128/fbs.35, ARGESIM Publ. Vienna, 2020 

A Framework Including Artificial Neural Networks in Modelling Hybrid Dynamical Systems. Stefanie Winkler. FBS 34 
ISBN ebook 978-3-903347-34-2, DOI 10.11128/fbs.34, ARGESIM Publ. Vienna, 2020; ISBN print 978-3-903311-09-1, TUVerlag Wien, 2020 

Modelling Synthesis of Lattice Gas Cellular Automata and Random Walk and Application to Gluing of Bulk Material. C. Rößler, FBS 33 
ISBN ebook 978-3-903347-33-5, DOI 10.11128/fbs.33, ARGESIM Publ. Vienna, 2020; ISBN print 978-3-903311-08-4, TUVerlag Wien, 2020 

Combined Models of Pulse Wave and ECG Analysis for Risk Prediction in End-stage Renal Desease Patients. S. Hagmair, FBS 32 
ISBN ebook 978-3-903347-32-8, DOI 10.11128/fbs.32, ARGESIM Publ. Vienna, 2020 

Mathematical Models for Pulse Wave Analysis Considering Ventriculo-arterial Coupling in Systolic Heart Failure. S. Parragh, FBS 31 
ISBN ebook 978-3-903347-31-1, DOI 10.11128/fbs.31, ARGESIM Publ. Vienna, 2020 

Variantenmanagement in der Modellbildung und Simulation unter Verwendung des SES/MB Frameworks. A. Schmidt, FBS 30; 
ISBN ebook 978-3-903347-30-4, DOI 10.11128/fbs.30, ARGESIM Verlag, Wien 2019; ISBN print 978-3-903311-03-9, TUVerlag Wien, 2019 

Classification of Microscopic Models with Respect to Aggregated System Behaviour. Martin Bicher, FBS 29; 
ISBN ebook 978-3-903347-29-8, DOI 10.11128/fbs.29, ARGESIM Publ. Vienna, 2019 

Model Based Methods for Early Diagnosis of Cardiovascular Diseases. Martin Bachler, FBS 28; 
ISBN ebook 978-3-903347-28-1, DOI 10.11128/fbs.28, ARGESIM Publ. Vienna, 2017; ISBN print 978-3-903024-99-1, TUVerlag Wien, 2019 

A Mathematical Characterisation of State Events in Hybrid Modelling. Andreas Körner, FBS 27; 
ISBN ebook 978-3-903347-27-4, DOI 10.11128/fbs.27, ARGESIM Publ. Vienna, 2016; ISBN print 978-3-903311-07-7, TUVerlag Wien, 2019 

Comparative Modelling and Simulation: A Concept for Modular Modelling and Hybrid Simulation of Complex Systems. N.Popper, 
FBS 26; ISBN ebook 978-3-903347-26-7, DOI 10.11128/fbs.26, ARGESIM Publ. Vienna, 2016 

 Rapid Control Prototyping komplexer und flexibler Robotersteuerungen auf Basis des SBE-Ansatzes. Gunnar Maletzki, FBS 25; 
ISBN ebook 978-3-903347-25-0, DOI 10.11128/fbs.25, ARGESIM Publ. Vienna, 2019; ISBN Print 978-3-903311-02-2, TUVerlag Wien, 2019 

 A Comparative Analysis of System Dynamics and Agent-Based Modelling for Health Care Reimbursement Systems. P. Einzinger, 
FBS 24; ISBN ebook 978-3-903347-24-3, DOI 10.11128/fbs.24, ARGESIM Publ. Vienna, 2016 

 Agentenbasierte Simulation von Personenströmen mit unterschiedlichen Charakteristiken. Martin Bruckner, FBS 23;  
ISBN ebook Online 978-3-903347-23-6, DOI 10.11128/fbs.23, ARGESIM Verlag Wien, 2016 

 Deployment of Mathematical Simulation Models for Space Management. Stefan Emrich, FBS 22;  
ISBN ebook 978-3-903347-22-9, DOI 10.11128/fbs.22, ARGESIM Publisher Vienna, 2016 

 Lattice Boltzmann Modeling and Simulation of Incompressible Flows in Distensible Tubes for Applications in Hemodynamics. 
X. Descovich, FBS 21; ISBN ebook 978-3-903347-21-2, DOI 10.11128/fbs.21, ARGESIM, 2016; ISBN Print 978-3-903024-98-4, TUVerlag  2019 

 Mathematical Modeling for New Insights into Epidemics by Herd Immunity and Serotype Shift. Florian Miksch, FBS 20; 
ISBN ebook 978-3-903347-20-5, DOI 10.11128/fbs.20, ARGESIM Publ. Vienna, 2016; ISBN Print 978-3-903024-21-2, TUVerlag Wien, 2016 

 Integration of Agent Based Modelling in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna. S.Tauböck: FBS19; 
ISBN ebook 978-3-903347-19-9, DOI 10.11128/fbs.19, ARGESIM Publ., 2016; ISBN Print 978-3-903024-85-4, TUVerlag Wien, 2019  

      Download via ASIM - www.asim-gi.org                Print-on-Demand via TUVerlag  www.tuverlag.at         
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EUROSIM Conferences and Congress

VESS – Virtual EUROSIM Simulat ion Seminar

Due to Corona Virus, also EUROSIM changed the schedule of EUROSIM Conferences and the EUROSIM Congress –

all events will take place one year later. To bridge the 2020 conference gap the EUROSIM societies organise virtual

conferences, and the EUROSIM Board started in June 2020 VESS – the Virtual EUROSIM Seminar, a series of online

presentations discussing trends in modelling and simulation and preparing emphasis of future EUROSIM events.

www.eurosim2023.eu

The EUROSIM Board and DBSS started in June 2020 VESS – the Virtual EUROSIM Seminar, a series of online presen-

tations discussing trends in modelling and simulation. These international online simulation seminars – monthly or bi-

monthly – are open to everybody, via Zoom, lasting 60 minutes (45 minutes presentations, 15 minutes Q & A).

Information and informal registration via website www.eurosim2023.eu

The First SIMS EUROSIM Conference on Modelling and Simulation, SIMS EUROSIM 2021 takes place in Oulu, Finland,

September 21-23, 2021. The 62nd International Conference of Scandinavian Simulation Society, SIMS 2021, is embed-

ded with SIMS EUROSIM 2021. The SIMS EUROSIM conference will be organized every third year bySIMS and EUROSIM.

The background of this conference series is in the 60-years history of Scandinavian Simulation Society, SIMS.

The program of the SIMS EUROSIM 2021 Conference will have a multi-conference structure with several special topics

related to methodologies and application areas. The program includes invited talks, parallel, special and poster sessions,

exhibition and versatile technical and social tours – info www.scansims.org

MATHMOD organizers continue the conference series one year later, with 10th MATHMOD 2022 , February 16-18, 2022.

MATHMOD 2022, one of EUROSIM’s main events, provides a forum for professionals, researchers, and experts in the

field of theoretic and applied aspects of mathematical modelling for systems of dynamic nature.

The scope of the MATHMOD 2022 conference covers theoretic and applied aspects of various types of mathematical

modelling (equations of various types, automata, Petri nets, bond graphs, qualitative and fuzzy models) for systems of

dynamic nature (deterministic, stochastic, continuous, discrete or hybrid) – info and details www.mathmod.at

EUROSIM 2023, the 11th EUROSIM Congress, will take place in Amsterdam, The Netherlands, Spring/Autumn 2023. It

will be organized by the Dutch Benelux Simulation Society (www.dutchbss.org) supported mainly by their corporate mem-

bers like TU Delft, Amsterdam University of Applied Sciences, EUROCONTROL and IGAMT (www.igamt.eu).

Due to the growth of Simulation and its relationship with other analytical techniques like Big Data, AI, Machine Learning,

Large Scale Simulation and others, the event will be structured, for the first time, in dedicated tracks focused on different

areas and applications of Simulation ranging from aviation to health care and humanitarian activities. We have the ambi-

tion to attract at the congress participants from Academia, industry and governmental representatives to share the latest

developments in Simulation and related activities and applications.

Please follow the news and activities towards the EUROSIM 2023 at www.eurosim2023.eu
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