
S N E E D U C A T I O N B E N C H M A R K N O T E

SNE 31(1) – 3/2021 43

ARGESIM Benchmark C11 'SCARA Robot’ with Extended
Trajectory Tracking Control: Comparison of Model

Approaches and Simulation Results in MATLAB,
Simulink and SimMechanics

Martin Batliner2, Felix Breitenecker1, Andreas Körner1*, Horst Ecker2
1Inst. of Analysis and Scientific Computing, 2Inst. of Mechanics and Mechatronics, TU Wien,

Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria; *Andreas.Koerner@tuwien.ac.at

Abstract. Modelling of mechatronic systems often results
in implicit model description. Simulation systems provide
different strategies to deal with this kind of problem, re-
sulting in different modelling approaches. For this pur-
pose, Mathwork’s MATLAB system offers in its basic
MATLAB system at programming level implicit ODE solv-
ers, and in its toolboxes Simulink and SimMechanics (on
basis of the Modelica-like system SimScape) graphical
modelling environment. This Benchmark Study compares
these modelling approaches and the simulation efficiency
and results on basis of the ARGESIM Benchmark C11
‘SCARA Robot’. Additionally, the contribution’s investiga-
tions present a tuning of the PID control for point-to-point
movement with and without collision prevention and in-
troduce a trajectory tracking control with collision preven-
tion, which improves the performance essentially.

Introduction
Classical derivation of models for mechanic systems re-
sults first in implicit models for the generalized coordi-
nates , with mass matrix , , and with generalized
forces , , with input (feedforward control : , , ,

Second, feedback control with actuators adds (state)
equations for the actuators and feedback functions for
control: , , , ,

And third, these implicit equations have to be trans-
formed into at least semi-linear state space form with

‘combined’ state vector , to be understood by an ODE
solver of a ‘basic’ simulation system: , , , , ,

On the other side, today simulation environments offer
graphical physical modelling with mechanical elements
for the mechanical part following the Modelica concept
[1] and graphical signal-oriented block modelling for the
control part, as sketched in the following figure:

1 Mechatronics in MATLAB
MATLAB [7] offers modelling and simulation on all these
above cited levels, from basic use of ODE solvers for the
semi-linear state space form in basic MATLAB directly,
via signal-oriented graphical modelling for the control
part as well as for the mechanical part in Simulink, up
until to use of SimMechanics for the mechanicals in com-
bination with Simulink for the control part.

The user clearly expects that all approaches give the
same simulation results. But as ‘higher’ modelling tech-
niques generate equations ‘automatically’ (a big comfort
for the user), the models may differ in comparison with a
‘laborious manually’ model setup. Consequently, sub-re-
sults may differ, especially if discrete elements and/or
boundaries are implemented into the overall system.

SNE 31(1), 2021, 43 - 51, DOI: 10.11128/sne.31.bne11.10557
Received: October 25, 2018; Revised: July 15, 2019;
Revised: December 15, 2020; Accepted: January 20, 2021
SNE - Simulation Notes Europe, ARGESIM Publisher Vienna
ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Batliner et al. Benchmark C11 ‘SCARA Robot’ – MATLAB vs Simulink vs SimMechanics

44 SNE 31(1) – 3/2021

B N E

The following investigations discuss alle three
MATLAB modelling techniques in a case study with a
specific SCARA robot and its environment, as defined in
ARGESIM Benchmark C11 ‘SCARA Robot’, dealing
with mechanics, control, and collision prevention for
such type of robot [2]. Additionally, control is extended
from point-to-point control to trajectory tracking control,
increasing the complexity of both control and mechanical
model.

2 SCARA Robot Benchmark

2.1 System Definition
Following the definition of the ARGESIM Bench-
mark C11 ‘SCARA Robot’, the three axis SCARA robot
type as shown in Figure 1 has two vertical revolute joints
and one vertical prismatic joint. The axes of all three
joints are parallel to the z-axis.

Figure 1: Kinematic structure of a SCARA robot.

The joint vector consists of the joint angles q1 and q2
and the joint distance q3. The equations of motion are
given in the form ,

The calculation of the moments of inertia is based on the
assumption that the rods have a homogeneous mass dis-
tribution. The right hand side of the dynamic equation in-
cludes the joint torques and joint forces. The electric re-
lationship of the armature of a robot servo motor is given
by the first order differential equation 1

where Uai is the applied armature voltage. The resulting
armature current Ii is limited to maximum values Imax.

The joint torques (forces) of a motor are proportional
to the armature current Iai and given by 32

The detailed equations and numerical data are taken from
the definition ARGESIM Benchmark C11, see [2].

2.2 Implementation
First, the simulators and their respective solvers are
shortly portrayed and their handling of implicit systems.
Then the basic model is implemented with the three sim-
ulators Simulink, SimMechanics and in MATLAB with
solver ode15i.

2.3 Point-to-point motion
In order to control the point-to-point motion of the robot
a single-axis PD-controller is employed for the control
voltage:

Initial values are q1 = q2 = q3 = 0, and the target values are
q1 = q2 = 2 and q3 = 0.3. The velocities should be zero at
start and end.

2.4 Collision avoidance
Based on the point-to-point motion now an obstacle has to
be avoided. The obstacle is given by an elevated area with
the height hobs and the borderline xobs (Figure 1). The bor-
der represents an obstacle for the end-effector of the robot
arm. Possible contact has to be avoided and must be de-
tected during robot motion.

Therefore, an obstacle sensor should measure the dis-
tance between end-effector and obstacle and if that falls
below a critical value dcrit the controls of rotational drives
must be changed until the tool tip has cleared the obstacle
height. Maximum voltage may be used in this situation
for motor 1 and motor 2 to obtain maximum deceleration.

2.5 Trajectory tracking control
Additionally to the tasks presented in ARGESIM Bench-
mark C11, we now introduce another task: a trajectory
tracking control should be implemented to keep the end-
effector on a desired trajectory. The robot is assumed to be
in the same environment with the obstacle as before.

The foreseen trajectory should not only execute the
point-to-point motion, but also bypass the obstacle
providing a path which is planned from desired accelera-
tions. Both a PD and a PID controlled are implemented
and compared.

 Batliner et al. Benchmark C11 ‘SCARA Robot’ – MATLAB vs Simulink vs SimMechanics

SNE 31(1) – 3/2021 45

B N E

3 Implementation
3.1 Simulink
Simulink is a widely used tool for modelling and simulat-
ing multidomain dynamic systems. It is integrated in the
MATLAB environment and can be scripted from it.
MATLAB is used here to parameterise the model and an-
alyse data.

Simulink provides as primary interface a graphical
block diagram tool. The blocks used treating this problem
can be found in the model library. The chosen ODE solver
is the variable step size, one step solver ode45, which is
based on the Dormand-Prince pair. It is based on an ex-
plicit Runge-Kutta formula and calculates the 4th and 5th
order accurate solution and takes the difference to be the
fourth order error to estimate the adaptive step size [8].

Implicit systems cannot be solved directly. Neverthe-
less, the implicit equation , was im-
plemented directly, but an algebraic loop break had to be
added (Figure 2), which finds a solution for the system
for every integration step. This is also possible in the
presence of a hit-crossing block which is used in Sec-
tion 5 and works similar to the zero-crossing in the event
function discussed in Section 3.3 [3].

Additionally, the model was implemented in an ex-
plicit form: the mass matrix M was inverted manually us-
ing the symbolic computation in MATLAB and conse-
quently the system , was set up in
Simulink using the graphical block diagrams (Figure 3).

Figure 2: Implicit model description with Simulink.

Figure 3: Explicit model description with Simulink.

3.2 SimMechanics
SimMechanics extends Simulink with tools for modelling
three-dimensional mechanical systems within Simulink –
being based on the general Modelica-like modelling sys-
tem SimScape. Instead of deriving and programming
equations this multibody simulation tool can build mod-
els composed of bodies, joints, constraints and force ele-
ments which reflect the structure of the system. It is inte-
grated in Simulink and can be treated as a Simulink block,
enabling physical model and control environment in one
single system [6].

Consequently, simulating a SimMechanics model is a
cooperative effort and consists of four steps:

• model validation
• machine initialisation
• force analysis and motion integration
• stiction mode iteration

whereby although the last step being negligible for the
given problem as stiction is not treated.

The first two steps occur before the machine motion
actually starts and checks all data entries, connections,
assembly tolerances and validates the geometries and
model topology. Moreover, machine initialisation cuts
every closed loop and replaces it with a cut joint, con-
straint or driver block and checks all constraints and driv-
ers for mutual consistency and eliminates redundant con-
straints. In force analysis mode and motion integration,
Simulink steps up in simulation time and solves the sys-
tem for every step while SimMechanics imposes assem-
bly tolerances and a constraint solver [5]. Unfortunately,
an analytic model cannot be derived from the SimMe-
chanics block diagram.

The problem was implemented by setting up the block
model in Figure 4. Rigid bodies are connected through
joints which can be selected from the model library. The
model properties such as mass, inertia and geometry can
be set in the model blocks. The blocks, however, must be
steered and measured with actuators and joint sensors
which are connected to the free docks in Figure 4. These
can be integrated into the Simulink workflow.

Figure 4: SimMechanics model.

Integrator Integrator1

Subtract Algebraic Constraint

qdot

1 M*qddot

 f(z) Solve
f(z) = 0

Product2

Integrator Integrator1 Add

inv(M)

qdot

Product1

Product3 Add1

Product4

Product5

Batliner et al. Benchmark C11 ‘SCARA Robot’ – MATLAB vs Simulink vs SimMechanics

46 SNE 31(1) – 3/2021

B N E

3.3 MATLAB
For comparison a model in MATLAB was imple-

mented. The solver ode15i in MATLAB can solve fully
implicit differential and differential algebraic equations
of the form , , 0.
Additionally, to the initial values the solver needs the in-
itial derivatives and the initial conditions must be con-
sistent, meaning , , 0. If needed they can be
computed using the function decic in MATLAB.

The solver uses a fixed leading coefficient implemen-
tation of the BDFs (backward differentiation formulas) in
a Lagrangian form for the polynomial interpolation [6].
This leads to simple expressions, evaluated efficiently in
MATLAB and convenient for event localisation.

For the detection of state events the 'Events' property,
in options set to function events, solves the system while
also finding where user defined functions, called event
functions, are zero. The event functions used for this
problem are displayed in Section 5.2. At this point the
system can come to a halt or is terminated. The event
function is defined over a zero crossing, thus enabling the
detection of the crossing through a change of sign [7].

Integrating the equations the solver passes the zero-
crossing, consequently missing the exact value of the
zero-crossing. But the solver automatically goes back and
iterates back and forth to find the exact whereabouts of
the zero-crossing within a set tolerance.

The system had to be reduced to a set of first order
differential equations. Both sides of the equations have to
be one as shown below. Hereby, T and O denote the joint
torque (force) and the non-linear terms of the right-hand
side of the equation:

y=[q(4)-qdot (1);…
q(5)-qdot(2);…
q(6)-qdot(3); …
ma11*qdot (4)+ma12*qdot (5)-T(1)-O(1);…
ma21*qdot (4)+ma22*qdot (5)-T(2)-O(2);...
ma33*qdot (6)-T(3)-O(3)]

4 Point-to-point Motion
4.1 Simulink/SimMechanics

For the point-to-point movement (Figure 5) both Sim-
ulink and SimMechanics use the same controller, as the
SimMechanics model is treated as a Simulink block. The
model with controller and plant, which consists of the
electrical and the mechanical model, is displayed in Fig-
ure 6. A target vector is the input for submodel control
model which contains the PD-controller.

Figure 5: Point-to-point motion.

Figure 6: Control model in Simulink.

This was realised using the corresponding block from the
Simulink library.

The output voltage U is fed into submodel electric
model (Figure 6), which models the servo motor. The re-
sulting torque T drives the mechanical system.

To incorporate the boundaries of voltages and cur-
rents and subsequently torque, Simulink offers the option
to comfortably set the saturation limits as displayed in the
electrical model in Figure 7 by a saturation block.

Figure 7: Electrical model.

4.2 MATLAB
For the point-to-point motion the model had to be ex-

tended by a control and servo motor model. These were
integrated in the function deSCARA containing the robot
equations. Moreover, armature current limits had to be
implemented explicitly.

This was put into effect using simple if - clauses in the
function containing the system equations. The function is
called by

[t q] = ode15i (@deSCARA,…
 …[t0 tend], q0, qdot0);

where the timespan, initial values and derivatives have to
be implemented in consistent form.

 Batliner et al. Benchmark C11 ‘SCARA Robot’ – MATLAB vs Simulink vs SimMechanics

SNE 31(1) – 3/2021 47

B N E

5 Collision Avoidance

5.1 Simulink/SimMechanics
For collision avoidance (Figure 8) a block called state con-
trol was added to the submodel control model in Figure 9.

Figure 8: Collision avoidance.

Figure 9: Extended control model.

The distance between the obstacle and the tool tip is per-
manently checked. If it falls under the critical distance
the target positions for q1 and q2 are changed to the cur-
rent position and the emergency maximum voltages are
allowed. This is realised through a logic circuit which
checks two conditions: One, is the robot in critical zone,
and two, is the robot under hobs. If both conditions apply
new set-points for q1 and q2 are enforced. For robot arm
1 and arm 2 maximum voltage may be used to slow down
and return to the position where the danger and subse-
quently a zero-crossing has been detected (as denoted in
Section 3.1). Just after the tool tip of the robot has
reached the height of the obstacle, at which only one of
the two conditions applies, original target positions are
reactivated for the arm 1 and arm 2.

How this is realised displays Figure 10 which shows
in detail the state control from Figure 9. The block state
control checks if one or both conditions mentioned before
apply. If they do, they change their respective value from
0 to 1 and add up in block Add2. This sum now is the
reference for the blocks threshold and Switch. Block
threshold checks if this sum adds up to 2. If so, the switch
forwards new set-points to the PD controller.

Figure 10: State control.

This point in time is determined accurately as the block
enables zero-crossing detection.

The new set-points forwarded to the block threshold
do not have to be specified by the user, but are deter-
mined through another circuit which localises the joint
position of arm 1 and arm 2 when they enter critical zone.
This is done by the block Switch. It has as input the cur-
rent position and via a loop the last position. In critical
zone, Switch forwards the looped values for q1 and q2

while looping the same value. If one of the two condi-
tions is no longer fulfilled, the block threshold switches
back to the original set-points.

For the saturation limits in the controller, the state of
the system is forwarded trough the output state and the
change of saturation limit in the PD-controller is subse-
quently realised with a switch block. This way the user is
not required to specify way-points for the case that the
robot enters the critical zone.

5.2 MATLAB
Additionally to the PD-controller in Section 4.2, collision
avoidance has to be implemented employing the event
property in the options of the solver shown in code below
and implementing two event functions (cf. Section 3.3).
The event functions for the given problem are: cos cos 0

Event specific parameters are returned from the function
such as time and solution at a zero crossing and the cor-
responding type of event. This allows to stop the simula-
tion at the occurrence of an event and restart the simula-
tion with new setpoints.

Other than in the models implemented with Simulink
and SimMechanics, these new set-points were added man-
ually. Changing of set-point occurs twice: for entering crit-
ical zone and subsequent to reaching the admissible height,
setting the setpoints back to the initial set-points.

Batliner et al. Benchmark C11 ‘SCARA Robot’ – MATLAB vs Simulink vs SimMechanics

48 SNE 31(1) – 3/2021

B N E

The simulation runs until tend when the counter equals 1
and the while-loop stops. Time and output vector are con-
catenated respectively every time the simulation is restarted:

options = odeset (' Events ' , @eventFun) ;
while count==1
[t q te xv ereig]=ode15i (@deSCARA,…
… [t(end) tend], q0, qdot0, options) ;
qout=[qout; q(: , 1)];
tout=[tout; t];
if (t(end)>=tend)
 count=0;
else
 telen=length(te);
 if ereig(telen)==1
 q1=1; q2=1;
 else ereig (telen)==2;
 q1=2; q2=2;
 end;
end; end

6 Trajectory Tracking
6.1 Trajectory planning
The trajectory control problem in the joint space consists
of following a given time-varying trajectory qd (t) and its
successive derivatives which respectively describe the
desired velocity and acceleration [9]. The planned path
(Figure 11) will execute the point-to-point movement
treated earlier with a way-point at q1 = q2 = 1 and q3 = 0.3
to avoid collision with the obstacle described in the prob-
lem definition.

The velocities for start and end should be zero and
naturally, the trajectories for the positions have to be
smooth. For robot arm 1 two quadratic splines were cho-
sen. These lead to linear velocities and constant acceler-
ations. Robot arm 2 should have constant velocity, which
leads to linear motion. To ensure smooth transition cubic
splines were chosen for the path. Arm 3 has one cubic
spline to the way-point and then stops. This results in lin-
ear acceleration. These variations in velocities and accel-
erations should unveil the capabilities and limits of the
controller. For that purpose the SimMechanics model
from the point-to-point motion is extended where the
voltage restrictions still apply.

6.2 PD-Control
Based on PD-controller used earlier the tracking control-
ler has the form

, ,

where d marks the desired terms and the equations com-
putes the control voltage from the position and velocity
errors while feeding forward the desired acceleration.

Figure 11: Planned trajectories.

Apart from the feed-forward acceleration it is the same
closed loop behaviour as seen earlier and consequently
the well-tuned parameters Pi and Di from the point-to-
point motion are used.

6.3 PID-control
The given problem with PD-control has global integral
behaviour. This can be seen from the open-loop transfer
function e.g. for arm 3 (gravity is unaccounted for)

G 32

or can be seen in the results of the point-to point move-
ment in Section 7.2 as no steady-state errors remains.

To zero the velocity error for constant velocity [10]
and consequently increase the overall performance a PID
controller is implemented in the form

, , ,

where the coefficients given in Table 1 were found
through pole placement and subsequently were tuned man-
ually.

 Batliner et al. Benchmark C11 ‘SCARA Robot’ – MATLAB vs Simulink vs SimMechanics

SNE 31(1) – 3/2021 49

B N E

Gains q1 q2 q3
Proportional 1500 1000 15000
Integral 10000 7500 5000
Dervivative 10 25 10

Table 1: Coeffcients for PID controller.

7 Results

7.1 Implementation
The three implementations differ considerably in their
modelling approach. In the Simulink block diagram mod-
elling approach the user has always the overview of the
problem, even bigger problems can be well arranged, alt-
hough, setting up equations by blocks is comparably
cumbersome. Even more, Simulink unveils its strength in
handling the control model, as it offers out of the box
blocks for most applications like saturation limits, and
ready controller blocks. Zero-crossing for state events are
detected automatically and offer the user a rather com-
fortable experience.

For modelling a mechanical system from scratch,
SimMechanics offers the quickest and most intuitive ap-
proach to model the physical system as there is not even
the need to derive equations. However, other than the
other simulators one has to deal with the geometric prop-
erty of the model, as the geometric relations of the joints
and bodies have to be specified explicitly in the coordi-
nate system. In recent MATLAB versions SimMechanics
has been based on SimScape, a general denominator for
‘physical’ modelling in mechatronics, electrical engi-
neering and other domains, following the Modelica ap-
proach; as consequence, coordinate systems can be
avoided. A big advantage is that SimMechanics is fully
integrated over the actuators and sensors in the Simulink
control environment where it is treated as another block.
It therefore uses all the Simulink functionality regarding
state detection, but it does in turn not offer full insight in
the process running in the background setting up the me-
chanical model.

For a given problem with given equations basic
MATLAB offers with solver ode15i a reliable and reason-
ably quick implementation for the experienced user to di-
rectly compute the given fully implicit equations. The
state event property is well integrated in the solver, which
is specified over the option set.

However, out of all three approaches the user proba-
bly spends the most time debugging in MATLAB, as one
could easily lose track in the vast amount of variables to
be defined. The control law and saturation limits have to
be integrated additionally into the functions containing
the set of equations which enlarge the formulas and less-
ens the overview.

7.2 Point-to-point motion
All three approaches execute the point-to-point motion as
expected. The result for the Simulink model can be seen
in Figure 12.

Figure 12: Point-to-point motion in Simulink.

Model description Norm. CPU-time
Simulink explicit 1
Simulink implicit 3.7
MATLAB ode15i 4.6
SimMechanics 6.5 (4.2)

Table 2: Computation time.

Table 2 shows the normed computation time of the ap-
proaches for this task. The processing times were meas-
ured from MATLAB using the tic and toc command. Nat-
urally, the explicit model description with Simulink with
inverted mass matrix takes by far the least computation
time. The implicit description from Simulink with alge-
braic loop breaking and MATLAB with implicit solver
ode15i are comparable. However, the model imple-
mented with SimMechanics almost doubles the time of
the Simulink implicit model although it uses the same
solver and no model manipulation was done beforehand.
Recent developments with the SimScape basis have done
significant improvement and increased the speed (time in
parenthesis).

Batliner et al. Benchmark C11 ‘SCARA Robot’ – MATLAB vs Simulink vs SimMechanics

50 SNE 31(1) – 3/2021

B N E

Figure 13: Comparison of stepsize.

Figure 14: Comparison detail plot.

Figure 15: Differences Simulink - SimMechanics

Figure 13 shows the comparison of adaptive stepsizes the
ODE solver ode45 used for the Simulink implicit model
and the SimMechanics model. They not only use the same
default solver but also have roughly the same step size.

Therefore, the higher computation time results from
the premotion model validation and the cooperative solv-
ing effort discussed in Section 3.2.

Additionally, in Figure 14 a detail plot of coordinate
q3 for the point-to-point motion in Simulink, SimMechan-
ics and MATLAB ode15i is shown. One can easily see that
Simulink and MATLAB results are matching; interest-
ingly, the SimMechanics result is a bit off – reason may
be a difference in the equations fixed before or automat-
ically derived, resp. A comparison of the three angles be-
tween Simulink and SimMechanics is depicted in Fig-
ure 15: Again, it shows the difference in q3, which gives
a hint for a different integration of the controller in the
SimMechanics model.

7.3 Collision avoidance
Both Simulink and MATLAB deliver the same results
within a numerical tolerance. This comes as no surprise for
the implicit Simulink model and the implementation with
MATLAB ode15i as they solve the same set of equations,
but it verifies the SimMechanics model in its accuracy.

Figure 16 shows result of the collision avoidance in
SimMechanics with the path of the tool-tip in x-direction
and the overlay of the obstacle. The plot shows particu-
larly well that the end-effector stabilises on the edge of
the critical zone while robot arm 3 gains height. The
adaptive stepsize of the solver ode45 can be seen from
the Figure 17 which is a detail plot of Figure 16 and it
clearly shows how the stepsize is reduced at a detection
of a state event.

Figure 16: Collision avoidance in SimMechanics.

Figure 17: Step size at event detection.

 Batliner et al. Benchmark C11 ‘SCARA Robot’ – MATLAB vs Simulink vs SimMechanics

SNE 31(1) – 3/2021 51

B N E

7.4 Trajectory tracking
The deviations of the desired path can be seen in Fig-
ure 18 for PD control. It can be seen that for constant ve-
locity for link 2 the deviation is proportional to the veloc-
ities. The position error however, decreases with decreas-
ing velocities to zero as the global integral behaviour of
the plant suggests.

Figure 18: Position error PD-controller.

Figure 19 shows the deviations for the PID controller.
When link 2 enters the part with constant velocity at t = 1,
the position error for link 2 stabilises on zero after an in-
itial overshoot. Here the PID-control comes into effect
(as denoted in Section 6.3), zeros the velocity error for
constant velocity and consequently the position error.

Figure 19: Position error PID-controller.

This can be shown with the response to a ramp input (Fig-
ure 20) for e.g. q2 as the deviation for PID control to the
ramp input vanishes [10].

Figure 20: Ramp response.

As the two links are coupled, a little disturbance occurs
when link 1 changes the sign of acceleration which is
consequently absorbed by the controller. However, the
position error of q3 has an unexpected behaviour, which
could result from the unaccounted gravity term. In Fig-
ure 19 it can be seen that at tend = 4 for PID controller the
model deviates from the trajectory, which consequently
disappears as the controller integrates the position error
and no steady state error remains.

Summing up it can be said that the error polynomials
from Figure 18 are reduced one order to Figure 19 and
the deviations are reduced approximately one order of
magnitude due to the additional integrative term of the
PID-controller. Hence, the overall performance has in-
creased significantly.

References
[1] Fritzson P. Oriented Modeling and Simulation with

Modelica 3.3: A Cyber-Physical Approach.
ISBN 978-1-118-85912-4, 2014 Wiley-IEEE Press

[2] Ecker H, Breitenecker F. Comparison 11: SCARA
Robot – Definition. SNE 8(22), 1998, 30-32.

[3] Simulink R2010/2016 Documentation
[4] SimMechanics User's Guide Version
[5] SimMechanics R2010b Documentation
[6] Shampine L. F. Solving 0 =F(t,y(t),y'(t)) in MATLAB.

URL: http://faculty.smu.edu/shampine/cic.pdf,
last retrieved Dec. 10, 2020.

[7] MATLAB R2010b/R2016a Documentation
[8] Wikipedia. Dormand-Prince method. Wikipedia, The

Free Encyclopedia, 2020. [Online; acc. Dec. 10, 2020]
[9] Canudas de Wit C, Siciliano B. Theory of Robot

Control. Springer, 1996.
[10] H.P. Joergl. Repetitorium Regelungstechnik. Band 1.

Oldenbourg, 1993.

