
33

S N E B E N C H M A R K N O T E

Solving ARGESIM Benchmark C21 ’State Events
and Structural-dynamic Systems’ with Simulink

Rebecca Heitmann, Peter Junglas*, Lisa-Kristin Petrucha

Department of Engineering “Dr. Jürgen Ulderup”, PHWT Vechta/Diepholz, Schlesierstr. 13a, 49356 Diepholz, Ger-
many; *peter@peter-junglas.de

SNE 31(1), 2021, 33-42, DOI: 10.11128/sne.31.bn21.10556

Received: July 14, 2020; Revised: October 10, 2020;

Accepted: October 20, 2020

SNE - Simulation Notes Europe, ARGESIM Publisher Vienna

ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Abstract. To pinpoint the problems that come with
the modeling and simulation of hybrid systems, the
ARGESIM C21 benchmark ’State Events and Structural-
dynamic Systems’ describes three such systems and a
lot of corresponding tasks. It is solved here using the
well-known simulation environment Simulink, the solu-
tions are based on a direct modeling of the ODEs or DAEs
describing the systems. To this end, special schemes
have been necessary sometimes, some of which are al-
ready provided by Simulink, others had to be modeled
explicitely.

Introduction
The Argesim C21 benchmark [1] requires to study three

different examples of hybrid systems: a bouncing ball,

an RLC circuit with a diode and a rotating pendulum

with a free flight phase. A complete solution has been

published before that is based on Modelica compo-

nents [2]. The results presented in the following use

the well-known Simulink simulation environment from

Mathworks [3] without relying on additional packages

for discrete system modeling such as Stateflow [4] or

SimEvents [5]. Unlike in [2] modeling doesn’t start

with the physical components, but from the differential

equations that are used to describe the systems.

The complete definition of the example systems and

the tasks can be found in the benchmark definition [1].

For conciseness we will not reproduce results that are

identical to those in [2], but simply quote the corre-

sponding plots and tables. Instead we will concentrate

mainly on the different implementation methods.

All models and scripts necessary to reproduce the

results presented here are available from [6]. They have

been prepared using Simulink Version 10.1 (R2020a)

under Kubuntu 18.04.

1 Case Study Bouncing Ball
The first example describes a mass falling under gravity

and air drag, which bounces off the ground. The bounc-

ing process is described either as a simple event or as a

continuous process, using a basic material model.

1.1 Event Contact Model

Description of model implementation. The

bouncing ball model (without air drag) and the diffi-

culties it poses for zero-crossing detection, have been

widely studied by Mathworks [7]. In fact it is used as

an example in Simulink that is discussed at length in the

documentation. It is implemented there in two different

ways. The first one with two separate integrators (and

parameters adapted to the benchmark) is shown in Fig-

ure 1. It uses a lower saturation limit of the x integrator

and external resets of x and v integrators to create the

bounce event.

Figure 1: Bouncing ball with event contact and two

integrators ([8], parameters adapted).

SNE 31(1) – 3/2021



34

Heitmann et al. Solving ARGESIM Benchmark C21 with Simulink

With standard solver parameters it stops with an

error (“too many consecutive zero crossing events”),

when approaching the Zenon point. To overcome this

problem one can use the optional adaptive algorithm

for zero-crossing. It stops bracketing the event after too

many events in a short time or if the function variation

becomes too small. This works in principle, but the ve-

locity results show a lot of remaining chatter. Changing

the relative tolerance of the solver from 1e-3 to 1e-6

and manually adapting the signal threshold of the zero-

crossing algorithm, the chatter amplitude is reduced by

a factor of 20.

To get rid of the chatter the Simulink library con-

tains a second-order integrator, which is mainly the

combination of two connected integrators. The exter-

nal reset of v, when x reaches 0, is done internally, and

a consistent behaviour of x and v at saturation is en-

forced. With this block the benchmark model including

air drag becomes very simple (cf. Figure 2). It uses the

standard zero-crossing algorithm, but works fine never-

theless: x and v are exactly zero after the Zenon point.

Figure 2: Bouncing ball with event contact and second-order

integrator.

Simulation until last bounce – scattering pre-
vention. The Zenon point in the free fall case (with-

out air drag) is easily computed from [1, eq (16)] giv-

ing tB,∞ = 27.129019 s. A workaround to prevent event

scattering is not necessary, the standard model shown in

Figure 2 just works fine. It uses the ode23 solver and a

relative and absolute tolerance of 10−6. A simple Mat-

lab script that finds the start time of the final zero values

of x gives the results tB,∞ = 27.129019 s for the free fall

case and tB,∞ = 25.589465 s when adding air resistance.

Testing accuracy of event handling. To deter-

mine the bounce times the standard model exports the

simulated values of x and a Matlab script extracts the

times where x equals 0.0. This is possible easily in spite

of the usual floating point problems, since the saturation

event enforces the exact value of 0. Figure 3 shows the

difference between the theoretical values and the simu-

lation results for a model without air resistance.

0 20 40 60 80 100
no. bounce

0

5

10

t [
s]

10 -11

Figure 3: Accuracy of bounce times.

Compensation of linear model deviation.
This task asks to introduce an initial velocity v0 to the

linear model so that the same Zenon point is reached as

in the nonlinear model. As has been shown in [2] this is

not possible, but one has to a add a velocity to the non-

linear model instead. Its value has been computed there

as v0 = 4.39563m/s . Using this value in the standard

model, the simulation results are the same as in [2, Fig.

3].

1.2 Model with Continuous Contact

Description of model implementation. The

bouncing ball model with continuous contact is imple-

mented by directly reproducing the differential equa-

tions, where the changing of the right hand sides ac-

cording to the phase is done with Switch components.

The complete model is shown in Figure 4, where the

equation of the ball deformation is hidden inside a sub-

system (cf. Figure 5).

Figure 4: Bouncing ball with continuous contact.

SNE 31(1) – 3/2021



35

Heitmann et al. Solving ARGESIM Benchmark C21 with Simulink

Figure 5: Ball deformation.

The interesting part is the state switch (cf. Figure

6), which toggles between 0 and 1, when the active

event function – hF or hC according to phase – becomes

negative. The actual toggle switch is implemented in

a typical way as a triggered subsystem containing a

Unit Delay with a feedback loop.

Figure 6: State switch.

The additional Memory component is necessary to

break an algebraic loop, without it the simulation pro-

duces the error “Ambiguous sorted order”. Usually one

tries do avoid such a block, because it introduces an ad-

ditional delay. Here it does no harm, since a few solver

steps will always occur, until the phase changes again.

Quite odd is the appearance of a Hit Crossing
component directly before the trigger input: One would

expect that the toggle switch could be triggered directly

by the event function (i.e. the output of the Switch).

But without the help from the Hit Crossing block,

the corresponding events are missed. Either the authors

are lacking the necessary understanding of the inner

workings of Simulink here – or it is simply a bug!

Since all three state variables are used throughout

and only the forces change according to the phase,

one could call this implementation a “switching model

parts” approach.

Dependency of results from algorithms.
Simulink offers seven adaptive ODE solvers for initial

value problems, among them the Dormand-Prince

solver ode45 and the NDF-based ode15s, which is

recommended as standard solver for stiff problems. All

solvers are well-known and extensively documented

[9].

To compare them, the standard model has been sim-

ulated with output values at fixed steps of 1e-3 s using

εabs = 1e-12, εrel = 1e-12 for a reference solution with

ode45 and εabs = 1e-6, εrel = 1e-6 for the actual com-

parison. Using other solvers for the reference solution

leads to almost identical results. A typical error plot is

shown in Figure 7. The large spikes for the velocity er-

rors are due to small timing differences of the bouncing

phases.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t [s]

-1.5

-1

-0.5

0

0.5

1

x 
[m

]

10 -5 ode45: error in x

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t [s]

-2

0

2

4

6

8

10

v 
[m

/s
]

10 -3 ode45: error in v

Figure 7: Errors for solver ode45.

The maximal errors against the reference solution

are given in Table 1. The best one by far is the standard

solver ode45, the next best ode23 being far off with

a tenfold error. All other solvers, among them all stiff

solvers, are much worse with errors 60 to 80 times as

large.

s [mm] v [m/s]

ode45 0.0119 0.0090

ode23 0.1146 0.0858

ode113 0.7299 0.5678

ode15s 0.6518 0.4722

ode23s 0.8247 0.6440

ode23t 0.8210 0.6410

ode23tb 0.6442 0.4999

Table 1: Absolute errors for different solvers.

SNE 31(1) – 3/2021



36

Heitmann et al. Solving ARGESIM Benchmark C21 with Simulink

The effects of changing two very special solver

parameters have been examined, using the ode45
solver and normal tolerances: Switching on the

Shape preservation leads to better use of deriva-

tive information, which – according to the documen-

tation – should increase accuracy for models with

strongly changing derivatives. Looking at the veloc-

ities this is the case here, and the errors decrease

by 25% accordingly. The other parameter is called

MinimalZcImpactIntegration and should “re-

duce the impact of zero-crossing on the integration of

continuous states” [10]. Though this sounds promising,

it has no effects for our model.

Investigation of contact phase. For this task an

additional HitCrossing block has been added to the

standard model that outputs a signal whenever the ve-

locity becomes zero (in either direction). This allows to

extract the maximal and minimal heights easily. To get

plots of the state and output variables during the three

phases the high accuracy of εabs = εrel = 1e-10 (as in

the corresponding task of [2]) has been used. Figure

8 shows the first contact phase, it and the plots of the

other two phases are identical to [2, Fig.7 - Fig.9].

1.434 1.436
t [s]

-10

-5

0

5

x/
y 

[m
]

10 -3

x
y

1.434 1.436
t [s]

-10

-5

0

5

10

v 
[m

/s
]

1.434 1.436
t [s]

0

0.005

0.01

w
 [m

]

1.434 1.436
t [s]

0

5000

10000

f c [N
]

Figure 8: First contact phase.

The first ten values for the maximal height and

maximal depression are shown in Table 2. Additional

21 values describe vibrations during the final contact

phase.

In spite of the high accuracy the values given here

differ from those in [2] by up to 0.05%. To find out,

which results are better, additional values have been

n hmax [m] wmax [mm]

1 10.00000000000 9.87399975

2 2.49475864884 4.97196356

3 0.63279737764 2.51186760

4 0.16059402954 1.26915027

5 0.04046743537 0.64034298

6 0.01002956662 0.32202875

7 0.00239944058 0.16086111

8 0.00053018975 0.07923061

9 0.00009492532 0.03784056

10 0.00000588511 0.01701582

Table 2:Maximal heights and depressions.

computed with an even higher accuracy of 1e-12 in

Simulink and Maplesim. While the relative error be-

tween both Simulink results is only 1e-6, the Maplesim

results differ by 1e-4. Furthermore the difference be-

tween the higher accuracy results in Simulink and

Maplesim stays the same as before. This suggests that

the Simulink results have the higher accuracy. This is

confirmed by the general behaviour of the solvers that

are used here: While ode45 is known to be generally

quite accurate, the Maplesim computations have been

done with one of the stiff solvers, which are generally

less accurate.

Parameter studies. Changing the values of k or d

in the standard model reproduces the results from [2,

Fig.10, Fig.11]. The only interesting observation here

is the behaviour of the stiff version (k = 1e8, d = 500):

With the standard solver ode45 and accuracy 1e-6 the

simulation produces a fall-through behaviour. Decreas-

ing the tolerance to 1e-8, the model works fine. Of

course, for this model one would prefer a stiff solver

anyhow in order to decrease the computation time.

Bouncing ball on Mars. The standard model re-

produces the results from [2, Fig.12].

2 Case Study RLC Circuit with
Diode

The second test case of the benchmark is an RLC circuit

containing a diode, where several models for the diode

SNE 31(1) – 3/2021



37

Heitmann et al. Solving ARGESIM Benchmark C21 with Simulink

have to be studied: a simple shortcut model, the well-

known Shockley model and an approximation thereof.

Description of model implementations. The

model of the shortcut diode implements the differen-

tial equations directly. It computes the event function

and uses the Simulink Switch component to change

between the locking and the conducting phase. There-

fore it is a classical “switching model parts” approach

(cf. Figure 9).

Figure 9: Short cut diode.

To model the Shockley diode one can eliminate the

variable iD from [1, eq. (28)] using the defining relation

[1, eq. (34)] to get a semi-explicit DAE system of index

1 for the state variables uC and i and the algebraic vari-

able uD. This can be modeled in Simulink in a standard

way [11] by using algebraic loops to solve the constraint

equation g(uC, i,uD) = 0 (cf. Figure 10). The discontin-

Figure 10: Shockley diode with implicit computation of uD.

uous constraint can be written with the Heaviside step

function and easily implemented with Simulink’s stan-

dard Signum component (cf. Figure 11).

Figure 11: Algebraic constraint of Shockley diode.

So instead of the “switching model parts” approach

used before, this is just an ordinary DAE system with a

discontinuous constraint equation. It works fine in spite

of a warning ("Discontinuities detected within algebraic

loop(s), may have trouble solving") and produces the

expected results. But: If one deletes the output block

out.iD, the warning becomes an error ("2 zero cross-

ing signal(s) identified below caused 1000 consecutive

zero crossing events..."). Though this can be cured by

changing the zero-crossing control algorithm to “adap-

tive”, for the user it is impossible to understand what

is going on in detail, why one model works while the

other doesn’t.

Alternatively one could write the equations of the

Shockley diode using an implicit computation of iD
and adopt the same approach as before. The constraint

equation is now implemented with a Switch block to

set g(uC, i, iD) = iD
!
= 0 in the locking phase.

The implementation of the interpolated Shockley

diode looks exactly like Figure 10, only the Fcn block

that computes the iD(uD) function in Figure 11 is re-

placed by a Lookup Table. The necessary table

values are computed in the Init Fcn callback. The

model doesn’t run with the ode45 solver, but needs the

stiff solvers ode23t or ode23tb.

One way to cope with DAEs is to simply differenti-

ate the constraint equation, giving the “explicit Shock-

ley diode” model that again can be implemented with

the “switching model parts” approach (cf. Figure 12).

The problem here is that the variable uD only be-

comes a state variable in conducting phase, while it still

is an algebraic variable in locking phase. Therefore the

uD_conducting block has an additional integrator

block, while the uD_locking subsystem only con-

tains algebraic computations. In spite of this strange

SNE 31(1) – 3/2021



38

Heitmann et al. Solving ARGESIM Benchmark C21 with Simulink

Figure 12: Explicit Shockley diode.

construction the model works without problems.

Dependency of results from algorithms. Fol-

lowing the same procedure as in Section 1.2 the re-

sults for the interesting variables iL, uC, iD and uD have

been computed using the seven Simulink solvers and

are shown in Table 3 for the shortcut diode and in Table

4 for the Shockley diode.

εiL εuC εiD εuD

ode45 0.0435 0.0000 0.0435 0.0011

ode23 30.5122 0.0173 30.5123 0.8522

ode113 50.6304 0.0239 50.6305 0.5859

ode15s 444.0654 181.7101 444.0668 137.8873

ode23s 57.0346 3.2628 57.0348 4.9717

ode23t 283.6237 17.7122 283.6245 13.2222

ode23tb 57.1190 4.0521 57.1192 2.8067

Table 3: Shortcut diode: Relative errors [in 1e-6].

According to these results the solvers can be

grouped as follows:

• ode45 is by far the most accurate solver,

• ode23, ode113 have medium errors for i, iD and

uD, but small errors for uC,

• ode23s, ode23tb have medium errors through-

out,

εiL εuC εiD εuD

ode45 0.0470 0.0006 0.0146 0.0286

ode23 31.5010 0.3780 9.7677 19.1429

ode113 51.7119 0.6202 15.9115 31.4251

ode15s 454.1598 1045.878 765.7054 651.4087

ode23s 57.4423 3.7010 17.8112 34.9072

ode23t 565.4285 59.3439 177.6517 350.7907

ode23tb 57.5270 3.5943 17.8380 34.9595

Table 4: Shockley diode: Relative errors [in 1e-6].

• ode15s, ode23t have large errors throughout.

Usually one would choose a stiff solver for a DAE

system, therefore this behaviour comes unexpected.

Apparently, the combination of ode45 with a Newton

solver for the algebraic loops does a good job here.

The time behaviour of the errors is quite different

for different solvers and variables. Figure 13 shows a

few examples for the shortcut diode and the variable id .

3.2 3.22 3.24 3.26 3.28 3.3 3.32 3.34 3.36 3.38 3.4
t [s] 10 -4

0

1

2

iD

10 -6 ode23

3.2 3.22 3.24 3.26 3.28 3.3 3.32 3.34 3.36 3.38 3.4
t [s] 10 -4

0

2

4

iD

10 -6 ode113

3.2 3.22 3.24 3.26 3.28 3.3 3.32 3.34 3.36 3.38 3.4
t [s] 10 -4

0

2

4

6

iD

10 -5 ode15s

Figure 13: Shortcut diode: Relative errors for iD

Comparison of shortcut and Shockley diode
model. Comparing the results of the shortcut and

Shockley diode model leads to the same results as in

[2, Fig. 15].

To get accurate simulation times, both models have

been run seven times and the mean value of the last five

SNE 31(1) – 3/2021



39

Heitmann et al. Solving ARGESIM Benchmark C21 with Simulink

values has been computed. The corresponding results

are shown in Table 5.

shortcut
[s]

Shockley
[s]

Sh / sc
[%]

ode45 1.0377 2.6004 250.59

ode23 0.7594 1.7771 234.02

ode113 0.6529 1.4567 223.10

ode15s 1.2696 2.9795 234.67

ode23s 7.4267 2.4208 32.60

ode23t 0.8030 1.6715 208.16

ode23tb 0.9082 2.0373 224.33

Table 5: Simulation times for different solvers.

The differences between the solvers are astonish-

ingly small (with the exception of ode23s) – one

would expect that the stiff solvers like ode15s or

ode23s are much faster for the implicit Shockley

model. This is even more surprising in view of the much

better accuracy of the ode45 results.

Approximation of Shockley diode model. The

comparison of the Shockley and approximated Shock-

ley diodes (cf. Figure 14) almost reproduces the results

shown in [2, Fig. 16]. Only the errors differ: They again

have the form of spikes, but they are much more pro-

nounced here.

The real problem is to get the approximated model

to run at all: Trying different solvers and precisions and

all three values for the number N of breakpoints, one

very often gets an error. The proposed solution to use

a higher accuracy or switch to a LineSearch-based al-

gorithm usually makes things worse. The only solvers

that are working for all N with standard parameters are

ode23t and ode23tb. Since ode23t has shown to

be very inaccurate, ode23tb is used for the task.

Relevance of choice of algebraic state. The

Shockley models using uD or iD as algebraic variable

produce the same results, with differences much lower

than the solver tolerance. The runtimes are different,

though: The iD model is 2.4 times slower than the uD
version.

Quite interesting is the warning that appears, when

using the Runge-Kutta solvers ode45 or ode23 for

the iD version: It states a convergence problem when

3 3.02 3.04 3.06 3.08 3.1 3.12
t [s] 10 -4

0

0.5

1

1.5

i D
 [A

]

10 -8 iD

ex.
N=3
N=5
N=10

3 3.02 3.04 3.06 3.08 3.1 3.12
t [s] 10 -4

0

0.2

0.4

0.6

0.8

1

iD
 [A

]

10 -9 abs. errors of iD

N=3
N=5
N=10

3 3.02 3.04 3.06 3.08 3.1 3.12
t [s] 10 -4

0

0.01

0.02

0.03

uD

rel. errors of uD

N=3
N=5
N=10

Figure 14: Comparison of Shockley and approx. Shockley

diode.

solving the algebraic loop, and falls back to a strategy

from an older Simulink version.

Investigation for real-time simulation. Differ-

entiating the constraint equation of uD for the Shockley

diode and replacing the appearing time derivatives, one

gets

u̇D =

[(
(R1 +R2)R2

L
− 1

C

)
i+

R2

L
uC

+

(
R2

2

L
− 1

C

)
IS

(
euD/UT −1

)
− R2

L
u0

]

·
(

R2IS

UT
euD/UT +1

)−1

This equation is hidden inside the uD_conducting
subsystem in Figure 12.

The three models of the shortcut, approximated and

explicite Shockley diode have been run each with a

variable step solver (ode45, εrel = 1e-6) and a fixed

step solver (ode4, εrel = 1e-8). As before the ap-

proximated model needed special attention: The alge-

braic loop solver had to use the TrustRegion algorithm

with ode45 and the LineSearch algorithm with ode4.

The differences between both runs are smaller than the

SNE 31(1) – 3/2021



40

Heitmann et al. Solving ARGESIM Benchmark C21 with Simulink

solver tolerances for all models.

In addition, the explicit model using uD as state vari-

able and its alternative version based on iD have been

compared to the results of the implicit Shockley model.

Again all results agree, especially there is no drift of the

diode current as has been seen in [2].

3 Case Study Rotating
PendulumWith Free Flight
Phase

The third test model is a point mass swinging on a rope

of fixed length. According to the forces acting on the

mass, the movement can switch between swinging and

falling phases.

Description of model implementations. For

the implementation of the swinging mass a classic hy-

brid decomposition method is applied (cf. Figure 15).

The two subblocks Swinging and Falling model

the corresponding differential equations, they both out-

put the current state values and have control inputs to

enable or disable them. When enabled, new initial val-

ues are supplied by another input.

Figure 15: Rotating pendulum model.

The interesting part is the System Switch com-

ponent (cf. Figure 16). It gets the current values of the

state variables and outputs the control signals and new

initial values for the two “physical” subsystems. To this

end it computes the values of the event functions hF
(the rope force) and hS (the rope slack) and uses them

to trigger a state switch, which stores the current state.

Such a component has already been used in the bounc-

ing ball model (cf. Figure 6). Again Memory blocks

are necessary to break the algebraic loops.

Figure 16: System switch.

Basic simulation of phases. The basic model is

extended by a stop mechanism in the Output compo-

nent: A small subsystem stops the simulation, when the

angle ψ (measured against the lowest point) is below

π/10. This subsystem is triggered, when the angular

velocity goes through zero (at either direction). Run-

ning this model produces the results shown in Figure

17, which coincide with those in [2, Fig. 19]. The stop

time differs slightly, here it is t = 7.5965376 s, compared

to the value t = 7.5962714 s in [2].

Dependency of results from algorithms. The

standard procedure for comparing solver precisions has

been used again, the results are shown in Table 6. All

solvers are very precise here with the notable exception

of ode15s. Figure 18 displays some plots showing the

error over time.

x [1e-6 m] y [1e-6 m] ψ [1e-6]

ode45 0.0000 0.0000 0.0000

ode23 0.0001 0.0000 0.0001

ode113 0.0287 0.0080 0.0298

ode15s 35.3295 9.8355 36.6730

ode23s 0.0681 0.0504 0.0707

ode23t 0.5685 0.4418 0.5901

ode23tb 0.0535 0.0445 0.0555

Table 6: Absolute errors (compared to reference solution).

SNE 31(1) – 3/2021



41

Heitmann et al. Solving ARGESIM Benchmark C21 with Simulink

0 1 2 3 4 5 6 7 8
t [s]

-200

-100

0

100

200

 [°
]

Angle 

0 1 2 3 4 5 6 7 8
t [s]

-1

-0.5

0

0.5

1

x,
y 

[m
]

Position (x,y)

x
y

0 1 2 3 4 5 6 7 8
t [s]

0

100

200

300

400

h F [N
]

Rope force h F

0 1 2 3 4 5 6 7 8
t [s]

0

0.5

1

h S
 [m

2
]

Rope slack h S

Figure 17: Results of pendulum model.

Additionally, the impact of the tuning parameters

“Shape preservation” and “MinimalZcImpactIntegra-

tion” has been studied. While the second one has no

consequences, the first one has interesting effects: The

results of ode113 get better by more than a factor of

100, while those of ode15s get even worse by a factor

of 10.

External energy supply. The kick factor γ is de-

termined with a backwards running pendulum model,

which gives the same results as in [2, Table 6].

The real challenge here is the implementation of the

kick mechanism with its chain of interdepending events.

Since there are several very different mechanisms in

Simulink to create events, there are often special tricks

which make models simpler - but which are hard to

come up with. Instead we will try to design the model

in an as simple and straightforward manner as possible.

The kick is realized inside the Swinging block by

using the reset mechanism of the omega integrator and

providing two different initial values: one that is de-

fined by the System Switch when changing back to

the “swinging” phase, the other one is used at the kick

0 0.5 1 1.5 2 2.5 3
t [s]

0

1

2

3

x 
[m

]

10 -8 x error for ode113

0 0.5 1 1.5 2 2.5 3
t [s]

-2

0

2

4

x 
[m

]

10 -5 x error for ode15s

0 0.5 1 1.5 2 2.5 3
t [s]

-5

0

5

x 
[m

]

10 -7 x error for ode23t

Figure 18: Absolute errors in x for three solvers.

(cf. Figure 19). The signal isKick is used here in two

ways: Its value (0 or 1) switches between the two differ-

ent initial values, its change (0 → 1) triggers the kick.

To make this work, the signal has to return to 0 quickly

to make way for the usual system switching mechanism.

Figure 19: Swinging component with kick.

The chain of events is handled inside the Kick sub-

system (cf. Figure 20): As a first step the awaitKick
block outputs 1 as soon as the ψ amplitude gets small

enough, and enables the doKick block, which outputs

1 when ψ reaches 0 afterwards. Both blocks contain

only a Constant 1 and their output is initialised to

0. To guarantee that isKick returns to zero as fast as

possible a Hit Crossing block is added that creates

SNE 31(1) – 3/2021



42

Heitmann et al. Solving ARGESIM Benchmark C21 with Simulink

an “infinitely short” signal at the time of the 0 → 1 tran-

sition.

Figure 20: Kick subsystem.

4 Conclusions

Simulink provides a lot of different tools to create

events and react to them together with special tricks

such as the second-order integrator component or tun-

ing parameters for the zero-crossing algorithm. But

sometimes they behaved inconsistently, without any

reason apparent to the user. Even worse, a few models

only ran after playing with different workarounds, like

adding Hit Crossing components or using very

special implementations of simple subtasks.

In every simulation environment one runs into a set

of typical problems, when the implementation of simple

ideas collides with basic patterns or paradigms within

the environment. Usually one builds up a collection

of workarounds for common problems. One goal of

the ARGESIM benchmarks is to provide a collection

of such solutions, maybe in the spirit of the Design Pat-
terns of object-oriented programming [12]. But unlike

in the OO world, the solutions found in modeling usu-

ally are bound to the specific simulation environment –

or even to a specific version.

Comparing the mathematical description of the

models and their implementation in Simulink, one finds

a lot of components that have no direct mathematical

counterpart. It would be much better if basic mathe-

matical ideas could be implemented in standard ways,

independent of the concrete environment used. But this

still remains a task for future simulation programs.

References

[1] Körner A, Breitenecker F. State Events and

Structural-dynamic Systems: Definition of ARGESIM

Benchmark C21. SNE Simulation News Europe. 2016;

26(2):117–122. doi: 10.11128/sne.26.bn21.10339.

[2] Disselkamp JP, Junglas P, Niehüser A, Schönfelder P. A

Solution to ARGESIM Benchmark C21 ’State Events

and Structural-dynamic Systems’ based on Modelica

Components. SNE Simulation News Europe. 2018;

28(2):39–48. doi: 10.11128/sne.28.bn21.10411.

[3] The MathWorks. Simulink: Simulation and
Model-Based Design. http:
//www.mathworks.com/products/simulink/.

[4] The MathWorks. Stateflow: Model and simulate
decision logic using state machines and flow charts.

http://www.mathworks.com/products/
stateflow/.

[5] Clune MI, Mosterman PJ, Cassandras CG. Discrete

Event and Hybrid System Simulation with SimEvents.

In: 8th International Workshop on Discrete Event
Systems. Ann Arbor. 2006; pp. 386–387.

[6] Junglas P. Argesim C21 models and scripts.

URL http://www.peter-junglas.de/fh/
simulation/argesimc21.html

[7] Zhang F, Yeddanapudi M, Mosterman PJ. Zero-crossing

location and detection algorithms for hybrid system

simulation. IFAC Proceedings Volumes. 2008;

41(2):7967–7972.

[8] The MathWorks. Simulink: Simulation of a Bouncing
Ball. https://www.mathworks.com/help/
simulink/slref/simulation-of-a-
bouncing-ball.html.

[9] Shampine LF, Gladwell I, Thompson S. Solving ODEs
with matlab. New York: Cambridge university press.

2003.

[10] The MathWorks. Simulink: Enable minimal
zero-crossing impact integration.

https://www.mathworks.com/help/
simulink/gui/enable-minimal-zero-
crossing-impact-integration.html.

[11] Shampine LF, Reichelt MW, Kierzenka JA. Solving

index-1 DAEs in MATLAB and Simulink. SIAM
review. 1999;41(3):538–552.

[12] Gamma E, Helm R, Johnson R, Vlissides J. Design
patterns: elements of reusable object-oriented software.

Reading, Mass.: Addison-Wesley. 1995.

SNE 31(1) – 3/2021


