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Abstract. This paper introduces the concept of hier-
archical co-simulation and presents an investigation on
stability properties of this method. In conventional co-
simulation methods, all participating simulations are ex-
ecuted on the same level via one co-simulation. Hierar-
chical co-simulation, on the other hand, enables the in-
troduction of several levels of co-simulation by allowing
participating subsystems to consist of co-simulated sys-
tems themselves, thus nesting co-simulations within co-
simulations. While on the one hand, certain stability is-
sues can arise by the introduction of more co-simulation
layers, this method enables the usage of different syn-
chronization references for parts of the overall system
according to varying dependencies between the subsys-
tems, which can increase accuracy and numerical stabil-
ity.

Introduction

Co-simulation has become an important instrument to

approach the simulation of large-scale heterogeneous

systems in recent years. While definitions for the term

co-simulation vary depending on the field of origin, in

this paper we refer (in accordance with the terminology

found in [1]) to co-simulation as the coupling of two or

more simulations which differ in at least one aspect out

of simulation tool, solver algorithm or step size.

Hierarchical approaches or multi-level descriptions

have already been introduced in other fields within

modeling and simulation (f.i. DEVS [2], multi-level

agent-based modeling [3], MPC [4] or partitioned

multi-rate approaches [5]). However, hierarchical co-

simulation as explained in the following has to the au-

thors’ knowledge not been investigated up to now, al-

though several frameworks and standards do not pro-

hibit the realization of further co-simulations within a

co-simulation. The idea is illustrated in Figure 1.

Figure 1: Schematic depiction of a hierarchical co-simulation

approach.

In a traditional co-simulation approach all eight par-

ticipating subsystems would have been co-simulated in

one overall co-simulation, probably requiring all sys-

tems to synchronize at the same points in time. In the

hierarchical approach, systems III, VI and VIII are cou-

pled in another co-simulation (2b) as well as systems II

and V, the coupled system of which (co-simulation 3) is

again co-simulated with system VII, before the result-

ing co-simulation (2a) represents a system coupled in

the top-level co-simulation 1.

A coupling structure like this could be motivated by the

usage of different synchronization intervals on every
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co-simulation level, thus enabling frequent exchanges

between subsystems which are sensitive to changes in

their respective exchanged values while allowing larger

communication intervals with other, slower reacting

system parts, which can speed up the overall execu-

tion. In the course of this paper, we will show that these

ideas are valid and that a hierarchically structured co-

simulation approach indeed allows to enhance stability

at a low computational cost.

1 Consistency

A valid method to bound the global co-simulation error

is local error control, which justifies to investigate the

consistency error, i.e. the error of the method in one

step. For traditional co-simulation, it has been shown

that consistency can be maintained, but possibly re-

duced to the extrapolation order of values from other

systems, see for example [6, 17]. Since consistency is

defined locally (i.e. per step), and it is a property re-

garded for the limit of step size h → 0, the value present

at the most recent point in time where the method sets

a step is considered to be the exact solution - a property

that is not affected by the method used in the respective

other subsystems or the time steps and further synchro-

nizations happening there in-between. This means that

consistency in hierarchical co-simulation is also main-

tained with its order depending on the applied extrapo-

lation method.

2 Zero-stability

Zero-stability, i.e. convergence of a method for in-

finitesimal step sizes, has been analyzed for certain co-

simulation approaches in [7], on which we base our in-

vestigation. The mathematical description of coupled

DAEs is given in [7] as follows:

ẋxxi(t) = fff i(xxxi,uuui, t), xxxi(t0) = xxxi
0 (1a)

yyyi(t) = gggi(xxxi,uuui, t) (1b)

with i = I, . . . ,N, xxxi ∈ Rni
x , uuui ∈ Rni

u , yyyi ∈ Rni
y and

uuui = LLLiyyy (1c)

where

LLLi =
[
LLLi,I . . . LLLi,i−1 0 LLLi,i+1 . . . LLLi,N

]
,

yyy =
[
yyyI . . . yyyi−1 yyyi yyyi+1 . . . yyyN

]T

with LLLi, j ∈ Rni
u×n j

y ∀i, j ∈ {I, . . . ,N} and the elements

of LLLi, j being equal to zero or one.

Under certain assumptions (given in [7], p. 100), the

outputs can be written as yyyi =gggi(xxxi)+DDDi(xxxi)uuui, yielding

the discretized output equations

yyyi
k+1 = gggi +DDDiuuui

k (2)

with constant gggi, DDDi. Using this, it holds for the outputs

of global system

yyyk+1 = ggg+

⎡
⎢⎢⎢⎣

000 DDDILLLI,II . . . DDDILLLI,N

DDDIILLLII,I 000 . . . DDDIILLLII,N

...
...

. . .
...

DDDNLLLN,I DDDNLLLN,II . . . 000

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
=:DDD

yyyk

(3)

that stability is guaranteed if the spectral radius ρ
of DDD is less than or equal to 1. This is fulfilled in

particular if ρ(DDD) = 0 which for the case of two partici-

pating subsystems means that there is no algebraic loop.

To determine zero-stability properties of hierarchi-

cal co-simulation, a co-simulation of N systems is con-

sidered, where w.l.o.g. systems M to N are combined in

a second-level co-simulation as depicted in Figure 2.

Figure 2: Hierarchical co-simulation of N systems on two

levels.

System M̂ replaces systems M to N of the original

co-simulation on one level (coupled via 1c and called

CS0 henceforth). We obtain coupling equations (4) for
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the upper co-simulation level CS1:

⎡
⎢⎢⎢⎢⎢⎣

uuuI

uuuII

...

uuuM−1

ûuuM

⎤
⎥⎥⎥⎥⎥⎦
= L̂1L1L1

⎡
⎢⎢⎢⎢⎢⎣

yyyI

yyyII

...

yyyM−1

ŷyyM

⎤
⎥⎥⎥⎥⎥⎦

(4)

with

L̂1L1L1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

000 LLLI,II . . . LLLI,M−1 L̂LLI,M

LLLII,I 000 . . . LLLII,M−1 L̂LLII,M

...
...

. . .
...

...

LLLM−1,I LLLM−1,II . . . 000 L̂LLM−1,M

L̂LLM,I L̂LLM,II . . . L̂LLM,M−1 000

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and ûuuM as input to the new subsystem M̂, ŷyyM as its

output and

L̂LLi,M =
[
LLLi,M LLLi,M+1 . . . LLLi,N

]
, i = I . . .M−1

L̂LLM,i =

⎡
⎢⎢⎢⎣

LLLM,i

LLLM+1,i

...

LLLN,i

⎤
⎥⎥⎥⎦ , i = I . . .M−1.

Thus, the only difference between LLL and L̂LL1 is the

increased number of zeroes in the lower right corner.

The discretized output equations of CS1 are (5):

yyyI
k+1 = gggI +DDDIuuuI

k
yyyII

k+1 = gggII +DDDIIuuuII
k

...

ŷyyM
k+1 = ĝggM +D̂DDMûuuM

k

(5)

While ŷyyM in general corresponds to the stacked output
vectors yyyM . . .yyyN of CS0, the input vectors don’t as the
coupling with the outputs of systems M to N is consid-
ered within the new system M̂, cf. Figure 2 and (6).
The outputs of the global system can with (5) be written
as

⎡
⎢⎢⎢⎢⎣

yyyI
k+1
...

yyyM−1
k+1

ŷyyM
k+1

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

gggI

...

gggM−1

ĝggM

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

DDDI 000

. . .

DDDM−1

000 D̂DDM

⎤
⎥⎥⎥⎥⎦L̂LL1

︸ ︷︷ ︸
=:DDDCS1

⎡
⎢⎢⎢⎢⎣

yyyI
k
...

yyyM−1
k

ŷyyM
k

⎤
⎥⎥⎥⎥⎦

In analogy to the case of one co-simulation level, the co-

simulation of the upper level is stable if ρ(DCS1
) ≤ 1.

The only unknown in comparison to DDD of CS0 is D̂DDM ,

for which we have to take a look at the second-level co-

simulation CS2. The coupling equations within this sys-

tem can be written (cf. Figure 2) as follows:

⎡
⎢⎢⎢⎢⎢⎢⎣

uuuM
k

uuuM+1
k
...

uuuN−1
k
uuuN

k

⎤
⎥⎥⎥⎥⎥⎥⎦
= L̂2L2L2 ·

⎡
⎢⎢⎢⎢⎢⎢⎣

yyyM
k

yyyM+1
k
...

yyyN−1
k
yyyN

k

⎤
⎥⎥⎥⎥⎥⎥⎦
+ ûuuM

k (6)

where

L̂2L2L2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

000 LLLM,M+1 . . . LLLM,N−1 LLLM,N

LLLM+1,M 000 . . . LLLM+1,N−1 LLLM+1,N

...
...

. . .
...

...

LLLN−1,M LLLN−1,M+1 . . . 000 LLLN−1,N

LLLN,M LLLN,M+1 . . . LLLN,N−1 000

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The discretized output equations are

yyyi
k+1 = gggi +DDDiuuui

k, i = M . . .N. (7)

Thus follows for the global output of CS2

ŷyyM
k+1 =

⎡
⎢⎣

yyyM
k+1
...

yyyN
k+1

⎤
⎥⎦= ĝggM +

⎡
⎢⎣

DDDM . . . 000
...

. . .
...

000 . . . DDDN

⎤
⎥⎦ûuuM

k (8)

with

ĝggM =

⎡
⎢⎣

gggM

...

gggN

⎤
⎥⎦+

⎡
⎢⎣

DDDM . . . 000
...

. . .
...

000 . . . DDDN

⎤
⎥⎦L̂2L2L2

⎡
⎢⎣

yyyM
k
...

yyyN
k

⎤
⎥⎦ .

The part containing yyyi
k, i = M . . .N can be included in

ĝggM as these are only internal states of CS2 which are un-

known in CS1. Hence we obtain

D̂DDM =

⎡
⎢⎣

DDDM . . . 000
...

. . .
...

000 . . . DDDN

⎤
⎥⎦ , (9)

SNE 31(1) – 3/2021



20

Hafner and Popper Investigation on Stability Properties of Hierarchical Co-Simulation

which yields

DDDCS1
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

000 DDDILLLI,II . . . DDDIL̂LLI,M

DDDIILLLII,I 000 . . . DDDIIL̂LLII,M

...
. . . . . .

...

DDDM−1LLLM−1,I . . . 000 DDDM−1L̂LLM−1,M

D̂DDML̂LLM,I . . . D̂DDML̂LLM,M−1 000

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Due to

D̂DDML̂LLM,i =

⎡
⎢⎣

DDDM . . . 000
...

. . .
...

000 . . . DDDN

⎤
⎥⎦ ·

⎡
⎢⎢⎢⎣

LLLM,i

LLLM+1,i

...

LLLN,i

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

DDDMLLLM,i

DDDMLLLM+1,i

...

DDDNLLLN,i

⎤
⎥⎥⎥⎦

and

DDDiL̂LLi,M =DDDi · [LLLi,M LLLi,M+1 . . . LLLi,N
]

=
[
DDDiLLLi,M DDDiLLLi,M+1 . . . DDDiLLLi,N

]
,

the only difference compared to matrix DDD of system

CS0 is the increased number of zeroes in the lower right

corner. In the following, we try to use this to gain in-

formation on the properties of the spectral radius of DDDCS1

using knowledge on ρ(DDD).

We know that for every matrix norm ‖.‖ and arbitrary

matrix AAA = (ai j); i = 1, . . . ,m; j = 1, . . . ,n; m,n ∈ N

ρ(A)≤ ‖AAA‖ (10)

holds ([8], Thm. 5.6.9).

If we consider ‖.‖∞ given as

‖AAA‖∞ = max
i=1,...,m

n

∑
j=1

|ai j|

we see at once that ‖DDDCS1
‖∞ ≤ ‖DDD‖∞. Unfortunately, this

does not imply ρ(DDDCS1
) ≤ ρ(DDD), see f.i. the following

example: Let matrices AAA1 and AAA2 given as

AAA1 =

⎡
⎢⎢⎣

0 0.1 0.5 0

0.1 0 0 0.5

0.2 0 0 0

0 0.2 0 0

⎤
⎥⎥⎦ , AAA2 =

⎡
⎢⎢⎣

0 0.1 0.5 0

0.1 0 0 0.5

0.2 0 0 −0.1

0 0.2 −0.1 0

⎤
⎥⎥⎦ .

Here ‖AAA1‖∞ = ‖AAA2‖∞ = 0.6 but

ρ(AAA1) ≈ 0.3702 > ρ(AAA2) ≈ 0.3317. This means that in

general, stability for hierarchical co-simulation has to be

determined anew, even if the starting point is a zero-stable

co-simulation on one level. An exception is the case

where not only ρ(DDD) ≤ 1 but also ‖DDD‖∞ ≤ 1, as from

this follows further

ρ(DDDCS1
)≤ ‖DDDCS1

‖∞ ≤ ‖DDD‖∞ ≤ 1 (11)

which ensures zero-stability of the co-simulation on the

upper level CS1.

For the stability properties of the coupling in CS2, we

are interested in the input-output dependencies within the

system only, thus we need to look at the spectral radius

of DDDCS2
, which results from (8):

DDDCS2
=

⎡
⎢⎣

DDDM . . . 000
...

. . .
...

000 . . . DDDN

⎤
⎥⎦L̂2L2L2 (12)

Since we see that DDDCS2
is composed of a submatrix of DDD,

here again ‖DDDCS2
‖∞ ≤ ‖DDD‖∞ holds, and thus ρ(DDDCS2

) has

to be determined separately only if ‖DDD‖∞ > 1.

To sum up, we can conclude that zero-stability of hi-

erarchical co-simulation can be determined analogously

to customary co-simulation on one level. To this end, the

matrices referring to the global system outputs on every

co-simulation level have to be examined - except for the

cases where the origin is a stable co-simulation with ma-

trix DDD fulfilling ‖DDD‖∞ ≤ 1, which is satisfied in particular

for couplings where no feed-through occurs in at least one

system, so ‖DDD‖∞ = ρ(DDD) = 0. These considerations, of

course, can directly be taken further and applied to more

than two levels of co-simulation, as well.

3 Numerical Stability

Depending on the coupling method, instabilities can still

occur for zero-stable coupling methods due to the errors

introduced by extra- or interpolation. A weak coupling

approach is called numerically stable if it yields a stable

solution for a finite macro-step size H > 0 [9].

To investigate stability properties for finite communi-

cation step sizes, we consider a three-mass oscillator as

benchmark example, which is illustrated in Figure 3.

Figure 3: Illustration of a three-mass oscillator.
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The underlying equation system can be interpreted as

coupled Dahlquist equations, which can be solved ana-

lytically and thus provide an eminently suitable test case.

The oscillator with two masses has been taken into con-

sideration in numerous investigations on stability of con-

ventional, single-level co-simulation approaches, where

it proves highly sensitive to the choice of parameters and

macro step size [9].

For the intended co-simulation, the system is split

along the individual masses and coupled via force-

displacement-coupling (cf. f.i. [10] for further informa-

tion on the coupling approach), as illustrated in Figure

4.

Figure 4: Force-displacement coupling of the three-mass

oscillator.

By this coupling approach we obtain the subsystem

equations for systems SI , SII and SIII :

SI :
ẋ1 = v1

m1v̇1 =−c1x1 −d1v1 +λ12

(13a)

SII :
ẋ2 = v2

m2v̇2 =−c12(x2 − x̃1)−d12(v2 − ṽ1)+λ23

(13b)

SIII :

ẋ3 =v3

m3v̇3 =− c23(x3 − x̃2)−d23(v3 − ṽ2)

+ c3(−x3)+d3(−v3)

(13c)

With the coupling conditions

λ12 − c12(x2 − x1)−d12(v2 − v1) = 0 (14a)

x̃1 − x1 = 0 (14b)

ṽ1 − v1 = 0 (14c)

λ23 − c23(x3 − x2)−d23(v3 − v2) = 0 (14d)

x̃2 − x2 = 0 (14e)

ṽ2 − v2 = 0 (14f)

Following the considerations from section 2, we ob-

tain for matrix DDD in (3):

DDD =

⎡
⎣ 000 DDDILLLI,II DDDILLLI,III

DDDIILLLII,I 000 DDDIILLLII,III

DDDIIILLLIII,I DDDIIILLLIII,II 000

⎤
⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−c12 −d12 0 0 0 0

0 0 −c23 −d23 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(15)

whence follows ρ(DDD) = 0, thus guaranteeing zero-

stability.

For the hierarchical co-simulation approach, systems

SII and SIII are combined in a second-level co-simulation.

As expected (cf. section 2), we obtain ρ(DDDCS1
) =

ρ(DDDCS2
) = 0 for

DDDCS1
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−c12 −d12 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(16)

and

DDDCS2
=

⎡
⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

−c23 −d23 0 0

⎤
⎥⎥⎦ , (17)

thus the conditions for zero-stability are satisfied for both

levels of co-simulation.

In the following, several scenarios are performed for

both co-simulation approaches to compare numerical sta-

bility properties. For all settings, explicit Euler meth-

ods are used to solve the individual subsystems. These

simple methods have been chosen to enable the focus on

the different methods of co-simulation without additional

corrections (f.i. by step size control). As synchroniza-

tion method, Jacobi-type coupling without iteration using

zero-order extrapolation for external variables has been

used. The initial conditions for all scenarios have been

chosen as x1 = 1, x2 = 2, x3 = 3 and v1 = v2 = v3 = 0.

Scenario 1. The parameters for the first scenario to be

considered are given in Table 1.
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c1 c12 c23 c3 d1 d12 d23 d3 m1 m2 m3

1E-02 1E-01 1 10 0.1 0.4 1 2 10 10 10

Table 1: Parameter settings for Scenario 1.

As can be seen, the spring stiffnesses are chosen to in-

crease from left to right (cf. Figure 3) to result in slower

and faster varying subsystems. The step sizes for the in-

dividual subsystem solvers are chosen accordingly with

h1 = 0.005, h2 = 0.0025, h3 = 0.00125. The monolithic

reference system is of the form ẏyy = AAA ·yyy and can thus be

solved analytically. In addition to the analytical solution,

the results of the hierarchical co-simulation are compared

to a conventional single-level co-simulation. For the lat-

ter, a macro step size H of 0.1 seconds is chosen. The

results in Figure 5 show that even if the overall communi-

cation step size H1 is doubled in comparison to the tradi-

tional co-simulation, the hierarchical approach yields sig-

nificantly more accurate results for systems SII and SIII if

the step size for the second-level co-simulation is chosen

adequately (H1 = 0.2s, H2 = 0.05s).

0 0.2 0.4 0.6 0.8 1
time [s]

1

1.001

1.002

1.003

1.004

x1
 [m

]

reference solution
one-level co-sim.
hierarchical co-sim.

0 0.2 0.4 0.6 0.8 1
time [s]

1.99

1.995

2

2.005

2.01

x2
 [m

]

0 0.2 0.4 0.6 0.8 1
time [s]

1.5

2

2.5

3

x3
 [m

]

Figure 5: Trajectories of x1, x2 and x3 for Scenario 1 with

H = 0.1s, H1 = 0.2s and H2 = 0.05s.

In spite of plainly distinct errors in specific phases,

both approximations remain stable, as can be seen in sim-

ulations over a longer period of time.

The maximum absolute errors and elapsed time for

several different settings are given in Table 2.

appr. tend H |H1 H2 errx1
errv1

errx2
errv2

errx3
errv3

el. time

trad. 1 0.1 1.21E-04 5.30E-04 8.05E-03 1.53E-02 9.51E-04 6.32E-04 0.0066

hier. 1 0.1 0.025 4.52E-05 2.89E-04 2.10E-03 3.67E-03 8.22E-04 1.38E-03 0.0161

hier. 1 0.2 0.05 8.26E-05 5.34E-04 4.08E-03 7.44E-03 8.51E-04 1.06E-03 0.0099

trad. 25 0.1 3.96E-02 7.13E-03 9.35E-02 3.68E-02 1.78E-02 1.24E-02 0.1845

hier. 25 0.1 0.025 1.76E-02 3.29E-03 2.14E-02 8.75E-03 6.63E-03 5.48E-03 0.4018

hier. 25 0.2 0.05 3.53E-02 6.64E-03 4.28E-02 1.75E-02 9.67E-03 7.20E-03 0.2514

Table 2:Maximum error and elapsed time for the traditional
and hierarchical co-simulation approach in Scenario
1.

We see that while the execution time is significantly

higher in case of the same step size on the upper level and

the traditional co-simulation - which has to be expected

due to the additional synchronization on the lower level -

the high difference can be overcome while still maintain-

ing better accuracy by increasing both macro step sizes in

the hierarchical approach.

Scenario 2. In Scenario 2, the stiffnesses differ to a

greater extent (see parameters in Table 3), which can lead

to stability issues if communication step sizes are chosen

too large. The conventional co-simulation already yields

unstable results for the same step size as in Scenario 1

(H = 0.1). The solution obtained by the hierarchical ap-

proach with the same upper-level communication step

size but additional synchronization between subsystems

SII and SII remains stable.

c1 c12 c23 c3 d1 d12 d23 d3 m1 m2 m3

1E-03 1E-01 10 100 0.1 0.4 1 2 10 10 10

Table 3: Parameter settings for Scenario 2.

Even for a larger communication step size on the up-

per level (H1 = 0.2), stability is maintained with the hi-

erarchical approach, as the coupling between systems SII

and SII is the crucial one (cf. Figure 6).

If the synchronization time on the second level is

also increased (to H2 = 0.05), qualitative behavior is still

maintained but errors are too high to consider the solution

still acceptable (cf. Table 4).
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Figure 6: Trajectories of x1, x2 and x3 for Scenario 2 with
H = 0.1s, H1 = 0.2s and H2 = 0.025s from tstart = 0s to
tend = 100s.

Scenario 3. In Scenario 3, the stiffnesses for the

springs attached to mass m1 are increased, too (see Ta-

ble 5), which leads to unstable results for the traditional

as well as hierarchical approach with step sizes H = 0.1s,

H1 = 0.1s and H2 = 0.025s, see Figure 7. This makes

sense as the increased stiffness for System I can not be

compensated by closer communication of Systems II and

III.

The macro step sizes H and H1 would have to be cho-

sen as low as 0.03 to keep the error in bounds at all, even

though results are still too far from the reference solution

to be of use.

4 Conclusion
In this paper, the method of hierarchical co-simulation

has been presented and investigated with respect to sta-

bility properties. In comparison to hierarchical multirate

approaches as presented in [5, 12], the application of the

hierarchical co-simulation method presented in this paper

appr. tend H |H1 H2 errx1
errv1

errx2
errv2

errx3
errv3

el. time

trad. 3 0.1 1.19E-02 1.56E-02 4.03E-01 4.61E-01 9.78E-02 2.37E-01 0.0202

hier. 3 0.1 0.025 7.59E-03 7.01E-03 9.54E-02 1.10E-01 5.01E-02 1.33E-01 0.0376

hier. 3 0.2 0.025 1.54E-02 1.44E-02 1.94E-01 2.24E-01 6.56E-02 1.66E-01 0.0372

hier. 3 0.2 0.05 1.46E-02 1.29E-02 9.48E-02 1.10E-01 5.00E-02 1.33E-01 0.0258

trad. 100 0.1 2.37E-01 2.28E-01 5.38E+00 5.06E+00 5.35E-01 5.06E-01 2.2885

hier. 100 0.1 0.025 2.57E-02 1.30E-02 2.90E-01 2.79E-01 6.86E-02 1.98E-01 6.4143

hier. 100 0.2 0.025 5.81E-02 3.08E-02 6.96E-01 6.64E-01 1.06E-01 2.53E-01 5.3847

hier. 100 0.2 0.05 3.90E-02 1.47E-02 2.88E-01 2.77E-01 6.85E-02 1.98E-01 2.5811

Table 4:Maximum error and elapsed time for the traditional
and hierarchical co-simulation approach in Scenario
2.

c1 c12 c23 c3 d1 d12 d23 d3 m1 m2 m3

1 10 10 100 0.1 0.4 1 2 10 10 10

Table 5: Parameter settings for Scenario 3.
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Figure 7: Trajectories of x1, x2 and x3 for Scenario 3 with
H = 0.1s, H1 = 0.1s and H2 = 0.025s from tstart = 0s to
tend = 100s.

does not require any knowledge on the underlying system

per se. The subsystems can, as in common co-simulation

methods, be treated as black boxes with information on

the input and output dependencies without interfering
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with the subsystem solvers. This can be beneficial when

using co-simulation platforms like the BCVTB [11] or

standards like the FMI1, and in particular for interdis-

ciplinary collaborative projects where partial systems

are developed independently and possibly protected by

company-specific privacy agreements.

While in the experiments above, quite simple subsystem

solvers and coupling methods are chosen, improvement

methods commonly used in single-level co-simulation

approaches like variations of extrapolation order, cou-

pling methods (sequential or mixed algorithms and

waveform iteration) and stabilization techniques can of

course be utilized in hierarchical co-simulation as well.

Detailed studies on the advantages of said techniques for

traditional co-simulation are ample in the literature (see

for example [13, 14, 15, 16]). In addition, the results

from section 3 show that stability issues can be tackled by

introducing another layer of communication instead of

having to decrease the overall communication step size,

thus providing an innovative method for stabilization.
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