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Abstract. The term co-simulation denotes the coupling
of some simulation tools for dynamical systems into one
big system by having them exchange data at points of a
fixed time grid and extrapolating the received data into
the interval, while none of the steps is repeated for iter-
ation. From the global perspective, the simulation thus
has a strong explicit component. Frequently, among
the data passed across subsystem boundaries there are
flows of conserved quantities, and as there is no itera-
tion of steps, system-wide balances may not be fulfilled:
the system is not solved as one monolithic equation sys-
tem. If these balance errors accumulate, simulation re-
sults become inaccurate. Balance correction methods
which compensate these errors by adding corrections for
the balances to the signal in the next coupling time step
have been considered in past research. But establishing
the balance of one quantity a posteriori due to the time
delay in general cannot establish the balances of quan-
tities that depend on the exchanged quantities, usually
energy. In most applications from physics, the balance of
energy is equivalent to stability. In this paper, a method
is presented which allows users to choose the quantity
that should be balanced to be that energy, and to accu-
rately balance it. This establishes also numerical stability
for many classes of stable problems.

Introduction

With the rise of simulation software for technical sys-

tems emerged the desire to couple those simulations in

order to take into account the influence the systems ex-

ercise onto each other. In other words, these systems

are now viewed as subsystems which form one big sys-

tem.

One now wants to simulate this large system, using the

subsystems’ simulator software and coupling it by shar-

ing data. What used to be a parameter when the systems

were calculated separately is given now by a state vari-

able of the other subsystem, reading:

S1 : ẋ1 = f 1(x1,x2,z1,z2) (1)

0 = g1(x1,x2,z1,z2) (2)

S2 : ẋ2 = f 2(x1,x2,z1,z2) (3)

0 = g2(x1,x2,z1,z2). (4)

Here, the (x1,x2) are the differential, the (z1,z2) are the

algebraic states. The setting generalizes to n subsys-

tems in a straightforward way, and it includes parabolic

partial differential equations. We require that the

derivatives dzigi have full rank. Such each of the Si is an

index-1 differential-algebraic system if the (xk �=i,zk �=i)
are seen as parameters of it. The influence of x2,z2 in a

split setting is therefore modeled by parameters u12 in

S1 and x1,z1 as parameters u21:

S1 : ẋ1 = f 1(x1,z1,u12) (5)

0 = g1(x1,z1,u12) (6)

S2 : ẋ2 = f 2(x2,z2,u21) (7)

0 = g2(x2,z2,u21). (8)

When coupled, the ui j are determined by the coupling

conditions

0 = h21(x1,z1,u21) (9)

0 = h12(x2,z2,u12) (10)

that have to be fulfilled, and exchanged at fixed time

nodes Tk. Between them, the ui j are extrapolated. To

establish coupling, the hik must be solvable with respect

to the uik. The dzigi have full row rank, too. Such, the

differential-algebraic system given by Equations (5) -

(10) is again of index 1.
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Figure 1: Explicit co-simulation scheme.

This description of the setting is widespread [2].

It is commonly said that the coupling is done by

a co-simulation scheme if the ui j are calculated from

Equations (9) and (10) at exchange time nodes Tk
and then passed on to S2 and S1, respectively. Of

course, some extrapolation of ui j into [Tk,Tk+1) is re-

quired. Considerable research has been done on cou-

pling [6, 7, 5]. A lot of methods repeat the timestep

after the calculation with an extrapolation that has been

improved with respect to some objective. Thus, they are

implicit, see e.g. [5]. For a convergence proof, see [2].

The convergence of explicit co-simulation methods for

ODE and index one DAE not surprisingly as well im-

proves with the extrapolation order of subsystems input

[8, 2]. The situation here in simulator coupling mirrors

the one in ODE solvers: The explicit solvers are quick

in each step but not stable [12, 8], while the implicit

ones require iterations within each step but usually en-

sure some stability. When used for stiff problems, the

explicit schemes require such small stepwidths that the

implicit schemes are finally c heaper. A lso, implicit

algorithms for coupled solvers require additional pro-

gramming and storage. Therefore, the co-simulation

scheme, where one just proceeds to the next timestep

(Figure 1), is still popular.

So far, it has been common sense that the usual sta-

bility classifications like A - and B-Stability cannot be

achieved with explicit algorithms [14]. A solution for

these stability issues would be helpful in many applica-

tions and is the subject of this contribution.

It is important to note that all results and figures herein

have been published before in [1]. This contribution is

a highly condensed presentation of that content for the

purpose of reaching the engineering community rather

than novelty.

1 The Lack of Stability

1.1 Stability classifications

For readability, we present the concepts of stability clas-

sifications of methods.

Definition 1.1 (Stable points of ODE) Let x∗ be an
equilibrium point of the ODE ẋ = f (x) and φ t x the so-
lution for the initial value x(t0) = x. Then x∗ is

• stable if ∀ε > 0 ∃δ > 0 : ‖x− x∗‖ < δ ⇒
‖φ t x− x∗‖< ε ∀t ∈ [t0,T ]

• asymptotically stable if ∃r > 0 : ‖x− x∗‖ < r ⇒
limt−→∞ φ t x = x∗.

Definition 1.2 (Stable Point of Difference equation)
Let x∗ be an equilibrium point of the k−th order
difference equation xn+1 = f (xn, ...,xn−k). Then x∗ is
classified as in Definition (1.1) where x is replaced by
xn and ∀t ∈ [t0,T ] by ∀n ∈ {1, ...,N} and furthermore
t −→ ∞ by n −→ ∞.

Using these two definitions, stability classifications like

zero-, A- or B-stability are defined: The respective sta-

bility of a method is the inheritance of the stability of

an equilibrium point of a certain ODE class to the equi-

librium point of the difference equation yielding from

the application of the numerical scheme.

Stability, consistency and convergence. In

this framework, zero stability of a numerical method

means that the difference equation that one gets by

applying the method to ẋ = 0 is stable. It is well-

known that this is a necessary condition for convergence

[13, 14]. But this condition is fulfilled by all one-step

methods as xn+1 = xn+0 is a stable equation. (One-step

methods can be written as xn+1 = xn + hψ(xn, tn,hn),
and ψ(xn, tn,0) = f , where f is the ODE’s right hand

side.) So unlike for multistep methods, there is no need

here to examine zero-stability when one examines con-

vergence of one-step methods. It frequently causes con-

fusion that zero stability in the original paper [13] was

labeled stability only, and with this nomenclature Lax’s

and Richtmyers’ theorem is given in an equation-like

form stability + consistency = convergence.
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1.2 Stability

These results were confirmed numerically in [8,

Sec.3.2] using the two-dimensional linear problem

ẋ = Ax, (11)

which with

A =

(
0 1

− c
m 0

)
, x =

(
x
ẋ

)
(12)

can be interpreted as linear spring-mass oscillator with

mass m and spring constant c. This problem is the most

simple problem possible that is linear and can be split-

ted. The original problem is marginally stable, so sta-

ble, as its spectrum is purely imaginary.

Spring Mass

System States

x1 := s = x x2 := v = ẋ
Outputs

u21 := F =−cx u12 := v = ẋ
Inputs

u12 u21

Equations

ẋ1 = Ext(u12) = v ẋ2 =− 1

m
Ext(u21)

=−F
m

Spring Mass

System States

. . . . . .
Outputs

u21 := ( f , ḟ )

= (−cx,−cv)
(13)

u12 := (v,a)

= (ẋ, ḟ/m)
(14)

Inputs

u12 u21

Equations
...

...

Table 1: Standard Co-simulation schemes for the
spring-mass system, top constant, down linear
extrapolation. When there is no difference, dots
have been used.

Written as a co-simulation problem, Problem (11)

with (12) yields Table 1. In [8] and [12] it is shown that

co-simulation schemes are not stable for linear prob-

lems, even not for stable subsystem solvers. The stabil-

ity for linear problems replaces the notion of A-stability,

as the one-component equation used there cannot be

split. When treated with a co-simulation scheme ( out-

put of the spring is the force f = −cx, that of the mass

is the velocity v = ẋ) the emerging (method-induced)

ODE {
ẋ1 = a1,1x1 +a1,2 Ext(x2)

ẋ2 = a2,2x2 +a2,1 Ext(x1)
. (15)

is obviously unstable [8, Section 2.5].
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Figure 2: Simulation of the system (11)-(12) in the
co-simulation scheme with constant extrapolation,
varying the exchange step size H. Upper row, left:
H = 0.2, right: H = 0.1. Previously published in [12].

Its numerical solution is shown in Figure 2, – there

is no linear stability for general step sizes. This means

‖x‖−→∞ for t −→∞. The energy of our system is E =
1
2 mv2 + 1

2 cs2 =
〈
x, 1

2 diag(m,c)x
〉
= 〈x,x〉 1

2 diag(m,c) =

‖x‖ 1
2 diag(m,c), which is an equivalent norm, so lack of

stability is equivalent to energy augmentation.
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Using piecewise constant extrapolation of inputs,

the force, as it is seen by the mass, is effectively shifted

to later times: a value from time Ti is used for all fu-

ture times t ∈ (Ti,Ti+1). The analogy with the reactive

power and the real power of an electrical network is ap-

parent. Work from oscillating systems with phase shift

contains an integral over a constant and thus grows un-

bounded (Figure 2). Similar arguments hold for linear

extrapolation co-simulation.

2 Enforcing Balance by Sharing
the View on Potential Flow

2.1 The proposed method

The key feature to establish energy balance is exchang-

ing the value of power and calculating the variable of in-

terest from that power. Consider a co-simulation prob-

lem with subsystems S1 and S2 as given by Equations

(5) - (10) with states x1 and x2 respectively and inputs

u21 and u12. We suggest the following procedure to en-

force energy balance between subsystems S1 and S2:

1. At data exchange timepoint Tn the powers Pi j as the

flux of energy are calculated in both subsystems,

using up-to-date input un
ji. In general Pi j �= Pji.

Applied to the S1 − S2 setting, P21 (the power cal-

culated in S1 for passing to S2), is calculated using

fresh u12, the input into S1. Now in the input vec-

tors ui j one component is replaced by Pi j and that

new vector u21,bal is exchanged between the sub-

systems. Applied to S1 − S2 setting, the value P21

replaces one component (u21)m of u21, and respec-

tively, P12 replaces (u12)n of u12.

This means S1’s point of view about the power has

been passed on to S2 and vice versa.

2. Now both subsystems have the same information

and thus the opportunity to draw the same conclu-

sion on what energy exchange should be assumed.

We denote this assumed energy exchange as

P̂12(P21,P12) =−P̂21, (16)

a straightforward choice is P̂21 = (P12 −P21)/2 =
−P̂12, where now it is necessary to define flow di-

rections: Pi j shall be negative if it leaves S j, so it is

counted with opposite sign in Si.

Again remember that P21 is the power calculated

in S1 for passing to S2, calculated using u12, the

input into S1. The former input (u12)n(t) now is

calculated subject to

P21(x1(t),u12\n,(u12)n(t)) = Ext(P̂12). (17)

Analogously (u21)m(t) s.t.

P12(x2,u21\m,(u21)m) = Ext(P̂21) is calculated.

The expression 12\ k in subscript is to say that the

k-th component of the vector is left out. For the

unique inversion of Pi j it is required that the maps

(u ji)k −→ Pi j(., .,(u ji)k) are strictly monotone.

As Ext(P̂12) = −Ext(P̂21), now it is established

that the inputs of S1 and S2 are consistent in terms

of energy conservation for all t.

2.2 Example

To apply the scheme given in Section 2.1 above to

a spring-mass system (12), replacing the standard

co-simulation scheme from Table 1, one first calculates

the energies of the systems parts, powers acting on

subsystems boundaries, and their derivatives. As

Pi = Ẇi, Pi < 0 indicates that energy leaves Si.

Spring Mass

Energy

W =
∫

− f ds

=
∫

− f vdt

W =
∫

f ds

=
∫

mavdt

Power

P = Ẇ

=− f v = cxv

P = Ẇ

= mav = f v

Derivative of Power

Ṗ = c(v2 + sa) Ṗ = m(a2 + vȧ)

= m(a2 + v
ḟ
m
)

The derivative of force ḟ is available as output of

spring, as it is usually needed for linearly extrapolating

the input. With this, the scheme yields Table 2.
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Spring Mass

System States

x1 := s = x x2 := v = ẋ

Outputs

(u21,Std)1 := f =−cx (u12,Std)1 := v = ẋ

(u21,Std)2 := ḟ =−cv (u12,Std)2 := v̇ = f/m

(intermediately exchanging ui j,Std)

(u21)1 = P(x1,u12)

= cxv = cx1(u12)1

(u12)1 = P(x2,u21)

= f v = (u21)1x2

(u21)2 = Ṗ(x1,u12)

= c(v2 + xa)

= c((u12)
2
1 + x1(u12)2)

(u12)2 = Ṗ(x2,u21)

= m(a2 + v
ḟ
m
)

= m

(
(u21)1

m

2

+ x2
(u21)2

m

)

Inputs

(u12)1 := P̂ (u21)1 :=−P̂

(u12)2 := ˆ̇P (u21)2 :=− ˆ̇P

Input variables of standard method ustd depending on Power

v =
Ext(P̂)

cs
=

Ext(u12)1

cx1
f =−Ext(P̂)

v
=

Ext(u21)1

x2

Equations

ẋ1 = v ẋ2 =
f
m

Table 2:Method form Section 2.1 applied to the spring-mass

system.

3 Stability of power balanced
schemes

As discussed in Section 1.2 and shown in [8], stability

for linear systems of a partly explicite scheme is not

given. This section shall relate energy conservation of

our method to stability. The class of problems under

consideration are all stable gradient flow problems

ẋ =−M∇xP
T , (18)

which is a huge class, containing entropy driven and

energy conserving problems. The mobility Matrix M
determines the systems stability - it is positive definite

if the system is dissipative and skew if energy conserv-

ing. This behavior must be inherited to the ODE that is

induced by our splitting method. We give an outline of

the arguments:

1. Switch to gradient flow view. In this, inserting (18)

into the time derivative of the respective potential

Ṗ(x) yields

Ṗ(x) = 〈∇xP(x), ẋ〉= 〈
∇xP(x),−M∇xP(x)T 〉

(19)

with the scalar product 〈., .〉.
2. Introduce split system

• Identify coupling contributions

• Characterize potential conserva-

tion/dissipation properties (see below)

3. See method as decoupling ODE – Insert calcula-

tion of inputs from power into original equations

4. Relate decoupled ODEs stability properties to sta-

bility of original systems

• Show that negotiated exchange conserves

Ṗ ≤ 0. It can be shown and there are

straightforward arguments that there is no un-

physical power production when sharing sub-

systems agree on the exchanged energy

• Use Lyapunov’s direct method on the decou-

pled system.

• Additionally, one can argue that maximum

stable stepwidth for dissipative systems is

augmented (method is closer to B-stability

than extrapolation of inputs method).

5. If such stable subsystems ODEs are solved with

methods preserving that stability, overall solution

will be stable.

Items (2) and also (4) need closer consideration. The

split systems potential production Ṗ(x) according to

SNE 31(1) – 3/2021
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Eq. (19) in subsystem-wise block matrix form reads

Ṗ(x) = Pk +Pl + ... (20)

=

⎛
⎜⎜⎜⎜⎝

.
(∇xP(x))Ik

.
(∇xP(x))Il

.

⎞
⎟⎟⎟⎟⎠ · ... (21)

⎛
⎜⎜⎜⎜⎝

∗
... −(M)Ik,Ik ... −(M)Ik,Il ...

∗
... −(M)Il ,Ik ... −(M)Il ,Il ...

∗

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

.
(∇xP(x))Ik

.
(∇xP(x))Il

.

⎞
⎟⎟⎟⎟⎠

(22)

=
〈

∇xIk
P(x),−MIk,Ik ∇xIk

P(x)T
〉

︸ ︷︷ ︸
Pkk

(23)

+
〈

∇xIk
P(x),−MIk,Il ∇xIl

P(x)T
〉

︸ ︷︷ ︸
Pkl

+
〈

∇xIl
P(x),−MIl ,Il ∇xIl

P(x)T
〉

︸ ︷︷ ︸
Pll

(24)

+
〈

∇xIl
P(x),−MIl ,Ik ∇xIk

P(x)T
〉

︸ ︷︷ ︸
Plk

+...,

we identify

Pkl :=
〈
(∇xP(x))Ik ,−(M)Ik,Il (∇xP(x)T )Il

〉
(25)

as the potential production in Sk by Sl’s variables, or

power acting from subsystem l onto subsystem k. Item

(4) now means that those eliminate in the suggested

scheme, as the exchanging subsystems agree on their

value. So, there is no contribution to Ṗ by the extrapo-

lation during coupling.

Theorem 3.1 For a Lyapunov stable (asymptotically
stable) gradient flow initial value problem (IVP), the
IVP resulting from the energy balancing method as de-
scribed in Section 2.1 is also stable (asymptotically sta-
ble).

4 Discussion, Conclusion and
Future Work

The suggested method overcomes the decade-old issue

of stability in coupled simulation for a huge class of

problems.
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Figure 3: Stability of cosimulation schemes applied to
spring-mass system: Top: Linear extrapolation,
middle and bottom: Power balanced scheme. The
image on bottem is an amplification of the lower
right corner of the image above to confirm that
there is no energy gain. Tend = 75, exchange
stepwidth H = 0.2, subsystems refinement
decisions left to subsystems solvers, stable vode
used on subsystems.

Moreover, the method has a clear interpretation in

physics: the enforcement of the power balance in sys-

tems interactions. It can therefore be implemented by

anyone with understanding of the systems they want to

couple, without deep knowledge of numerical analysis.
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For simulations in industrial research and develop-

ment, the new method enables stable calculations with

big timesteps and few programming effort and is thus a

big step forward.
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