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Abstract. With the conformal map from unit square
to unit disk analytically known, in our last contribution
we investigated ways to numerically map the disk to
more general (but star-shaped) domains. Such point-
mappings of the complex planes are now to be inter-
preted as transformations of co-ordinates, hence the do-
mains are parametrized by the square. Using general,
curvilinear co-ordinates one has to take the shape of the
fundamental tensor and other related quantities into ac-
count. The also numerically known derivatives of the
map act as metric quantities flowing in and correcting
a pre-given PDE in Cartesian co-ordinates on such a do-
main. On the other hand, a formulation of physical laws
in co-ordinate free manner gives an even smarter access
to implement a simulation code of a given problem in
Mathematica. In this article, we focus on a practical prob-
lem: let the domain be the cross-section of a tooth and
the task be to find the temperature distribution on its
boundary with respect to a heat source moving in the
interior of the domain. This model can then be inter-
preted as a decision-finding issue to parameter identifi-
cation when treating a tooth with a laser pulse. Consider-
ing the problem in three dimensions by using rotational
symmetry will turn out to be essential with respect to the
obtained results.

Introduction

The treatment of tooth root inflammations by root re-
section is (in the author’s own experience) one of the
less desirable aspects in the whole digestion process.

Moreover, success of this dolorous treatment can not be
ensured and more commonly leads to extraction of the
affected tooth after repeatedly abortive attempts.

To try to rescue a tooth from extraction anyhow,
laser treatment can be applied as an alternative method.

The purpose of this alternative and widely painless
endodontic laser treatment approach [1] is to annihilate
malicious bacteria by means of thermal demolition with
the obvious side condition that the Parodontium anchor-
ing the tooth must not be damaged by temperatures too
high. The area in question is sketched by the red line
in Figure 1, labeled with Cementum there. For this un-
dertaking, a laser source is moved along the root canal.
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Figure 1: Schematic tooth cross-section (Source: Wikipedia).

With the gained knowledge of our previous articles (cf.
[3] & [4]) we can set out to establish a simulation model
on this issue. Hereto we adapt the developed heat equa-
tion simulation code on unit square (and unit disk) with
the insights provided by the conformal map. While ba-
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sically we are already ready-to-run, deducing a model
in three spacial dimensions is most desirable. This ex-
tension has yet to be discussed as well as an apt im-
plementation of the laser heat source. Moreover, let us
focus on the temperature distribution on the boundary.

1 Calculating the Tooth Grid

In our previous contribution [4, p.90f], for three dif-
ferent pre-given domains we investigated how to nu-
merically establish the function of boundary correspon-
dence, @ — 0, relating the angle ¢ circling around unit
disk € to angle 6 on domain & with given boundary
€ as a smooth, closed Jordan arc. Due to worst error
behaviour we will focus on geometry GEO3, described
by means of Hermite interpolation. This domain may
be used to derive a tooth cross-section simulation grid.

1.1 Notation

Using Cartesian co-ordinates (£,7) on &, we assumed
rotational symmetry with respect to 1-axis. Introducing
the complex {-plane, a point of & can be addressed
via { = £ +in by means of its complex representation.
Let then w denote the complex w-plane where & resides
so its points are reached by the complex representation
w = u+ iv. Furthermore, in a third complex plane we
represent the unit square £ in the z-plane, z = x + iy,
where the computational grid is located (cf. [3, p.43]).

For the subsequent task to numerically construct the
map £ — &, the unit disk € will be interposed. Hence,
let w = h(z) be the elliptic function evolved in [3, p.47]
acting as a closed-form conformal map £ — €. We
note that implementing and calculating / and its deriva-
tives numerically with Mathematica is straight-forward.

Finally, with { = g(w) presented in [4, p.87] map-
ping the closures € — & we find the conformal map
from square onto domain by composition of g and A,
thus f =goh: Q — & where { = f(z) = g(h(z)).

It is well worth explicitly pointing out the chain rule
for the case that g(w) = w-ef") is established by means
of a trigonometric polynomial (see again [4, p.87]),

P(w) = 0_20 —f—Z(ak — ib )Wk,
applying the first derivative then results in

f1(@) =&t ine=g (W' (z) = (2)e"™ (wP' (w) +1),
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whereas for the second derivative we get

fﬂ' (Z) — gxx +fﬂxx — gﬂhfz +hﬂgl
= [0+ P(2h"” + wh" +whP") + wh*P"] .

Term by term differentiation of P is trivial for Mathe-
matica, so is the numeric evaluation of f, /" and f".

1.2 Remarksongand g’

Concerning trigonometric interpolation of Inp(6(¢))
to get hold of the Fourier coefficients e stablishing the
map g we noticed that series convergence degrades de-
pending on the £-condition as well as in case that slope
discontinuities arise in the parametrization of €.

Of course, with GEO3 we will not face any prob-
lems: smoothness of boundary is guaranteed by means
of Hermite interpolation and the e-condition has been
investigated as well as convergence and error be-
haviour on [0,27]. But let us have a look at the non-
trigonometric case in this section just for completeness.

For example, by considering the unit square itself
as image domain &, in [4, p.89] we showed that high-
precision 0 (@) can be achieved nonetheless by switch-
ing to more apt base functions than trigonometric ones.

Suppose therefore that 6(¢) is known to and imple-
mented in Mathematica as well as p(@) describing €
is at hand. Then we distinguish four cases [5, p.56f] to
snatch numeric values for g and g’

Unit disk boundary point images:
2(e'®) = p(6(9))-°?
Unit disk boundary point derivatives:
g(€?)=0'(9)-¢°@~9). [p(6(p))—ip'(6(9))]
Unit disk interior point images:

€’ +w
e —w

2n
g(w) =w-exp [%/@ Inp(8(9)) dd

Unit disk interior point derivatives:

_8(w)  gw) ["Inp(8(¥))+i(6(8)— D)
w | 2z fo (e® —w)?

.. g(§) 1 27 p(6(0))e®®)
(O b0 wh

M

% do.
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If necessary, formulae for higher-order derivatives can
be developed likewise by regarding the generalized
CavucHy integral formula for derivatives [2, p.246,
Theorem 4.7d] like we did for points in the interior of
the unit disk to evaluate g'(w). Finally note that the
singularity arising in the origin, g'(0), was removed by
subsequent application of CAUCHYs integral formula,

1.2 Grid Visualization

Setting up and saving the grids on unit square, disk and
GEO3 is done in complex arrays 2, W and ZETA:

For[i=1,i<=n,i++,For[j=1, j<=n, j++,
Z[i,3]]=-1#{i-1)dx+I(-1+(J-1l)dy);];]
X = Rel[B]; ¥ = Im[E];

Real and imaginary parts of these arrays are also defined
for the ease of data access. Whereas these objects are
used in the simulation process (for example, 2 can be
fed directly in functions i and f and other arrays are
defined to save the derivative values on the grid), the
grids themselves are stored in separate structures:

Zgrid=Flatten([Table|
X[([041,31).,¥(041,3))vis1yn,3,1,m],1];

With these definitions, ListFlot outputs can be gen-
erated in a convenient way. Figure 2 shows the result of
such an output (n = 101). While Figure 3 has already
been presented in [3, p.47]. Figure 4 shows the im-
age grid following from the conformal mapping f from
square to GEO3 with the unit disk interposed. Note
in particular how the square corners are being mapped.
Despite these present singularities no further impact on
the simulation process can be expected.

In the visualization context, all of these mappings act as
point transformations. In our subsequent examinations,
[ owill alternatively be interpreted as a transformation of
co-ordinates. With the metrics calculated in addition,
we are ready to run a simulation model on the tooth
cross-section parameterized by the unit square.

2 Setting up the Model

It is one of the major benefits of our approach in using
conformal parametrization of a domain by means of the
unit square that - as soon as the conformal map and its
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Figure 2: 101 = 101-point simulation grid in z-plane.
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Figure 3: Result of the mapping 4 : £ — € in w-plane,

derivatives are numerically determined and externally
saved - an existing PDE-model can easily be ported 1o
an other domain of interest.

Basically, one starts with an investigation of the un-
derlying PDE itself in co-ordinate free formulation. Re-
garding the fundamental tensor involved and knowing
£i; = &; in Cartesian co-ordinates, the proper transfor-
mation laws have to be taken into account to determine
its new shape as well as vector or tensor valued state
variables must be transformed. Right here the confor-
mal transformation f and its derivatives come into play.
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Figure 4: Result of the mapping f =goh: £ — & in {-plane.

2.1 3D considerations

Starting from what we have implemented so far consid-
ering the simulation models on square and disk, switch-
ing to our new f’ paying tribute to domain GEQ3, the
heat equation on the tooth cross-section can be simu-
lated and one might think that we are already done.

However, such an approach in two dimensions is
worth to be critically impugned. In fact, dropping the
third Cartesian co-ordinate, 3, to work with a 2D model
results in the assumption of a constant temperature pro-
file in this direction. Thus, this proceeding will lead us
to a 3D geometry similar to a rod with infinite length,
having a cross-section & in each fixed point 3.

This is definitely not in our intention and a compari-
son of mean temperature distributions will in fact reveal
a 44% deviation with regard to the 3D model to be de-
veloped below. Let us therefore pack rotational symme-
try by introducing cylindrical co-ordinates in our model
to prevent dentists from having a formidable tooth braai.

Let thus be &* C R? a three-dimensional domain
and (&,1,3) Cartesian co-ordinates with 1) denoting the
axes of rotation. Let further be

flx+iy) = &(x,y) +in(x,y)

a conformal map such that for 3 = 0 the unit square in
the (x,y)-plane is mapped to the cross-section & C &*
located in the {-plane. Then the desired symmetry is
incorporated by the co-ordinate transformation

§=3&(xy)sing, n=n(xy), 3=&(xy)cose.
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The new shape of the covariant metric tensor when
switching from Cartesian to curvilinear co-ordinates,
(€,1m.3) — (x,y,9), is determined by (cf. Figure 5)

E+n; 0 0
gij= 0 E2+n} 0
0 0 g%

-5- o 0 o 5

Figure 5: Fundamental tensor on & with gi; = g2.

The transformation itself obviously has impacts on the
expressions involved in differential operators, too. For
example, examination of the LAPLACE operator given
in [4, p.92] yields (let be ¥y = £241n?)

A —l @4.&4_1 éx?jf._ _c?_u _;._!_._aj‘;.
=TI TE\T: Gy ) | TE2 a0

The assumption of a rotational symmetric, angular con-
stant temperature field now entitles us to drop the last
summand in the expression above.

Comparing the remaining expression with the 2D
simulation rod approach - the Laplacian is corrected
by a factor 1/ in this case - we note that in addition,
first derivatives of the temperature field u(x,y,) appear.
Also, the sense of this expression on the axes of sym-
metry itself (singularity for & = 0) has to be questioned.
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Figure 6: The two independent CHRISTOFFEL symbols I'},
(top) and I'}, (bottom) on tooth cross-section ¢
can be derived by evaluating /' and f” in each grid
point.

In the course of setting up f(z) by means of trigonomet-
ric interpolation, we also showed how to derive expres-
sions for f’ and f”. With these functions implemented,

we are able to visualize the CHRISTOFFEL symbols
shown in Figure 6. Although not needed for simulat-
ing the heat equation it is a good idea to calculate and
externally save these numeric values for each grid point
for the case that the base PDE has to be adapted.

2.2 Impacts on grid and model

As it can be expected that switching over to a 3D rota-
tional geometry yields a far more realistic modeling ap-
proach, there are other good news concerning the grid
size: the temperature field has to be n-symmetric per
definition, meaning restricting the computational area
to [0,1] x [-1.1] is sufficient. For an odd number n* of
grid points on the unit square this results in a reduction
to an effective number of (n* +n)/2 calculation points.

As an example, for the 101 x 101-grid shown in
Figure 2 instead of solving a system of 9.801 coupled
ODEs we get along with 4.851 equations. This gain in
simulation resources (primarily memory and CPU time)
can be used for additional grid refinement if necessary.

These thoughts reflect the fact that the P DE itself
only holds in the interior of the domain and one has to
treat the boundary gridpoints in a different way. In this
sense, the nature of reasonable boundary conditions in
grid points { = in.n € [—1,1] has yet to be clarified.
Aside the axes of rotation we do not face any prob-
lems, DIRICHLET type conditions can be implemented
as well as NEWTON/NEUMANN ones just like we pre-
viously did in our heat simulations on square and disk.

An heuristic approach to this boundary axes prob-
lem could claim smoothness of the temperature field
when traversing the axes. This physically motivated de-
mand would result in Vau =0 ¥n € [—1,1].

Finally, a mathematical approach can also legitimate
prescription of the homogeneous NEUMANN boundary
condition on the n-axes: with knowledge of the modi-
fied Laplacian holding in the interior, examination of

gl_l}l'(tleéWx — Milty) /&

reveals that zeroing the numerator is at least a neces-
sary condition for the expression to make sense. Tak-
ing now into account that { = f(z) is n-symmetric, one
first shows that the y-axes is mapped onto the n-axes.
With & (0,y) = 0, &(0,y) # 0 and 1,(0,y) = 0 Vy co-
mes u, = 0 and we are done (details in [5, p.63, fn.6]).

sne 31(1) - 32021 |GGG
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2.3 Dental laser source

Introducing a heat source into our model to simulate the
thermal treatment with a laser equipment inserted into
the dental root canal with successive pulsing or move-
ment can be done in different ways. With respect to
rotational symmetry of our 3D model developed so far
focusing on the 77-axes (representing the canal) for the
sake of not breaking up the symmetry seems reasonable.

One practicable approach could be altering the ho-
mogeneous NEUMANN boundary condition on the 1-
axes to Vyu = a(0,7n,1). But aside the necessity of a
correct parameter identification it is also to be expected
that we are running into numerical problems with this
modeling approach. Moreover, adjusting the depth of
heat penetration would also be a desirable aspect but
cannot be incorporated by this modeling procedure.

Seeming more flexible is the introduction of an ad-
ditional source term into the heat equation itself which
holds in the interior of the region. For this purpose, a
Gaussian curve in two dimensions would be appropri-
ate, that is we make use of

£2—(n—mo—wt)?

5

U(é,f},t) = Ugmp * EXP —

as our heating source base signal function. Being de-
pendent on both space and time variables this signal can
then be further adjusted to the desired needs within a
simulation run. For t = 0, the signal starts moving at
point (0,70) up- or downwards the axes of symmetry
with velocity v (positive or negative).

Penetration depth is controlled by constant 5. As for
the amplitude u,;,, we leave the correct unit determina-
tion as well as considerations concerning plausible nu-
meric values to the physicist. Having a look at the two-
dimensional normal distribution can extend the signal
to pay tribute to a certain direction (using correlation).

Furthermore we see that grid points on the 1-axes
will not be affected by this modeling approach, in-
deed the homogeneous NEUMANN boundary condition,
Vau = 0, has to hold during the whole simulation run.
The peak ugynp of the Gaussian is calculated on the
boundary by solving this condition within simulation.

Finally, caused by the fact that we are dealing with
an invariant, adding the source term o(&,n,t) to the
heat equation has no further impact concerning confor-
mal transformation laws. Yet another advantage com-
pared to heating via boundary condition where trans-
formation of the normal vector has to be considered.

I e 311) - 312021

3 Parameters and Results

In [3, p.43] we assumed for k, the coefficient of ther-
mal diffusion being responsible for heat propagation,
for sake of convenience k¥ = 1. This is by chance not
too far from reality, in literature [7, Fig.5] one finds for
dentine and enamel k ~ 2 —5 x 10~ [m*s~']. Suppos-
ing [mm| units like pointed out in the cross section fig-
ures thus entitles to define k = 0,3[mm?s™"].

With uy = 36 °C as prescribed initial temperature
distribution the set of boundary conditions also has to
be adapted to the level of this reference temperature uy,

0, x=0,ye(-1,1)
oy(ugp—u), x€(0,1),y=-1
o (up—u), x=1,ye(—1,1)
o (up—u), xe(0,1), y=1.

Herein, for convenience the junction point from root
to crown was determined to be — in computational co-
ordinates (x,y) — at point (1,1). With o, and o, being
positive heat is being dissipated to the exterior. For the
heat transition coefficients (¢,.: enamel—air and root
a,: cementum—bone) one finds in literature [6, p.1640]
o = 10" [Wmm~2K~'] and o = 1073 [Wmm 2K ).

Using a canonical model first, impact of the different
geometries on the results and rate of convergence can be
studied. Mean temperatures and temperatures at { =0
for different grid spacing are presented in Table 1.

Finally, for the results shown in Figure 7, a con-
stantly emitting heating source with ugm, = 400 and
s =2/10 was placed at t = 0 in point { = 5i. Moving
down the axes of symmetry with velocity v= —1/5, the
point { = —7i is reached within t = 60s.

|Geo || Grid | u(0) | A% | wz | A% |
26x51 05076 [ — [04637 | —

1 || 51x101 | 0.5079 [ 0.05 [ 0.4649 | 0.25
101 x 201 | 0.5079 | 0.005 | 0.4654 | 0.1

1326 | 0298 | — [02745 | —

2 5.151 | 0.2988 | 0.285 [ 0.2761 | 0.59
20301 | 0.299 [ 0.047 [ 0.2765 | 0.16

1326 [0.1975] — [0.1875 ] —

3 5151 ] 0.1998 [ 1.17 [ 0.1905 | 1.6
20.301 [ 0.2004 | 0.283 | 0.1913 | 0.42

Table 1: Investigating convergence (r = 50) on the three

different cross-sections presented in [4, p.91].
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Figure 7: Simulation results: Isothermal lines for a heat source moving down from n =5 to n = —7 () and associated
temperature distributions on the boundary (c). Visualization on the boundary with time proceeding (b).
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Summary

The present SNE article completes our conformal trans-
formation simulation trilogy where it was our inten-
tion to point out an alternative approach to the classical
method of Finite Elements by using Finite Differences
on particular curvilinear grids to produce a system of
coupled ordinary differential equations.

Hence, we demonstrated how conformal mappings
are utilized to simulate two-dimensional or symmet-
ric three-dimensional Initial Boundary Value Problems.
Parametrization of a 2D-region by means of the unit
square is achieved when combining the analytically
given map from square to unit disk with numerically
constructed conformal transformations. The introduc-
tion of such special co-ordinates thus makes the usage
of rectangular structured computational grids possible.

The method of lines (we also focused on deriving
generalized expressions for the sake of extensible ap-
proximation quality) can then be used to transform a
given system of PDEs to a system of ODEs. The latter
can be treated by standard methods available for sys-
tems with lumped parameters. All computations were
carried out by using the program Mathematica 11.3.

Starting with Cartesian co-ordinates, linking up the
derivatives of the map with the fundamental tensor is
all to be done to get access to the metrics of the trans-
formation. This approach proves to be highly flexible
concerning an application to a wide range of PDEs.

In contrary, as theory of conformal mapping is
bound to complex analysis, the field of application a
priori is limited to two-dimensional domains which can
be considered as a serious restriction. Knowing the spe-
cial shape of the metric tensor in the conformal case,
an attempt to construct an analogon in three dimensions
would be an interesting topic for future research indeed.

Focusing on a thermal heat conduction problem for
tooth laser treatment at last, the calculated tempera-
ture distribution on the boundary can be used to adjust
source intensity for the sake of avoiding injuries. Possi-
ble further model extensions are discussed in [5, p.67ff].
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