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Abstract. With the conformal map from unit square 

to unit disk analytically known, in our last contribution 

we investigated ways to numerically map the disk to 

more general (but star-shaped) domains. Such point

mappings of the complex planes are now to be inter

preted as transformations of co-ordinates, hence the do

mains are parametrized by the square. Using general, 

curvilinear co-ordinates one has to take the shape of the 

fundamental tensor and other related quantities into ac

count. The also numerically known derivatives of the 

map act as metric quantities flowing in and correcting 

a pre-given PDE in Cartesian co-ordinates on such a do

main. On the other hand, a formulation of physical laws 

in co-ordinate free manner gives an even smarter access 

to implement a simulation code of a given problem in 

Mathematica. In this article, we focus on a practical prob

lem: let the domain be the cross-section of a tooth and 

the task be to find the temperature distribution on its 

boundary with respect to a heat source moving in the 

interior of the domain. This model can then be inter

preted as a decision-finding issue to parameter identifi

cation when treating a tooth with a laser pulse. Consider

ing the problem in three dimensions by using rotational 

symmetry will turn out to be essential with respect to the 

obtained results. 

Introduction 

The treatment of tooth root inflammations by root re
section is (in the author's own experience) one of the 
less desirable aspects in the whole digestion process. 

Moreover, success of this dolorous treatment can not be 
ensured and more commonly leads to extraction of the 
affected tooth after repeatedly abortive attempts. 

To try to rescue a tooth from extraction anyhow, 
laser treatment can be applied as an alternative method. 

The purpose of this alternative and widely painless 
endodontic laser treatment approach [1] is to annihilate 
malicious bacteria by means of thermal demolition with 
the obvious side condition that the Parodontium anchor
ing the tooth must not be damaged by temperatures too 
high. The area in question is sketched by the red line 
in Figure 1, labeled with Cementum there. For this un
dertaking, a laser source is moved along the root canal. 
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Figure 1: Schematic tooth cross-section (Source: Wikipedia). 

With the gained knowledge of our previous articles (cf. 
[3] & [4]) we can set out to establish a simulation model 
on this issue. Hereto we adapt the developed heat equa
tion simulation code on unit square (and unit disk) with 
the insights provided by the conformal map. While ba-
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sically we are already ready-to-run, deducing a model 
in three spacial dimensions is most desirable. This ex
tension has yet to be discussed as well as an apt im
plementation of the laser heat source. Moreover, let us 
focus on the temperature distribution on the boundary. 

1 Calculating the Tooth Grid 

In our previous contribution [4, p.90f], for three dif
ferent pre-given domains we investigated how to nu
merically establish the function of boundary correspon
dence, <p f-t e, relating the angle <p circling around unit 
disk ~ to angle e on domain <.!) with given boundary 
I!: as a smooth, closed Jordan arc. Due to worst error 
behaviour we will focus on geometry GE03, described 
by means of Hermite interpolation. This domain may 
be used to derive a tooth cross-section simulation grid. 

1.1 Notation 

Using Cartesian co-ordinates ( s, 1J) on Q5 , we assumed 
rotational symmetry with respect to 77-axis. Introducing 
the complex s -plane, a point of <.!) can be addressed 
via s = s + i1] by means of its complex representation. 
Let then w denote the complex w-plane where ~ resides 
so its points are reached by the complex representation 
w = u + iv. Furthermore, in a third complex plane we 
represent the unit square ,Q in the z-plane, z = x + iy, 
where the computational grid is located (cf. [3, p.43]). 

For the subsequent task to numerically construct the 
map ,Q --+ Q5, the unit disk ~ will be interposed. Hence, 
let w = h(z) be the elliptic function evolved in [3, p.47] 
acting as a closed-form conformal map ,Q--+ ~- We 
note that implementing and calculating h and its deriva
tives numerically with Mathematica is straight-forward. 

Finally, with s = g(w) presented in [4, p.87] map
ping the closures ~ --+ Q5 we find the conformal map 
from square onto domain by composition of g and h, 
thus f = g oh: ,Q--+ Q5 where s = f(z) = g(h(z)). 

It is well worth explicitly pointing out the chain rule 
for the case that g( w) = w · eP(w) is established by means 
of a trigonometric polynomial (see again [4, p.87]), 

applying the first derivative then results in 

!' (z) = Sx+ i1Jx = g' (w)h' (z) = h' (z)eP(w) (wP' (w) + 1), 
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whereas for the second derivative we get 

!" (z) = Sxx + i1].xx = g" h'2 + h" g' 

= ep [h" + P' (2h'2 + wh" + wh'2 P') + wh'2 P"] . 

Term by term differentiation of P is trivial for Mathe
matica, so is the numeric evaluation off, f' and f" . 

1.2 Remarks on g and g' 

Concerning trigonometric interpolation of ln p ( e ( <p)) 
to get hold of the Fourier coefficients establishing the 
map g we noticed that series convergence degrades de
pending on the £-condition as well as in case that slope 
discontinuities arise in the parametrization of I!:. 

Of course, with GE03 we will not face any prob
lems: smoothness of boundary is guaranteed by means 
of Hermite interpolation and the £-condition has been 
investigated as well as convergence and error be
haviour on [O, 2n]. But let us have a look at the non
trigonometric case in this section just for completeness. 

For example, by considering the unit square itself 
as image domain QJ , in [4, p.89] we showed that high
precision e ( <p) can be achieved nonetheless by switch
ing to more apt base functions than trigonometric ones. 

Suppose therefore that e ( <p) is known to and imple
mented in Mathematica as well as p ( 8) describing I!: 
is at hand. Then we distinguish four cases [5, p.56f] to 
snatch numeric values for g and g': 

Unit disk boundary point images: 

Unit disk boundary point derivatives: 

g' (e;cp) = e' ( <p). e;(e(cp )- cp ) · [p( e( <p)) - ip' ( e( <p)) J 

Unit disk interior point images: 

[ 
1 12ir eiiJ +w ] g(w) =w·exp - lnp(8(?J))-.6--d?J 

2n o e' -w 

Unit disk interior point derivatives: 

'( )_g(w) g(w)l2irlnp(8(1J))+i(8(1J)-?J) ;iJd.a 
g w ---+-- e u 

w 2n o ( eiiJ - w )2 · 

g'(O) = _1 j g(s) ds = _1 {2ir p(8(1J))e;e(iJ ) d?J. 
2in Jy s(s -0) 2n lo e'6 
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Figure 4: Result of the mapping f =go h : .Q ---+ '5 in t;-plane. 

2.1 30 considerations 

Starting from what we have implemented so far consid
ering the simulation models on square and disk, switch
ing to our new f' paying tribute to domain GE03, the 
heat equation on the tooth cross-section can be simu
lated and one might think that we are already done. 

However, such an approach in two dimensions is 
worth to be critically impugned. In fact, dropping the 
third Cartesian co-ordinate, 3, to work with a 2D model 
results in the assumption of a constant temperature pro
file in this direction. Thus, this proceeding will lead us 
to a 3D geometry similar to a rod with infinite length, 
having a cross-section '5 in each fixed point 3. 

This is definitely not in our intention and a compari
son of mean temperature distributions will in fact reveal 
a 44% deviation with regard to the 3D model to be de
veloped below. Let us therefore pack rotational symme
try by introducing cylindrical co-ordinates in our model 
to prevent dentists from having a formidable tooth braai. 

Let thus be '5* c JR3 a three-dimensional domain 
and ( S, 1J , 3) Cartesian co-ordinates with 1J denoting the 
axes of rotation. Let further be 

f(x+iy) = s(x,y) +i71(x,y) 

a conformal map such that for 3 = 0 the unit square in 
the (x,y)-plane is mapped to the cross-section '5 c '5* 
located in the '-plane. Then the desired symmetry is 
incorporated by the co-ordinate transformation 

s = s(x,y)sin<p , 1J = 71(x ,y), 3 = s(x,y)cos<p. 
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The new shape of the covariant metric tensor when 
switching from Cartesian to curvilinear co-ordinates, 
( S, 1J ,3) --+ (x ,y, <p ), is determined by (cf. Figure 5) 

-5 

sl + 11; 
0 
0 

0 
sl +11; 

0 

0 5 

Figure 5: Fundamental tensor on '5 with g11 = g22 • 

The transformation itself obviously has impacts on the 
expressions involved in differential operators, too. For 
example, examination of the LAPLACE operator given 
in [4, p.92] yields (let be x = s} + 71}) 

1 [(J2u (J2u 1 ( du du)] 1 d2u 
6u = x dx2 + dy2 + ~ Sx dx -11x dy + s2 d<p2. 

The assumption of a rotational symmetric, angular con
stant temperature field now entitles us to drop the last 
summand in the expression above. 

Comparing the remaining expression with the 2D 
simulation rod approach - the Laplacian is corrected 
by a factor 1 / X in this case - we note that in addition, 
first derivatives of the temperature field u(x,y, t) appear. 
Also, the sense of this expression on the axes of sym
metry itself (singularity for s = 0) has to be questioned. 
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2.3 Dental laser source 

Introducing a heat source into our model to simulate the 
thermal treatment with a laser equipment inserted into 
the dental root canal with successive pulsing or move
ment can be done in different ways. With respect to 
rotational symmetry of our 3D model developed so far 
focusing on the 17-axes (representing the canal) for the 
sake of not breaking up the symmetry seems reasonable. 

One practicable approach could be altering the ho
mogeneous NEUMANN boundary condition on the 17-
axes to Y'0 u = a(O, 17 , t). But aside the necessity of a 
correct parameter identification it is also to be expected 
that we are running into numerical problems with this 
modeling approach. Moreover, adjusting the depth of 
heat penetration would also be a desirable aspect but 
cannot be incorporated by this modeling procedure. 

Seeming more flexible is the introduction of an ad
ditional source term into the heat equation itself which 
holds in the interior of the region. For this purpose, a 
Gaussian curve in two dimensions would be appropri
ate, that is we make use of 

[-s
2

- (17 -110-vt)2
] 

cr(s , 17 ,t)=uamp·exp s 

as our heating source base signal function. Being de
pendent on both space and time variables this signal can 
then be further adjusted to the desired needs within a 
simulation run. For t = 0, the signal starts moving at 
point (0, 110) up- or downwards the axes of symmetry 
with velocity v (positive or negative). 

Penetration depth is controlled by constants. As for 
the amplitude Uamp, we leave the correct unit determina
tion as well as considerations concerning plausible nu
meric values to the physicist. Having a look at the two
dimensional normal distribution can extend the signal 
to pay tribute to a certain direction (using correlation). 

Furthermore we see that grid points on the 17-axes 
will not be affected by this modeling approach, in
deed the homogeneous NEUMANN boundary condition, 
Y' 0 u = 0, has to hold during the whole simulation run. 
The peak Uamp of the Gaussian is calculated on the 
boundary by solving this condition within simulation. 

Finally, caused by the fact that we are dealing with 
an invariant, adding the source term CJ' ( S, 17 , t) to the 
heat equation has no further impact concerning confor
mal transformation laws. Yet another advantage com
pared to heating via boundary condition where trans
formation of the normal vector has to be considered. 
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3 Parameters and Results 

In [3, p.43] we assumed for IC, the coefficient of ther
mal diffusion being responsible for heat propagation, 
for sake of convenience IC = 1. This is by chance not 
too far from reality, in literature [7, Fig.5] one finds for 
dentine and enamel IC ~ 2 - 5 x 1o- 7 [ m2 s- 1]. Suppos
ing [mm] units like pointed out in the cross section fig
ures thus entitles to define IC= 0,3[mm2s- 1]. 

With u0 = 36 °C as prescribed initial temperature 
distribution the set of boundary conditions also has to 
be adapted to the level of this reference temperature uo, 

Y'nu = 

0, 

a,(u0 - u) , 
a,(u0 - u) , 

ac(uo - u) , 

x=O, yE (-1,1) 

xE(0, 1) ,y =-1 

x=l , yE(-1,1) 

xE(0, 1) ,y =l. 

Herein, for convenience the junction point from root 
to crown was determined to be - in computational co
ordinates (x ,y) - at point (1 , 1). With ac and a, being 
positive heat is being dissipated to the exterior. For the 
heat transition coefficients (ac: enamel-+air and root 
a,: cementum-+bone) one finds in literature [6, p.1640] 
a, = 10- 4 [Wmm- 2K- 1] and ac = 10- 5 [Wmm- 2K - 1]. 

Using a canonical model first, impact of the different 
geometries on the results and rate of convergence can be 
studied. Mean temperatures and temperatures at s = 0 
for different grid spacing are presented in Table 1. 

Finally, for the results shown in Figure 7, a con
stantly emitting heating source with Uamp = 400 and 
s = 2/ 10 was placed at t = 0 in points= Si. Moving 
down the axes of symmetry with velocity v = -1 / 5, the 
points= - 7i is reached within t = 60s. 

I Geo II Grid u(O) I Li% I u0 I Li% I 
26 x 51 0.5076 - 0.4637 

1 51 x 101 0.5079 0.05 0.4649 
101 x 201 0.5079 0.005 0.4654 

1.326 0.298 - 0.2745 
2 5.151 0.2988 0.285 0.2761 

20.301 0.299 0.047 0.2765 

1.326 0.1975 - 0.1875 
3 5.151 0.1998 1.17 0.1905 

20.301 0.2004 0.283 0.1913 

Table 1: Investigating convergence (t = 50) on the three 

different cross-sections presented in [4, p.91]. 
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t = 25s t =40s t =50s 
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Figure 7: Simulation results: Isothermal lines for a heat source moving down from 1) = 5 to 1) = -7 (t) and associated 

temperature distributions on the boundary (c). Visualization on the boundary with time proceeding (b). 
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Summary 

The present SNE article completes our conformal trans
formation simulation trilogy where it was our inten
tion to point out an alternative approach to the classical 
method of Finite Elements by using Finite Differences 
on particular curvilinear grids to produce a system of 
coupled ordinary differential equations. 

Hence, we demonstrated how conformal mappings 
are utilized to simulate two-dimensional or symmet
ric three-dimensional Initial Boundary Value Problems. 
Parametrization of a 2D-region by means of the unit 
square is achieved when combining the analytically 
given map from square to unit disk with numerically 
constructed conformal transformations. The introduc
tion of such special co-ordinates thus makes the usage 
of rectangular structured computational grids possible. 

The method of lines (we also focused on deriving 
generalized expressions for the sake of extensible ap
proximation quality) can then be used to transform a 
given system of PDEs to a system of ODEs. The latter 
can be treated by standard methods available for sys
tems with lumped parameters. All computations were 
carried out by using the program Mathematica 11.3. 

Starting with Cartesian co-ordinates, linking up the 
derivatives of the map with the fundamental tensor is 
all to be done to get access to the metrics of the trans
formation. This approach proves to be highly flexible 
concerning an application to a wide range of PD Es. 

In contrary, as theory of conformal mapping is 
bound to complex analysis, the field of application a 
priori is limited to two-dimensional domains which can 
be considered as a serious restriction. Knowing the spe
cial shape of the metric tensor in the conformal case, 
an attempt to construct an analogon in three dimensions 
would be an interesting topic for future research indeed. 

Focusing on a thermal heat conduction problem for 
tooth laser treatment at last, the calculated tempera
ture distribution on the boundary can be used to adjust 
source intensity for the sake of avoiding injuries. Possi
ble further model extensions are discussed in [5, p.67ff]. 
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