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Abstract.  With the increasing availability of data, the de-
sire to interpret that data and use it for behavioral predic-
tions arises. Traditionally, simulation has used data about 
the real system for input data analysis or within data-
driven model generation. Automatically extracting behav-
ioral descriptions from the data and representing it in a 
simulation model is a challenge for these approaches. Ma-
chine learning on the other hand has proven successful in 
extracting knowledge from large data sets and transform-
ing it into more useful representations. Combining simu-
lation approaches with methods from machine learning 
seems, therefore, promising. Representing some aspects 
of a real system by a traditional simulation model and oth-
ers by a model generated from machine learning, a hybrid 
system model (HSM) is generated. This paper discusses 
such HSMs and suggests a specific HSM incorporating a 
deep learning method for predicting the power consump-
tion of machining jobs. 

Introduction 
For a computer simulation of a real system it is indispen-
sable to create a model of this system. System models are 
generally abstractions of the real-world system under ob-
servation and will focus on the most relevant parts, or at-
tributes thereof that are of interest to the model designer. 
In traditional modelling approaches, the modeler is 
bound and potentially limited by the chosen modelling 
paradigm.  

Machine learning (ML), in contrast to simulation, is a 
set of algorithms that provide an efficient way to aggre-
gate rather big data sets and to find patterns within that 
data [1]. Those patterns can then further be used to de-
scribe the mechanism of the system of interest that emit-
ted the initial data points. Applications of ML are not lim-
ited to sets of static data, as the most prominent picture-
classification tasks, but can also be applied to dynamic 
data sets such as time series data. This duality results in 
ML methods being a promising match for hybrid systems 
modelling since a chosen simulation methodology can be 
complemented by an ML method with a different meth-
odology and vice versa. 

While ML methods are no simulation technique by 
definition, they can be used to design a data-driven model 
as a constituent part of a hybrid systems model (HSM) 
[2]. In this paper, we propose such an HSM that combines 
discrete event simulation (DES) with Sequence2Se-
quence (Seq2Seq) neural networks. This newly proposed 
HSM focuses on the realistic depiction of electrical 
power consumption of a job in a manufacturing cell that 
contains a waiting room and a machine tool. 

The investigation of energy efficiency issues within 
simulation has become a widespread research approach. 
Existing studies are often based on the consideration of 
the power consumption of resources (machines, furnaces, 
etc.) by means of metrologically recorded operating con-
ditions, which are regarded as constant over a defined pe-
riod of time [3]. 

The power consumption of resources averaged over a 
period is then assigned to a resource state and can be 
mapped and analysed status-based with discrete event 
simulation approaches. It is questionable, for which ap-
plication cases these quasi-static operating states provide 
enough closeness to reality! For the determination and 
smoothing of load peaks of many resources such an ap-
proach does not offer sufficient proximity to reality. 
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A solution for this is presented in [4]. It is based on 

the basic idea of combined simulation, which is also pro-
posed, for example, in [5]. While the production and lo-
gistics part of the model is represented classically with 
discrete event simulation, the system dynamics approach 
is applied for electricity usage in [4]. This enables the 
time series of the measured power consumption to be re-
produced in high resolution in the simulation, offering 
the advantage of a high-resolution overall picture of a 
production line’s power consumption. 

However, the disadvantage of this approach is that 
only the power consumption of measured jobs can be re-
produced. Power consumption of upcoming differing job 
types cannot be predicted. Furthermore, the approach de-
scribed in [4] does not depict cause-effect relationships 
between control parameters (e.g. half feed, slower heat-
ing phase, etc.) and the anticipated power usage. 

Within the scope of this paper, we will therefore ex-
amine whether there are alternative possibilities for high-
resolution forecasting of electricity usage that can over-
come the disadvantages mentioned above. The focus of 
the investigation is on the field of ML learning. Particu-
larly, a promising method is proposed based on deep 
learning. 

The aim of the proposed method is to be able to pre-
dict time series for the power usage of differing jobs by 
means of appropriately trained artificial neural networks 
(ANN). The basic idea is to train an ANN with relevant 
control information (here: numerical control codes of the 
production jobs of a machine tool and machine states) 
and the high-resolution time series of power consumption 
measured for these jobs. 

Then, in perspective, the ANN can forecast a time se-
ries of the expected power consumption for any job, pos-
sibly even a job with deviating numerical control codes. 
Then, these time series could be used in hybrid simula-
tion models of the entire production system. 

This paper presents a concept for the outlined proce-
dure as well as a prototypical implementation and valida-
tion. The paper is structured as follows: Section 1 dis-
cusses related work concerning the combination of sim-
ulation and ML and introduces the specific ML approach 
used. In particular, the necessity and basic idea of a deep 
learning method, which can map asynchronous se-
quences of different lengths to each other, are presented. 
This approach was first mentioned in [6], but led to non-
conclusive results. 

 
 

Building on this, Section 2 proposes a concept and 
prototypical implementation for the overall architecture 
with its input and output sequences. Section 3 discusses 
the makeup and necessary preprocessing steps of the data 
that are required to lead to conclusive results of the 
model. A brief description of the application case is given 
in Section 4. A prototypical application of the concept is 
demonstrated in Section 5. A critical review of the results 
and a discussion of future work is given in Section 6. 

1 Related Work 
1.1 Combining Machine Learning and 

Simulation 
The need for data-driven decision making in a dynamic 
environment results in a need for methods that allow si-
mulation models to adapt over time by learning [7]. Clas-
sical simulation approaches, such as discrete event simu-
lation, have traditionally used data about the real system. 
This was either done manually within the modelling pro-
cess, e.g., in the context of input data analysis for model-
ling stochastic influences by fitting theoretical distribu-
tions to the real observations, or semi-automatically with-
in data-driven model generation approaches for depicting 
structural aspects of the model [8]. Automatically ex-
tracting behavioral descriptions from the data and repre-
senting it in a simulation model can be considered a weak 
point of automatic simulation modelling approaches [9]. 

Previous work focused, therefore, on combining ML 
with traditional simulation modelling for mitigating this 
weakness. 

The papers by Bergmann et al. [10, 11] present an ap-
proach for using trained artificial neural networks. These 
networks can be called from material flow simulation 
models to obtain a decision on which control strategy to 
apply within the simulation, depending on certain input 
parameters modelled in the simulation project. 

Another example is given by Rabe et al. [12], where 
Reinforcement Learning was used alongside a simulation-
based Decision Support System for logistics networks. 
Here, the actions of an agent were modelled through ML, 
to identify and select principles on which decision-making 
policies should be carried out by the agent. 

In [13] a set of machine learning classification tech-
niques is proposed as a method to generate metamodels 
for the simulation of sawmilling processes. Here, data-
driven models of the sawing process are generated and 
used to determine what sets of lumber are derived from 
breaking down the logs in a sawing mill. 
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Within patients care pathway design for hip fracture, 

ML was used to identify clusters of patients, and their 
underlying characteristics to use that insight in the devel-
opment stage of a simulation model [14]. Unsupervised 
machine learning was used to cluster a set of patients into 
subgroups that relate in common characteristics. Once 
groups of patients at risk being treated for fractured hips 
were discovered, that information was considered in the 
simulation model to increase the efficiency of the overall 
healthcare process through optimized coordination of 
care resources. 

Finally, ML is a key constituent in the modelling of a 
digital twin, as it is stipulated for symbiotic simulation 
approaches, and further be referred to as the result of 
HSM in [15]. Here, ML enables a digital twin that is a 
virtual representation of a physical system, as it allows 
the systems simulation model under observation to adapt 
primarily according to the behaviour of variables con-
trolled by the physical system in question, and not the in-
tentions of the shareholder of the model. Further such hy-
brid simulation-ML environments can be used to predict 
the changes in state variables of a system, as ML methods 
can be trained on past changes in the same system. 

These examples have in common that they allow the 
representation of certain isolated decisions by an ML 
model and to include that decision within the simulation. 

A different – widely uninvestigated – area is the in-
clusion of entire time-series data delivered from an ML 
model into a simulation model. This new approach con-
trasts with classical time series data analytics and predic-
tion in simulation modelling, which have been discussed 
extensively (e.g., in [16], where time series data were 
used to generate wait time predictions). 

To motivate the potential necessity for machine-
learning-based time series predictions, let us consider one 
of the basic characteristics of discrete event simulation 
approaches: State changes can only occur at specific 
event time stamps. Anything that would happen in the 
real system between two events cannot be depicted. 
However, for some activities, i.e., the time span between 
two events, it may be necessary or desirable to describe a 
progression of a state variable belonging to the activity 
(e.g., the progression of power consumption during pro-
cessing). To depict this, a modelling paradigm outside 
DES would need to be used in combination with DES. If 
the time series can be described analytically, some form 
of combined (i.e., continuous and discrete) simulation 
could be used. Often large amounts of data cannot be used 
to derive an analytical model, giving rise to the use of ML. 

However, large quantities of data are not seen as a li-
ability, but a prerequisite in a machine learning method-
ology. ML methods, as shown above, represent an effec-
tive way to aggregate data at particular steps of a model-
ling and simulation study, and their further use within a 
generative aspect will be discussed here. 

1.2 Recurrent Neural Nets and Encoder-
Decoder Architectures 

Artificial neural nets (ANN) are used to identify patterns 
in complex data structures. For this purpose, embedding 
layers of a neural network embed the data under observa-
tion and guide them through the hidden layers of an 
ANN. Hidden layers consist of hidden units, the actual 
neurons. These neurons are self-parameterizing units. 
The more hidden layers an ANN contains, the higher the 
degree of abstraction of the recorded information can be. 
If an ANN has more than one hidden layer, it can link 
abstractions gained in one layer to another layer, thus cre-
ating a more complex abstraction with each added layer. 
This deep staggering of neural layers is commonly re-
ferred to as Deep Learning [1]. 

If patterns change over time, this temporal sequence 
of patterns is understood as a sequence. For an ANN to 
be able to process temporal patterns, recurrent connec-
tions must be present in the network topology that enable 
feedback of abstract knowledge [17, 18]. Such feedback 
or recurrent neural networks (RNN) are particularly suit-
able for data that are presented in sequential form [1]. 
Accordingly, a neural cell must be provided, which on 
one hand retains its own state and can pass it on, and on 
the other hand has access to successor states and can clas-
sify them. The requirements for such a neural cell with 
memory are fulfilled by neural Long Short Term Memory 
(LSTM) cells [19], and their simplification Gated Recur-
rent Units (GRU) [20]. 

If the inputs and outputs of a deep learning method 
are sequences, one speaks of Sequence to Sequence 
(Seq2Seq) architectures. Here, one embedding layer of an 
RNN encodes the input sequence. If the input sequence 
is encoded into a specific neural layer, one speaks of an 
encoder. If a sequence is generated from of a neural layer, 
this part of a network topology is called a decoder [1]. 

The recurrent Encoder-Decoder model (RNN-ED) as 
described in Figure 1 encodes a sequence  of  values 
into a summary vector  that is then decoded into a se-
quence  of  values. The encoder and decoder are 
conjoined by the fixed sized vector  [20]. 
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If the task of a Seq2Seq model is to map asynchro-

nous sequences, i.e., such of different lengths, to one an-
other, such structures are generally referred to as En-
coder-Decoder networks [1]. If sequences of different 
lengths and different attributes are to be mapped to each 
other, they must be extended by an additional description, 
a context (cf. context C Figure 1). The context is an inter-
mediate hidden layer between the hidden layers of the en-
coder and decoder [20]. 

 
Figure 1: The Encoder-Decoder model as proposed by 

[20]. Note that . 

Once all the values of  have been processed, the last 
hidden state is encoded into the summary vector . The 
decoder now has two inputs  and , … ,   
and learns the conditional distribution between them by 
updating its hidden state whilst reading in the values of 

 and , accordingly.  

Here, the hidden state is linked to a Softmax-layer 
holding the unique tokens found in the training set . 
Once training is finished the decoder can be initialized by 
any sequence  that can mapped to , and generates a 
sequence  therefrom [20, 21]. 

As the model learns to generate the next token  
according to the previous token  and , a stop condition 
needs to be added to keep the decoder from infinitely 
generating new tokens.  

This is commonly done by placing a unique end-of-
sequence (EOS) token at the end of the sequences  in 
the training set . Then ,once the trained decoder gener-
ates an EOS token, the sampling of new tokens is termi-
nated [20, 21]. 

Further explanations of the encoder decoder used here 
can be found in [1, 20, 21]. 

2 Concept and Prototypical 
Implementation 

For conceptual verification it is proposed to use such in-
put and output sequences that are belonging to the same 
temporal-spatial entity. As a characteristic of a temporal-
spatial entity, an activity is assumed that takes place at 
the same place and at the same time. For this purpose, the 
technological process of machining a job on a machine 
tool was identified. 

 
Figure 2: Implementation and components of an RNN Encoder-Decoder-Architecture for asynchronous and asymbolic series. 
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2.1 Predicting Energy Consumption through 

Seq2Seq 

Figure 2 shows the overall concept of the proposed 
method. In the training phase, an unweighted RNN, the 
Seq2Seq-model, is parameterized using the input and tar-
get sequences , . 

For the training data, 51 in-field measurements of the 
active power usage of a machine tool and their corre-
sponding numerical control codes, along with machine 
states, i.e., modes, were taken. 

In the training phase, an unweighted RNN, consisting 
of an RNN-ED, is parameterized using the input and tar-
get sequences , . The task of the inference phase is 
to provide a meaningful power consumption profile  
explicitly quasi-continuously over time (see Figure 2). 

2.2 Seq2Seq in Hybrid System Models 

Furthermore, the RNN-ED is called within a discrete-
event-oriented simulation in accordance with a hybrid sim-
ulation methodology (cf. Hybrid Systems Model in [22]). 

Here, the power consumption for each job within the ma-
chining room of a machine tool (see the jobs trajectory in 
Figure 3) is characterized by the described RNN-ED 
method. 

For this purpose, the weighted RNN-ED is called as a 
constituent of the timeout function within the simulation 
model once the machine tool is seized by a job (see Fig-
ure 3). Here, the prediction of the time for which a job 
seizes the machine tool is solely achieved by the assign-
ment of an input sequence  to the timeout function of 
a job’s trajectory. A specific time series is subsequently 
generated for each job that passes through the machining 
room, as it consequently activates the timeout function. 

This happens once the job has blocked the resource of 
the machine tool it is machined on. The resource remains 
blocked until the seize time according to the timeout func-
tion has been reached. Then, the job is released from the 
resource’s trajectory and it can be seized by the next job. 

In a simulation run with this hybrid simulation method, 
the same time series is generated as it is done with a stand-
alone inference of the RNN-ED (see  in Figure 2). 

 

Figure 3: Visualization of a job's trajectory through a manufacturing cell. The constituents of the cell are modeled in  
a discrete-event-oriented fashion, while the manufacturing area’s submodel contains a hybrid method  
adjacent to the trajectory’s timeout function. 
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3 Preprocessing of Input Data 
The machine tool’s consumption of energy, and inher-
ently the time it takes to process a job, was initially mon-
itored every time a job is processed on it and then saved 
as time series data. The numerical control code that con-
trols the machine’s action for a job is monitored and 
saved as well. 

In accordance with the findings in [6], both types of se-
quences need to be preprocessed for the RNN-ED to learn a 
meaningful context and the connection between them. 

3.1 Setup of Input Sequences  
A set of numerical control code and machine states for 
jobs is used as the input sequence   of an RNN-ED (see 
Figure 1). A numerical control code describes a sequence 
of necessary technological processes up to the comple-
tion of a job and can be understood as a direct description 
of a sequence of states underlying the process of machin-
ing jobs. The numerical control code decisively deter-
mines the behavior within the machining room of a ma-
chine tool. Furthermore, a job is only considered to be 
completed once the numerical control code has been 
completely processed. 

The numerical code must first be translated into a se-
quence of numerical values that retains the structure of the 
targeted input sequence. This is realized by a so-called to-
kenizer (1). A tokenizer assigns a numeric value to each 
symbol or set of symbols present in the numerical code, 
e.g., based on the frequency of the symbol concerned. …  00, 0 0 0, …  … 1 2 3 4 5  …  (1) 

The tokenizer also removes symbols or sets of sym-
bols that are assumed to have a low information content, 
such as commas, upper or lower case letters, etc. One 
way to limit the dimensions of the vector space is to dic-
tate the tokenizer a maximum number of symbol sets 
(i.e., words) that can be mapped to a numerical vector. In 
our case, a word to vector (Word2Vec) tokenizer was 
used, which translates all symbols into a vector. 

The input sequences are further extended with differ-
ent modes ,  in which the machine tool can be 
operated on. Those modes reflect a common work routine 
in machining a job. The numerical control code runs for 
the first time  to chip a larger amount 
of excess material off and give the material its shape. 

 
 

Afterwards the same numerical control code is run for 
several times  to smooth the surface 
of the now shaped material. Those two modes are re-
flected in time series of power consumption that are com-
parable in length but show very different characteristics 
in their features. The input sequence  is described ac-
cordingly as: , ,  
with  being the numerical control code. The sequences 
of  are further tokenized to a list of integer values, 
where any unique word is represented by exactly one in-
teger. This allows for modelling recurring patterns within 
the numerical control code. 

3.2 Setup of a Set of Time Series  
The basis of values for the quasi-continuous time output 
series  is the current power consumption of a job when 
the numerical control code was processed (see Figure 2). 
The temporal power consumption gives concrete infor-
mation about when and how much consumption must be 
expected before a decision has to be made about the ma-
chining of a job. 

In contrast to [6], the set of time series  has further 
been discretized. Discretization is the process of portion-
ing continuous values into new discrete groups of values 
or bins that resemble the original values of the data.  

This was necessary as the empirical results presented in 
[6] led to the conclusion that a uniform or long tail distribu-
tion, i.e., where the tail tends towards a discrete uniform dis-
tribution,  of value frequencies prevents the Seq2Seq 
model from learning a meaningful joint distribution. 

 
Figure 4: The KDE-plot shows that the raw data contained 

mostly unique values, while a strong discretization  
results in a uniform distribution, where the probability 
of a value belonging to any frequency is the same as 
for any other frequency. A weak discretization results 
in a heavy tail distribution of frequencies. 
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To find the right parameter, as to which degree needs 

to be discretized, several runs of training with alternative 
discretization parameters were conducted. The different 
discretization parameters were applied on the whole data 
set of time series and, then, classified according to the 
frequency f of the discretized values (Figure 4). For this 
purpose, the distribution of frequencies  was analyzed 
using a Gaussian kernel density estimator (KDE). 

The proposed concept has been tried for all three fre-
quency distributions and results only for the weak dis-
cretization in satisfying results. 

4 Case Study 
Tensorflow was used to call the tokenizer function and to 
implement the RNN-ED architecture. For the ease of use 
of Tensorflow, the API Keras was used. The Keras API 
was used as the interface to Tensorflow, because it pro-
vides a high level of clarity when presenting network ar-
chitectures with a higher level of abstraction. The pack-
age rSimmer [23] was used for the discrete event model-
ling part. 

The time series data  was recorded under field con-
ditions and has the same clocking of  – 500 ms – rep-
resenting quasi-continuous recordings of the active 
power usage. The input sequences  represent the nu-
merical control codes of the same jobs along with the ma-
chine states. A tokenizer was used to generate the vector-
ized input sequence from the input data. 

The RNN-ED sequentially embeds the vectorized in-
put sequence  and the time series  of power consump-
tion associated with the initial jobs. The trained net and its 
weightings are then saved. To use the weighted RNN-ED 
in the inference phase (see Figure 2), the vectorized input 
sequences  of a job are entered into the encoder. This 
results in the generation of a time series  of the power 
consumption from a trained RNN-ED for a job. 

As this paper focuses on the generation of the values 
for the time series , instead of its integration, the sim-
ulation at runtime will no further be discussed here. 

5 Results and Evaluation of the 
Seq2Seq Method 

Metrics to compare the generated time series  and  are 
the median length ( ) and average ( ) of time 
series as found in the training set. Further, the time series 
have been visualized and features of characteristic pat-
terns or labels have been added to those visualizations 
(see Figure 6).  

Adding features helps to compare the time series  and 
 more intuitively on a visual level. The result for the 

raw data, which have not been discretized, aligns with the 
non-conclusiveness of [6]. The sequences created 
showed no meaningful course of values and further failed 
to produce an EOS-token, i.e., the method did not termi-
nate the creation of new numeric values. 

The results for the strong discretization as shown in 
Figure 5 are disappointing. An EOS token was created, 
as well as most other features, yet the generated series 
can clearly be distinguished from the training data (sam-
ples shown in Figure 6) and results in low scores in the 
metrics, accordingly. 

 
Figure 5: Result for a strong discretization and parameter 

setting , .  

On the other hand, the weakly discretized time series 
shows high values in comparison to ( ) and ( ): , : ( )( ) = 98.4 %; ( . )( . ) = 98.8 % , : ( )( ) = 97.7 %; ( . )( . ) = 99.4 % 

On closer inspection of the time series  and  for , , as displayed in Figure 6, a striking resemblance 
can be seen. The sequences displayed from the two sets 
clearly show the same patterns over the course of labels.  

The time series generated accomplishes to mimic the 
course of labels as shown in the training set with a re-
markable precision. It does not only achieve to reproduce 
an EOS token that matches the length of the time series 
found in the training set (green dot), a distinct peak-fea-
ture (red dot), as well as a string of subsequences (the 
dots of changing shades of blue), but also to generate 
them in the right order and dimension. 
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The time series  and  for , , displayed in 
Figure 7, also clearly show that the Seq2Seq-model suc-
ceeded in catching the course of labels within the training 
set, even though the time series from the training set con-
tained few features that could be learned in the first place. 

6 Conclusion and Future Work 
The functionality of the described approach was con-
firmed in the use case by chosen metrics. However, the 
generated time series still must be critically questioned 
and validated in further research work.  

On the one hand, there is still a lack of evaluation meth-
ods for generative models of ML to check the generated 
time series entries for the meaningfulness of their entries. 
This is done at the moment by the observation and com-
parison of the generated time series through an application 
expert by optical inspection [1] as shown in Figure 6.  

For a final evaluation of the methods used, it is advis-
able to increase the qualitative and quantitative data basis 
of the Seq2Seq-model. The data set used here is of a small 
size. Yet the set size is exemplary for real world settings 
that might change rapidly and in short periods of time.  

On the other hand, machine learning algorithms tend 
to work better given that there is a lot of data to learn 
from. A framework in which the training set is extended 
by time series that have been altered to represent a ground 
truth of the training set of time series could solve that 
problem. Dynamic Time Warping could be used to gen-
erate such ground truth time series [24], which could then 
iteratively be added to the training set until an advanta-
geous learning behavior could be displayed. 

Additional end-of-sequence tokens could be used to 
describe events like machine failures. The EOS token 
used here simply marked the end of a finished job. Yet 
some jobs are prone to break due to system changes like 
wear and tear experienced by the tool.  

 
Figure 6: Comparison of (a) samples  drawn from the 

training set  and (b) the generated time series   
for the weak discretization parameter and the  
sequence combination , .  
The table shown on the lower-right side compares 
the count of features against each other. 

 
Figure 7: Comparison of (a) samples  drawn from the 

training set  and (b) the generated time series   
for the weak discretization and the sequence  
combination , . No features were added  
as the time series holds few characteristics. 
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Adding an alternative EOS, indicating machine fail-

ure, to the training set, along with data for the state of 
tools etc., might also answer the question whether a job 
can be executed given the current settings. 

The method further allows for generating time series 
according to factorial combinations not found in the 
training data. As the decoder is not parametrized directly 
on the input sequences found in the training set, but on a 
summary thereof in form of the context vector, factorial 
combinations of input parameters can be used that are not 
represented in the initial training set. If the respective in-
put parameters and their distinctive effect on the time se-
ries has been modeled, any combination thereof could be 
used. This would result in factor combinations of high 
interest to a simulation expert that could not be modeled 
in a generic simulation setting. 

Hence, a suitable evaluation method must be added to 
the proposed solution, since validation cannot be guided 
by a (non-existent) ideal time series. 

The further development of the ML method described 
here and its use for hybrid simulation models is currently 
the subject of ongoing research. Also, if the method is 
successfully established and validated, a solution could 
be developed that produces plausible power consumption 
forecasts for unknown jobs, e.g., based on their numeri-
cal control codes. This would have a high practical po-
tential and would also be a breakthrough from a scientific 
point of view. 

The transfer of the basic idea to other forms of control 
code and time series of other values is also conceivable 
and a possible subject for further investigations. 
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