
S N E T E C H N I C A L N O T E

 SNE 30(4) – 12/2020 165

On the Usage of Deep Learning for Modelling
Energy Consumption in Simulation Models

Benjamin Woerrlein, Steffen Strassburger
Group for Information Technology in Production and Logistics, Ilmenau University of Technology, P.O. Box 100

565, Ilmenau 98693, Germany; {benjamin.woerrlein; steffen.strassburger}@tu-ilmenau.de

Abstract. With the increasing availability of data, the de-
sire to interpret that data and use it for behavioral predic-
tions arises. Traditionally, simulation has used data about
the real system for input data analysis or within data-
driven model generation. Automatically extracting behav-
ioral descriptions from the data and representing it in a
simulation model is a challenge for these approaches. Ma-
chine learning on the other hand has proven successful in
extracting knowledge from large data sets and transform-
ing it into more useful representations. Combining simu-
lation approaches with methods from machine learning
seems, therefore, promising. Representing some aspects
of a real system by a traditional simulation model and oth-
ers by a model generated from machine learning, a hybrid
system model (HSM) is generated. This paper discusses
such HSMs and suggests a specific HSM incorporating a
deep learning method for predicting the power consump-
tion of machining jobs.

Introduction
For a computer simulation of a real system it is indispen-
sable to create a model of this system. System models are
generally abstractions of the real-world system under ob-
servation and will focus on the most relevant parts, or at-
tributes thereof that are of interest to the model designer.
In traditional modelling approaches, the modeler is
bound and potentially limited by the chosen modelling
paradigm.

Machine learning (ML), in contrast to simulation, is a
set of algorithms that provide an efficient way to aggre-
gate rather big data sets and to find patterns within that
data [1]. Those patterns can then further be used to de-
scribe the mechanism of the system of interest that emit-
ted the initial data points. Applications of ML are not lim-
ited to sets of static data, as the most prominent picture-
classification tasks, but can also be applied to dynamic
data sets such as time series data. This duality results in
ML methods being a promising match for hybrid systems
modelling since a chosen simulation methodology can be
complemented by an ML method with a different meth-
odology and vice versa.

While ML methods are no simulation technique by
definition, they can be used to design a data-driven model
as a constituent part of a hybrid systems model (HSM)
[2]. In this paper, we propose such an HSM that combines
discrete event simulation (DES) with Sequence2Se-
quence (Seq2Seq) neural networks. This newly proposed
HSM focuses on the realistic depiction of electrical
power consumption of a job in a manufacturing cell that
contains a waiting room and a machine tool.

The investigation of energy efficiency issues within
simulation has become a widespread research approach.
Existing studies are often based on the consideration of
the power consumption of resources (machines, furnaces,
etc.) by means of metrologically recorded operating con-
ditions, which are regarded as constant over a defined pe-
riod of time [3].

The power consumption of resources averaged over a
period is then assigned to a resource state and can be
mapped and analysed status-based with discrete event
simulation approaches. It is questionable, for which ap-
plication cases these quasi-static operating states provide
enough closeness to reality! For the determination and
smoothing of load peaks of many resources such an ap-
proach does not offer sufficient proximity to reality.

SNE 30(4), 2020, 165-174, DOI: 10.11128/sne.30.tn.10536
Received: July 15, 2020 (Selected ASIM SPL 2019 Postconf.
Publ.); Revised: Oct. 7, 2020; Accepted: Oct. 20, 2020
SNE - Simulation Notes Europe, ARGESIM Publisher Vienna
ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

 Woerrlein and Strassburger Deep Learning for Modelling Energy Consumption

 166 SNE 30(4) – 12/2020

T N
A solution for this is presented in [4]. It is based on

the basic idea of combined simulation, which is also pro-
posed, for example, in [5]. While the production and lo-
gistics part of the model is represented classically with
discrete event simulation, the system dynamics approach
is applied for electricity usage in [4]. This enables the
time series of the measured power consumption to be re-
produced in high resolution in the simulation, offering
the advantage of a high-resolution overall picture of a
production line’s power consumption.

However, the disadvantage of this approach is that
only the power consumption of measured jobs can be re-
produced. Power consumption of upcoming differing job
types cannot be predicted. Furthermore, the approach de-
scribed in [4] does not depict cause-effect relationships
between control parameters (e.g. half feed, slower heat-
ing phase, etc.) and the anticipated power usage.

Within the scope of this paper, we will therefore ex-
amine whether there are alternative possibilities for high-
resolution forecasting of electricity usage that can over-
come the disadvantages mentioned above. The focus of
the investigation is on the field of ML learning. Particu-
larly, a promising method is proposed based on deep
learning.

The aim of the proposed method is to be able to pre-
dict time series for the power usage of differing jobs by
means of appropriately trained artificial neural networks
(ANN). The basic idea is to train an ANN with relevant
control information (here: numerical control codes of the
production jobs of a machine tool and machine states)
and the high-resolution time series of power consumption
measured for these jobs.

Then, in perspective, the ANN can forecast a time se-
ries of the expected power consumption for any job, pos-
sibly even a job with deviating numerical control codes.
Then, these time series could be used in hybrid simula-
tion models of the entire production system.

This paper presents a concept for the outlined proce-
dure as well as a prototypical implementation and valida-
tion. The paper is structured as follows: Section 1 dis-
cusses related work concerning the combination of sim-
ulation and ML and introduces the specific ML approach
used. In particular, the necessity and basic idea of a deep
learning method, which can map asynchronous se-
quences of different lengths to each other, are presented.
This approach was first mentioned in [6], but led to non-
conclusive results.

Building on this, Section 2 proposes a concept and
prototypical implementation for the overall architecture
with its input and output sequences. Section 3 discusses
the makeup and necessary preprocessing steps of the data
that are required to lead to conclusive results of the
model. A brief description of the application case is given
in Section 4. A prototypical application of the concept is
demonstrated in Section 5. A critical review of the results
and a discussion of future work is given in Section 6.

1 Related Work
1.1 Combining Machine Learning and

Simulation
The need for data-driven decision making in a dynamic
environment results in a need for methods that allow si-
mulation models to adapt over time by learning [7]. Clas-
sical simulation approaches, such as discrete event simu-
lation, have traditionally used data about the real system.
This was either done manually within the modelling pro-
cess, e.g., in the context of input data analysis for model-
ling stochastic influences by fitting theoretical distribu-
tions to the real observations, or semi-automatically with-
in data-driven model generation approaches for depicting
structural aspects of the model [8]. Automatically ex-
tracting behavioral descriptions from the data and repre-
senting it in a simulation model can be considered a weak
point of automatic simulation modelling approaches [9].

Previous work focused, therefore, on combining ML
with traditional simulation modelling for mitigating this
weakness.

The papers by Bergmann et al. [10, 11] present an ap-
proach for using trained artificial neural networks. These
networks can be called from material flow simulation
models to obtain a decision on which control strategy to
apply within the simulation, depending on certain input
parameters modelled in the simulation project.

Another example is given by Rabe et al. [12], where
Reinforcement Learning was used alongside a simulation-
based Decision Support System for logistics networks.
Here, the actions of an agent were modelled through ML,
to identify and select principles on which decision-making
policies should be carried out by the agent.

In [13] a set of machine learning classification tech-
niques is proposed as a method to generate metamodels
for the simulation of sawmilling processes. Here, data-
driven models of the sawing process are generated and
used to determine what sets of lumber are derived from
breaking down the logs in a sawing mill.

 Woerrlein and Strassburger Deep Learning for Modelling Energy Consumption

 SNE 30(4) – 12/2020 167

T N
Within patients care pathway design for hip fracture,

ML was used to identify clusters of patients, and their
underlying characteristics to use that insight in the devel-
opment stage of a simulation model [14]. Unsupervised
machine learning was used to cluster a set of patients into
subgroups that relate in common characteristics. Once
groups of patients at risk being treated for fractured hips
were discovered, that information was considered in the
simulation model to increase the efficiency of the overall
healthcare process through optimized coordination of
care resources.

Finally, ML is a key constituent in the modelling of a
digital twin, as it is stipulated for symbiotic simulation
approaches, and further be referred to as the result of
HSM in [15]. Here, ML enables a digital twin that is a
virtual representation of a physical system, as it allows
the systems simulation model under observation to adapt
primarily according to the behaviour of variables con-
trolled by the physical system in question, and not the in-
tentions of the shareholder of the model. Further such hy-
brid simulation-ML environments can be used to predict
the changes in state variables of a system, as ML methods
can be trained on past changes in the same system.

These examples have in common that they allow the
representation of certain isolated decisions by an ML
model and to include that decision within the simulation.

A different – widely uninvestigated – area is the in-
clusion of entire time-series data delivered from an ML
model into a simulation model. This new approach con-
trasts with classical time series data analytics and predic-
tion in simulation modelling, which have been discussed
extensively (e.g., in [16], where time series data were
used to generate wait time predictions).

To motivate the potential necessity for machine-
learning-based time series predictions, let us consider one
of the basic characteristics of discrete event simulation
approaches: State changes can only occur at specific
event time stamps. Anything that would happen in the
real system between two events cannot be depicted.
However, for some activities, i.e., the time span between
two events, it may be necessary or desirable to describe a
progression of a state variable belonging to the activity
(e.g., the progression of power consumption during pro-
cessing). To depict this, a modelling paradigm outside
DES would need to be used in combination with DES. If
the time series can be described analytically, some form
of combined (i.e., continuous and discrete) simulation
could be used. Often large amounts of data cannot be used
to derive an analytical model, giving rise to the use of ML.

However, large quantities of data are not seen as a li-
ability, but a prerequisite in a machine learning method-
ology. ML methods, as shown above, represent an effec-
tive way to aggregate data at particular steps of a model-
ling and simulation study, and their further use within a
generative aspect will be discussed here.

1.2 Recurrent Neural Nets and Encoder-
Decoder Architectures

Artificial neural nets (ANN) are used to identify patterns
in complex data structures. For this purpose, embedding
layers of a neural network embed the data under observa-
tion and guide them through the hidden layers of an
ANN. Hidden layers consist of hidden units, the actual
neurons. These neurons are self-parameterizing units.
The more hidden layers an ANN contains, the higher the
degree of abstraction of the recorded information can be.
If an ANN has more than one hidden layer, it can link
abstractions gained in one layer to another layer, thus cre-
ating a more complex abstraction with each added layer.
This deep staggering of neural layers is commonly re-
ferred to as Deep Learning [1].

If patterns change over time, this temporal sequence
of patterns is understood as a sequence. For an ANN to
be able to process temporal patterns, recurrent connec-
tions must be present in the network topology that enable
feedback of abstract knowledge [17, 18]. Such feedback
or recurrent neural networks (RNN) are particularly suit-
able for data that are presented in sequential form [1].
Accordingly, a neural cell must be provided, which on
one hand retains its own state and can pass it on, and on
the other hand has access to successor states and can clas-
sify them. The requirements for such a neural cell with
memory are fulfilled by neural Long Short Term Memory
(LSTM) cells [19], and their simplification Gated Recur-
rent Units (GRU) [20].

If the inputs and outputs of a deep learning method
are sequences, one speaks of Sequence to Sequence
(Seq2Seq) architectures. Here, one embedding layer of an
RNN encodes the input sequence. If the input sequence
is encoded into a specific neural layer, one speaks of an
encoder. If a sequence is generated from of a neural layer,
this part of a network topology is called a decoder [1].

The recurrent Encoder-Decoder model (RNN-ED) as
described in Figure 1 encodes a sequence of values
into a summary vector that is then decoded into a se-
quence of values. The encoder and decoder are
conjoined by the fixed sized vector [20].

 Woerrlein and Strassburger Deep Learning for Modelling Energy Consumption

 168 SNE 30(4) – 12/2020

T N
If the task of a Seq2Seq model is to map asynchro-

nous sequences, i.e., such of different lengths, to one an-
other, such structures are generally referred to as En-
coder-Decoder networks [1]. If sequences of different
lengths and different attributes are to be mapped to each
other, they must be extended by an additional description,
a context (cf. context C Figure 1). The context is an inter-
mediate hidden layer between the hidden layers of the en-
coder and decoder [20].

Figure 1: The Encoder-Decoder model as proposed by

[20]. Note that .

Once all the values of have been processed, the last
hidden state is encoded into the summary vector . The
decoder now has two inputs and , … ,
and learns the conditional distribution between them by
updating its hidden state whilst reading in the values of

 and , accordingly.

Here, the hidden state is linked to a Softmax-layer
holding the unique tokens found in the training set .
Once training is finished the decoder can be initialized by
any sequence that can mapped to , and generates a
sequence therefrom [20, 21].

As the model learns to generate the next token
according to the previous token and , a stop condition
needs to be added to keep the decoder from infinitely
generating new tokens.

This is commonly done by placing a unique end-of-
sequence (EOS) token at the end of the sequences in
the training set . Then ,once the trained decoder gener-
ates an EOS token, the sampling of new tokens is termi-
nated [20, 21].

Further explanations of the encoder decoder used here
can be found in [1, 20, 21].

2 Concept and Prototypical
Implementation

For conceptual verification it is proposed to use such in-
put and output sequences that are belonging to the same
temporal-spatial entity. As a characteristic of a temporal-
spatial entity, an activity is assumed that takes place at
the same place and at the same time. For this purpose, the
technological process of machining a job on a machine
tool was identified.

Figure 2: Implementation and components of an RNN Encoder-Decoder-Architecture for asynchronous and asymbolic series.

 Woerrlein and Strassburger Deep Learning for Modelling Energy Consumption

 SNE 30(4) – 12/2020 169

T N
2.1 Predicting Energy Consumption through

Seq2Seq

Figure 2 shows the overall concept of the proposed
method. In the training phase, an unweighted RNN, the
Seq2Seq-model, is parameterized using the input and tar-
get sequences , .

For the training data, 51 in-field measurements of the
active power usage of a machine tool and their corre-
sponding numerical control codes, along with machine
states, i.e., modes, were taken.

In the training phase, an unweighted RNN, consisting
of an RNN-ED, is parameterized using the input and tar-
get sequences , . The task of the inference phase is
to provide a meaningful power consumption profile
explicitly quasi-continuously over time (see Figure 2).

2.2 Seq2Seq in Hybrid System Models

Furthermore, the RNN-ED is called within a discrete-
event-oriented simulation in accordance with a hybrid sim-
ulation methodology (cf. Hybrid Systems Model in [22]).

Here, the power consumption for each job within the ma-
chining room of a machine tool (see the jobs trajectory in
Figure 3) is characterized by the described RNN-ED
method.

For this purpose, the weighted RNN-ED is called as a
constituent of the timeout function within the simulation
model once the machine tool is seized by a job (see Fig-
ure 3). Here, the prediction of the time for which a job
seizes the machine tool is solely achieved by the assign-
ment of an input sequence to the timeout function of
a job’s trajectory. A specific time series is subsequently
generated for each job that passes through the machining
room, as it consequently activates the timeout function.

This happens once the job has blocked the resource of
the machine tool it is machined on. The resource remains
blocked until the seize time according to the timeout func-
tion has been reached. Then, the job is released from the
resource’s trajectory and it can be seized by the next job.

In a simulation run with this hybrid simulation method,
the same time series is generated as it is done with a stand-
alone inference of the RNN-ED (see in Figure 2).

Figure 3: Visualization of a job's trajectory through a manufacturing cell. The constituents of the cell are modeled in
a discrete-event-oriented fashion, while the manufacturing area’s submodel contains a hybrid method
adjacent to the trajectory’s timeout function.

 Woerrlein and Strassburger Deep Learning for Modelling Energy Consumption

 170 SNE 30(4) – 12/2020

T N
3 Preprocessing of Input Data
The machine tool’s consumption of energy, and inher-
ently the time it takes to process a job, was initially mon-
itored every time a job is processed on it and then saved
as time series data. The numerical control code that con-
trols the machine’s action for a job is monitored and
saved as well.

In accordance with the findings in [6], both types of se-
quences need to be preprocessed for the RNN-ED to learn a
meaningful context and the connection between them.

3.1 Setup of Input Sequences
A set of numerical control code and machine states for
jobs is used as the input sequence of an RNN-ED (see
Figure 1). A numerical control code describes a sequence
of necessary technological processes up to the comple-
tion of a job and can be understood as a direct description
of a sequence of states underlying the process of machin-
ing jobs. The numerical control code decisively deter-
mines the behavior within the machining room of a ma-
chine tool. Furthermore, a job is only considered to be
completed once the numerical control code has been
completely processed.

The numerical code must first be translated into a se-
quence of numerical values that retains the structure of the
targeted input sequence. This is realized by a so-called to-
kenizer (1). A tokenizer assigns a numeric value to each
symbol or set of symbols present in the numerical code,
e.g., based on the frequency of the symbol concerned. … 00, 0 0 0, … … 1 2 3 4 5 … (1)

The tokenizer also removes symbols or sets of sym-
bols that are assumed to have a low information content,
such as commas, upper or lower case letters, etc. One
way to limit the dimensions of the vector space is to dic-
tate the tokenizer a maximum number of symbol sets
(i.e., words) that can be mapped to a numerical vector. In
our case, a word to vector (Word2Vec) tokenizer was
used, which translates all symbols into a vector.

The input sequences are further extended with differ-
ent modes , in which the machine tool can be
operated on. Those modes reflect a common work routine
in machining a job. The numerical control code runs for
the first time to chip a larger amount
of excess material off and give the material its shape.

Afterwards the same numerical control code is run for
several times to smooth the surface
of the now shaped material. Those two modes are re-
flected in time series of power consumption that are com-
parable in length but show very different characteristics
in their features. The input sequence is described ac-
cordingly as: , ,
with being the numerical control code. The sequences
of are further tokenized to a list of integer values,
where any unique word is represented by exactly one in-
teger. This allows for modelling recurring patterns within
the numerical control code.

3.2 Setup of a Set of Time Series
The basis of values for the quasi-continuous time output
series is the current power consumption of a job when
the numerical control code was processed (see Figure 2).
The temporal power consumption gives concrete infor-
mation about when and how much consumption must be
expected before a decision has to be made about the ma-
chining of a job.

In contrast to [6], the set of time series has further
been discretized. Discretization is the process of portion-
ing continuous values into new discrete groups of values
or bins that resemble the original values of the data.

This was necessary as the empirical results presented in
[6] led to the conclusion that a uniform or long tail distribu-
tion, i.e., where the tail tends towards a discrete uniform dis-
tribution, of value frequencies prevents the Seq2Seq
model from learning a meaningful joint distribution.

Figure 4: The KDE-plot shows that the raw data contained

mostly unique values, while a strong discretization
results in a uniform distribution, where the probability
of a value belonging to any frequency is the same as
for any other frequency. A weak discretization results
in a heavy tail distribution of frequencies.

 Woerrlein and Strassburger Deep Learning for Modelling Energy Consumption

 SNE 30(4) – 12/2020 171

T N
To find the right parameter, as to which degree needs

to be discretized, several runs of training with alternative
discretization parameters were conducted. The different
discretization parameters were applied on the whole data
set of time series and, then, classified according to the
frequency f of the discretized values (Figure 4). For this
purpose, the distribution of frequencies was analyzed
using a Gaussian kernel density estimator (KDE).

The proposed concept has been tried for all three fre-
quency distributions and results only for the weak dis-
cretization in satisfying results.

4 Case Study
Tensorflow was used to call the tokenizer function and to
implement the RNN-ED architecture. For the ease of use
of Tensorflow, the API Keras was used. The Keras API
was used as the interface to Tensorflow, because it pro-
vides a high level of clarity when presenting network ar-
chitectures with a higher level of abstraction. The pack-
age rSimmer [23] was used for the discrete event model-
ling part.

The time series data was recorded under field con-
ditions and has the same clocking of – 500 ms – rep-
resenting quasi-continuous recordings of the active
power usage. The input sequences represent the nu-
merical control codes of the same jobs along with the ma-
chine states. A tokenizer was used to generate the vector-
ized input sequence from the input data.

The RNN-ED sequentially embeds the vectorized in-
put sequence and the time series of power consump-
tion associated with the initial jobs. The trained net and its
weightings are then saved. To use the weighted RNN-ED
in the inference phase (see Figure 2), the vectorized input
sequences of a job are entered into the encoder. This
results in the generation of a time series of the power
consumption from a trained RNN-ED for a job.

As this paper focuses on the generation of the values
for the time series , instead of its integration, the sim-
ulation at runtime will no further be discussed here.

5 Results and Evaluation of the
Seq2Seq Method

Metrics to compare the generated time series and are
the median length () and average () of time
series as found in the training set. Further, the time series
have been visualized and features of characteristic pat-
terns or labels have been added to those visualizations
(see Figure 6).

Adding features helps to compare the time series and
 more intuitively on a visual level. The result for the

raw data, which have not been discretized, aligns with the
non-conclusiveness of [6]. The sequences created
showed no meaningful course of values and further failed
to produce an EOS-token, i.e., the method did not termi-
nate the creation of new numeric values.

The results for the strong discretization as shown in
Figure 5 are disappointing. An EOS token was created,
as well as most other features, yet the generated series
can clearly be distinguished from the training data (sam-
ples shown in Figure 6) and results in low scores in the
metrics, accordingly.

Figure 5: Result for a strong discretization and parameter

setting , .

On the other hand, the weakly discretized time series
shows high values in comparison to () and (): , : ()() = 98.4 %; (.)(.) = 98.8 % , : ()() = 97.7 %; (.)(.) = 99.4 %

On closer inspection of the time series and for , , as displayed in Figure 6, a striking resemblance
can be seen. The sequences displayed from the two sets
clearly show the same patterns over the course of labels.

The time series generated accomplishes to mimic the
course of labels as shown in the training set with a re-
markable precision. It does not only achieve to reproduce
an EOS token that matches the length of the time series
found in the training set (green dot), a distinct peak-fea-
ture (red dot), as well as a string of subsequences (the
dots of changing shades of blue), but also to generate
them in the right order and dimension.

 Woerrlein and Strassburger Deep Learning for Modelling Energy Consumption

 172 SNE 30(4) – 12/2020

T N

The time series and for , , displayed in
Figure 7, also clearly show that the Seq2Seq-model suc-
ceeded in catching the course of labels within the training
set, even though the time series from the training set con-
tained few features that could be learned in the first place.

6 Conclusion and Future Work
The functionality of the described approach was con-
firmed in the use case by chosen metrics. However, the
generated time series still must be critically questioned
and validated in further research work.

On the one hand, there is still a lack of evaluation meth-
ods for generative models of ML to check the generated
time series entries for the meaningfulness of their entries.
This is done at the moment by the observation and com-
parison of the generated time series through an application
expert by optical inspection [1] as shown in Figure 6.

For a final evaluation of the methods used, it is advis-
able to increase the qualitative and quantitative data basis
of the Seq2Seq-model. The data set used here is of a small
size. Yet the set size is exemplary for real world settings
that might change rapidly and in short periods of time.

On the other hand, machine learning algorithms tend
to work better given that there is a lot of data to learn
from. A framework in which the training set is extended
by time series that have been altered to represent a ground
truth of the training set of time series could solve that
problem. Dynamic Time Warping could be used to gen-
erate such ground truth time series [24], which could then
iteratively be added to the training set until an advanta-
geous learning behavior could be displayed.

Additional end-of-sequence tokens could be used to
describe events like machine failures. The EOS token
used here simply marked the end of a finished job. Yet
some jobs are prone to break due to system changes like
wear and tear experienced by the tool.

Figure 6: Comparison of (a) samples drawn from the

training set and (b) the generated time series
for the weak discretization parameter and the
sequence combination , .
The table shown on the lower-right side compares
the count of features against each other.

Figure 7: Comparison of (a) samples drawn from the

training set and (b) the generated time series
for the weak discretization and the sequence
combination , . No features were added
as the time series holds few characteristics.

 Woerrlein and Strassburger Deep Learning for Modelling Energy Consumption

 SNE 30(4) – 12/2020 173

T N
Adding an alternative EOS, indicating machine fail-

ure, to the training set, along with data for the state of
tools etc., might also answer the question whether a job
can be executed given the current settings.

The method further allows for generating time series
according to factorial combinations not found in the
training data. As the decoder is not parametrized directly
on the input sequences found in the training set, but on a
summary thereof in form of the context vector, factorial
combinations of input parameters can be used that are not
represented in the initial training set. If the respective in-
put parameters and their distinctive effect on the time se-
ries has been modeled, any combination thereof could be
used. This would result in factor combinations of high
interest to a simulation expert that could not be modeled
in a generic simulation setting.

Hence, a suitable evaluation method must be added to
the proposed solution, since validation cannot be guided
by a (non-existent) ideal time series.

The further development of the ML method described
here and its use for hybrid simulation models is currently
the subject of ongoing research. Also, if the method is
successfully established and validated, a solution could
be developed that produces plausible power consumption
forecasts for unknown jobs, e.g., based on their numeri-
cal control codes. This would have a high practical po-
tential and would also be a breakthrough from a scientific
point of view.

The transfer of the basic idea to other forms of control
code and time series of other values is also conceivable
and a possible subject for further investigations.

References

[1] Goodfellow I, Bengio Y, Courville A. Deep Learning.
Boston, Massachusetts: MIT Press; 2016.

[2] Mustafee N, Brailsford S, Djanatliev A, Eldabi T, Kunc
M, Tolk A. Purpose and benefits of hybrid simulation:
Contributing to the convergence of its definition. In:
Chan WKV, d'Ambrogio A, Zacharewicz G, Mustafee
N, Wainer G, Page E, editors. Proceedings of the 2017
Winter Simulation Conference. Piscataway, NJ: IEEE;
2017. 1631–1645. doi: 10.1109/WSC.2017.8247903

[3] Holger H. Eine Methodik zur modellbasierten Planung
und Bewertung der Energieeffizienz in der Produktion.
Dissertation, University of Stuttgart. Stuttgart:
Fraunhofer: 2013.

[4] Römer A, Rückbrod M, Strassburger S. Eignung kombi-
nierter Simulation zur Darstellung energetischer Aspekte
in der Produktionssimulation. In ASIM 2018: 24. Sympo-
sium Simulationstechnik, 2018 October 2018, Hamburg.
Wien: ARGESIM/ASIM. 73–80.

[5] Peter T, Wenzel S. Simulationsgestützte Planung und
Bewertung der Energieeffizienz für Produktionssysteme
in der Automobilindustrie. In: Rabe M, Clausen U, edi-
tors. Simulation in Production and Logistics 2015. Stutt-
gart, Germany: Fraunhofer Verlag; 2015. 535–544.

[6] Woerrlein B, Bergmann S, Feldkamp N, Straßburger S.
Deep-Learning-basierte Prognose von Stromverbrauch
für die hybride Simulation. In:Putz M, Schlegel A, edi-
tors. Simulation in Produktion und Logistik 2019. Auer-
bach, Germany: Verlag Wissenschaftliche Scripten;
2019. 121–131.

[7] Biller B, Biller SR, Dulgeroglu O, Corlu CG. The role of
learning on industrial simulation design and analysis. In:
Chan WKV, d'Ambrogio A, Zacharewicz G, Mustafee
N, Wainer G, Page E, editors. Proceedings of the 2017
Winter Simulation Conference. Piscataway, NJ: IEEE;
2017. 3287–3298. doi: /10.1109/WSC.2017.8248046

[8] Bergmann S, Stelzer S, Wüstemann S, Strassburger S.
Model generation in SLX using CMSD and XML
stylesheet transformations. In: Laroque C, Himmelspach
J, Pasupathy R, Rose O, Uhrmacher AM, editors.
Proceedings of the 2012 Winter Simulation Conference.
Piscataway, NJ: IEEE; 2012. 1–11.
doi: 10.1109/WSC.2012.6464981

[9] Bergmann S, Strassburger S. Challenges for the auto-
matic generation of simulation models for production
systems. In: Proceedings of the 2010 Summer Computer
Simulation Conference. San Diego, CA, USA: Society
for Computer Simulation International; 2010. 545–549.

[10] Bergmann S, Feldkamp N, Strassburger S. Emulation of
control strategies through machine learning in manufac-
turing simulations. Journal of Simulation. 2017;
11(1):38–50.

[11] Bergmann S, Stelzer S, Strassburger S. On the use of ar-
tificial neural networks in simulation-based manufactur-
ing control. Journal of Simulation. 2014; 8(1): 76–90.

[12] Rabe M, Dross F. A Reinforcement Learning approach
for a Decision Support System for logistics networks. In:
Yilmaz L, Chan WKV, Moon I, Roeder TMK, Macal C,
Rossetti MD, editors. Proceedings of the 2015 Winter
Simulation Conference. Piscataway, NJ: IEEE; 2015.
2020–2032. doi: 10.1109/WSC.2015.7408317

[13] Morin M, Paradis F, Rolland A, Wery J, Laviolette F.
Machine learning-based metamodels for sawing simula-
tion. In: Yilmaz L, Chan WKV, Moon I, Roeder TMK,
Macal C, Rossetti MD, editors. Proceedings of the 2015
Winter Simulation Conference. Piscataway, NJ: IEEE;
2015. 2160–2171. doi: 10.1109/WSC.2015.7408329

 Woerrlein and Strassburger Deep Learning for Modelling Energy Consumption

 174 SNE 30(4) – 12/2020

T N
[14] Elbattah M, Molloy O, Zeigler BP. Designing care path-

ways using simulation modeling and machine learning.
In: Rabe M, Juan AA, Mustafee N, Skoogh A, Jain S, Jo-
hansson B, editors. Proceedings of the 2018 Winter Sim-
ulation Conference. Piscataway, NJ: IEEE; 2018. 1452–
1463. doi: 10.1109/WSC.2018.8632360

[15] Onggo BS, Mustafee N, Smart A, Juan AA Molloy O.
Symbiotic simulation system: Hybrid systems model
meets big data analytics. In: Rabe M, Juan AA, Mustafee
N, Skoogh A, Jain S, Johansson B, editors. Proceedings
of the 2018 Winter Simulation Conference. Piscataway,
NJ: IEEE; 2018. 1358–1369.
doi: 10.1109/WSC.2018.8632407

[16] Mustafee N, Powell JH, Harper JH. RH-RT: A data ana-
lytics framework for reducing wait time at emergency
departments. In: Rabe M, Juan AA, Mustafee N, Skoogh
A, Jain S, Johansson B, editors. Proceedings of the 2018
Winter Simulation Conference. Piscataway, NJ: IEEE;
2018. 100–110. doi: 10.1109/WSC.2018.8632378

[17] Zell A. Simulation neuronaler Netze. 4th ed.. Munich,
Germany: Oldenbourg; 2003.

[18] Brause RW. Neuronale Netze. Eine Einführung in die
Neuroinformatik. 2nd ed. Wiesbaden, Germany: Vieweg
+ Teubner; 1995.

[19] Hochreiter S, Schmidhuber J. Long short-term memory.
Neural computation 1997; 9(8): 1735–1780.

[20] Cho K, Merrienboer BV, Gulcehre C, Bahdanau D,
Bougares F, Schwenk H, Bengio Y. Learning phrase rep-
resentations using RNN encoder-decoder for statistical
machine translation. In: Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP). Doha, Qatar: Association for Compu-
tational Linguistics; 2014.

[21] Sutskever I, Vinyals O, Le VQ. Sequence to Sequence
Learning with Neural Networks. In: Proceedings of the
27th International Conference on Neural Information
Processing Systems – Volume 2. Cambridge, MA: MIT
Press; 2014.

[22] Mustafee N, Powell JH. From hybrid simulation to hy-
brid systems modelling. In: Rabe M, Juan AA, Mustafee
N, Skoogh A, Jain S, Johansson B, editors. Proceedings
of the 2018 Winter Simulation Conference. Piscataway,
NJ: IEEE; 2018. 1430–1439.
doi: 10.1109/WSC.2018.8632528

[23] Lawson B, Leemis LM. An R package for simulation ed-
ucation. In: Chan WKV, d'Ambrogio A, Zacharewicz G,
Mustafee N, Wainer G, Page E, editors. Proceedings of
the 2017 Winter Simulation Conference. Piscataway,
NJ: IEEE Press; 2017. 4175–4186.

[24] Petitjean F, Forestier G, Webb GI, Nicholson AE, Chen
Y, Keogh E. Dynamic time warping averaging of time
series allows faster and more accurate classification. In:
2014 IEEE International Conference on Data Mining,
Shenzhen, 2014, 470-479, DOI: 10.1109/ICDM.2014.27

