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Abstract. Cellular Automata are a simple, yet powerful
modeling and simulation technique, easily employed if
the system to be examined consists of a set of uniform
entities that are located in a neighborhood relation to
each other. The simple structure and fast execution of
Cellular Automata allow for very large models, their in-
herent parallelism enables a comparatively simple paral-
lelization.
This paper gives an overview on the concepts of Cellular
Automata-based modeling and simulation, with a spe-
cial focus on neighhorhood concepts, border types, and
transition functions, and describes current applications
of the paradigm in the areas of the simulation of trans-
portation networks, additive manufacturing, as well as
urban growth and development. It is aimed at students
of the craft as well as practitioners who might want to
take a look beyond the GUI of their modeling tools.

Introduction
Beyond their application in simulation modelling, Cel-

lular Automata (CA) are also studied in other areas

of computer science, in mathematics, biology, and

physics. CA generally consist of a regular grid of ho-

mogenous cells, each of which is assigned one of a fi-

nite set of states. A cell changes its state over time based

on a transition function – which in turn is determined by

the states of a set of other cells, the original cell’s neigh-

borhood.

The core concepts of CA were developed in the

1960s by John von Neumann (see [27]) as a tool to for-

mally model self-reproducing biological systems (see

[24]). In the 1970s they were developed further, with

the aim to examine what was then called “artificial life”

– the best known artifact of that period probably is Con-

way’s Game of Life (see [6]). It was shown that CA are

capable of self-reproduction in a way that is sufficient

to support a universal computer – they are thus Turing

complete (see [24]).

While CA today are applied in a number of do-

mains, for example fault-tolerant quantum computing

(see [25]), image encryption (see [19]), modeling of

epidemic spreading (see [17]), and object detection in

computer vision (see [21]), this paper takes a closer

look at their application in the area of modeling and

simulation.

In many application fields in the simulation area,

CA have been superseded by agent-based modeling and

simulation. However, some advantages remain: their

simple structure and extremely fast execution allow for

very large models, their inherent parallelism enables a

comparatively simple parallelization. CA can also be

used for high-performance simulation of environments

for agent-based models.

This paper gives an introduction on the use of CA

in modeling and simulation; it explains both the fun-

damentals of the technique as well as its applications

during the last few years.

The paper continues with a short recap of the basics

of simulation modeling (see Section 1), followed by an

introduction of CA with a focus on neighborhood con-

cepts and transition functions (see Section 2). It then

reports on current applications in modeling and simula-

tion, specifically in the areas of transportation networks,

additive manufacturing processes, and urban develop-

ment simulation (see Section 3). The paper concludes

with a short summary of the lessons learned (see Sec-

tion 4).

1 Simulation Modeling

The term simulation can cover a wide variety of pro-

cesses and models. In its broadest definition, simula-

tion simply refers to the performance of experiments
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on a model in order to make statements about the be-

haviour of a real system or process (see [16]). A nar-

rower definition of simulation, which is slightly adapted

and also used for this work, is formulated by Ingalls (see

[8]): Simulation is the performance of experiments on a

dynamic and stochastic model with the aim of making

statements about the behaviour of a real dynamic and

stochastic system or process. Dynamic in this context

means that the behavior of the system – and thus of the

model – changes over time, while stochastic means that

the behavior can be influenced by random variables.

This allows simulation models to be distinguished

from (mathematical) analytical models, such as opti-

mization models. Analytical models try to formulate

correlations of real systems as sets of mathematical

equations. This formulation usually requires the defi-

nition of rigid specifications, for example fixed travel

times between stops in transit models, in order to ob-

tain manageable models. If, however, the system under

consideration meets the requirements, the application

of the analytical model always leads to a valid solution.

Simulation models, on the other hand, attempt to model

the behaviour of the real system as complex behavioral

and decision-making processes. This may no longer

guarantee that the solution obtained represents an op-

timum, but allows to represent dynamic and stochastic

behaviour (see [12]).

The group of dynamic and stochastic systems in-

cludes, for example, technical systems and transporta-

tion systems – simulation models are indispensable re-

search tools in those areas. Typically, discrete simu-

lation methods are used to represent such systems, for

example CA-based, event-based (see [26]), or agent-

based (see [15]) simulation. These paradigms differ in

the specific way they represent system components and

their interdependencies, as well as in the specific rep-

resentation of concepts such as time progress. In any

case the modeler has to decide which system compo-

nents and interrelations are critical for representing the

behaviour of interest, and which modeling methods are

most appropriate (see [12]).

2 Cellular Automata

If the system to be simulated consists of a set of uni-

form entities that are located in a (geographical) neigh-

borhood relation to each other, Cellular Automata can

be employed easily and efficiently.

Figure 1: Cellular Automaton Z = (L̃, S̃,N, f̃ ) consisting of a
regular, two-dimensional grid L̃ of square-shaped
cells z ∈ L̃ with state s from the set of states S̃ and
with a transition function f̃ that is dependent on a
neighborhood N(z).

2.1 Introduction

A Cellular Automaton Z = (L̃, S̃,N, f̃ ) is a (infinite) reg-

ular grid L̃ of cells z ∈ L̃, each of which may be in any

state s from the finite set of states S̃ (see Figure 1). The

state of a cell changes over time based on a transition

function f̃ . Each cell z forms a neighborhood with a

finite set of other cells N(z) = {i ∈ L̃|z− i ∈ N}. The

characteristics of that neighborhood are determined by

the set of permissible neighborhood indices N. This set

of indices in turn depends primarily on the spatial dis-

cretization of the model. In principle, such a lattice ge-

ometry can have any number of dimensions; typically,

in practical applications one, two, or three dimensional

lattices are used. The lattice geometry also defines the

shape of the cells. Any cell shape that guarantees the

regularity of the grid is conceivable; frequently encoun-

tered cell shapes are: square, triangular, or hexagonal.

For a more detailed description of these concepts see

[28].

2.2 Neighborhood Concepts

Figure 2 shows the frequently encountered von Neu-

mann and Moore neighborhood concepts in the context

of a number of lattice geometries. As can be seen, the

cells of a von Neumann neighborhood of a cell z share

a whole edge of the lattice with z. The Moore neighbor-

hood, on the other hand, also includes all cells that have

only one corner point in common with z.

Depending on the characteristics of the system to be

modeled, the neighborhood of a cell may not necessar-

ily include only direct neighbors – i.e. cells with dis-

tance 1 – but may also include cells further away. That

might be useful, if obstacles further away, for example
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Figure 2: Two often used neighborhood concepts: Von
Neumann neighborhoods with shared edges and
Moore neighborhoods with shared edges and
corner points.

upcoming traffic signals in a public transit simulation,

have to be taken into account.

In some models, it is beneficial to define distinct

input and output neighborhoods: a cell takes its in-

put from its input neighborhood, while making its state

available to the cells of its output neighborhood (see

[24]).

For practical applications, the maximum expansion

of the grid is usually limited, which makes a specific

consideration of border cells necessary. Usually, three

different types of border cells are distinguished:

• With periodic borders, opposite sides of the grid

are adjacent;

• In case of reflecting borders the border cells reflect

the state of the inner cell opposite them; and

• With fixed state borders, the border cells are as-

signed a fixed state each, which does not change

over the course of the simulation.

The grid boundary does not necessarily have to consist

of a single border type, but can combine different types.

2.3 Transition Functions

When modeling the lattice geometry, decisions have to

be made regarding the time progress and the transition

function of the CA. In CA the simulation time pro-

gresses in fixed increments δ t between discrete points

in time. At each simulation time t the configuration

C̃t : L̃ → S̃ assigns a current state to each cell of the

grid. The configuration C̃0 designates the start config-

uration of the CA specified by the modeler. To update

the model state over simulation time, a transition func-

tion f̃ : ˜S|N| → S̃ transfers the configuration C̃t into the

configuration C̃t+1 as shown in Equation 1.

˜Ct+1(z) = ˜f ({˜Ct(i)|i ∈ N(z)}) ∀z ∈ ˜L (1)

The transition function is the model characteristic

that pivotally determines the behavior of the CA. It de-

pends on the lattice geometry, the type and size of the

neighborhood, as well as the number of possible states;

its specific design has to be determined together with

these model components based on the objectives of the

investigation.

Generally, two types of transition functions exist: In

a deterministic transition function, state transitions are

directly determined by the state of the affected cell and

the states of its neighbors. With probabilistic transi-
tion functions, the state transition to be applied in each

simulation time step is randomly selected from a set of

potential state transitions.

Due to the close relationship between lattice ge-

ometry, neighborhood, and transition function, spatial

and temporal discretization are directly related in CA.

Specifically, a decision on the cell dimensions has a di-

rect influence on the size of the time increment δ t. If,

for example, a cell length of 30 meters – about one rail

car length – is selected for the simulation of light rail

systems, a vehicle entity can only move by multiples of

these 30 meters within one simulation step. The dura-

tion of δ t has to be assigned accordingly. As a result

of these considerations, the duration of one simulation

step might be set to correspond to four seconds in the

real system (see [10] and [14]), so that vehicles moving

at velocities of 0, 27, 54, and 81 kilometers per hour can

be represented.

The tight interdependencies beween spatial and tem-

poral dimensions do not arise with event-based and

agent-based simulation methods, and are one main dis-

advantage of CA models.

3 Applications

CA-based modeling and simulation is utilized in a large

variety of subjects. In the following, three areas are

examined: the simulation of transportation networks,

where CA-based explanatory and predictive models

are employed since the 1990s; additive manufacturing,

where simulation models help to understand how metal
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powders are melted by a focused laser beam; and ur-

ban growth, where simulation studies help to predict

how metropolitan regions might develop and how cli-

mate change-related effects will impact them.

3.1 Simulation of Transportation Networks

One-dimensional CA seem to be a natural choice to

model linear transportation infrastructure, for exam-

ple roads or railways. The CA-based examination of

transportation phenomena started out with Nagel and

Schreckenberg (see [18]) in 1992. They used a sim-

ple CA model with periodic borders representing a cir-

cular roadway to explain the development of sponta-

neous congestion forming without an external cause,

for example an accident or construction site. They

showed that such congestion can form on roads with

high-density traffic when cars slow down to avoid col-

liding with the preceeding vehicle. Resulting from a

driver’s non-zero reaction time when the preeceding

car eventually accelerates, a ripple effect emerges that

slowly moves backwards through the stream of suc-

ceeding cars.

The Nagel/Schreckenberg model has continously

been extended and repurposed. In a recent study, Iwan

et al. (see [9]) extend the basic configuration to estimate

the environmental impact of unloading bays in city cen-

ters. They state that such unloading bays are a simple

and effective solution to reduce the congestion result-

ing from urban freight transport and support that argu-

ment with results from CA-based experiments. Their

experiments with models of the city centers of Szczecin,

Poland and Oslo, Norway show a significant impact of

the integration of unloading bays on reducing negative

environmental effects of urban freight transport: In time

periods with a high ratio of freight vehicles – typically

in the mornings – pollutants can be reduced by 15-18

percent by providing adequate unloading bays.

In another road traffic-related application, Wu et al.

(see [29]) examine a number of warning systems aimed

at helping drivers to decide on whether to stop or go

when a green traffic light turns to red right in front of

them. They construct a set of scenarios regarding com-

binations of warning measures and devise a CA-based

model to evaluate them. They find that a combination of

pavement markings and flashing yellow auxilliary lights

consistently provide the lowest probability of rear end

crashes.

In addition to examining road traffic phenomena, a

tradition exists of examining ship traffic in harbors and

waterways using CA simulation models. Liu, Zhou, and

Wang (see [13]) start out with a rather basic simulation

model of the traffic flow in single-lane waterways, with

Feng (see [4]) adding the representation of length and

velocity of different ship types, as well as multi-lane

and bottlenecked waterways. Qi, Zheng, and Gang (see

[20]) add a more complex system of spatial representa-

tion and find that their model maps the ship traffic in the

Singapore Strait satisfactionally.

3.2 Simulation of Additive Manufacturing
Processes

Additive manufacturing (AM) is a set of relatively new

technologies to individually fabricate complex parts

without expensive individual tooling or set-up cost. One

method of AM is selective laser melting, where thin

layers of metal powder are one by one melted by a

focused laser beam. In this area, understanding and

predicting microstructures of manufactured materials

and their behavior has seen significant research focus.

Both two-dimensional and three-dimensional CAs are

applied here, the former to simulate individual layers,

the latter to examine the whole structure.

Zinoviev et al. (see [30]) develop a two-

dimensional, CA-based model that provides a realistic

prediction of the evolution of layers of grain structure

produced by multiple beam passes during laser melting.

Their simulation model yields typical phenomena found

in real-world data, for example grain growth compe-

tition, through-the-thickness grain growth, and texture

formation. They note that, to fully explore the charac-

teristics of the built-up of grain structure, a 3D model

would have to be developed.

Rai, Markl, and Körner (see [22]) start out on an-

other approach to simulate grain structure evolution

based on a combined 2D CA–Lattice Boltzman model.

Their complex model represents a set of major aspects

of AM, including random powder layer generation,

electron beam energy absorption, evaporation, capillar-

ity and wetting, meltpool dynamics, temperature evo-

lution, and grain solidification. Akram et al. (see

[1]) specifically examine the solidification texture of

melted metal powder. Understanding that phenomenon

can provide a pathway to better understand and control

these features, leading to a stream-lined process with

better results.

Taking the step from examining individual layers to

modeling the whole AM process, Zinovieva, Zinoviev,

and Ploshikhin (see [31]) develop a 3D model com-
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bining CA with the finite difference method: The CA

model is used to simulate the evolution of grain struc-

ture in the solidification processes, while the coupled fi-

nite difference method describes the thermal processes

in the course of the laser passing through the powder.

They specifially examine the creation of titanium parts

and find the simulation results reproducing the main

features of the observed process. They conclude that

their model can be applied to understand the variability

in the AM process and the resulting titanium parts.

3.3 Simulation of Urban Growth and
Development

During the last few years, the examination of urban

growth and development using simulation models has

seen strong research attention. Two-dimensional CA

are obvious candidates for the spatially explicit simu-

lation of land-use and land-cover changes.

Based on urban growth models developed by

Clarke, Hoppen, and Gaydos (see [3]) in the 1990s,

Sakieh et al. (see [23]) examine cause-effect relation-

ships of urban growth using the example of Karaj, an

Iranian city that experienced a substantial increase in

urban sprawl during the last three decades. Following

on model validation using historical data, they predict

urban growth scenarios up to the year 2040, including

extensive growth as well as more compact development

patterns. They find that, should urban development not

be reigned in, the urban land-use in Karaj will grow

drastically in the cause of the next two decades. In a

similar study, Liao et al. (see [11]) demonstrate the ap-

plicability of CA to predict urban growth using the city

of Xiamen, China as an example. With good results,

Feng, Liu, and Batty (see [5]) apply a more complex

CA model to hindcast growth patterns in the Shanghai

Qingpu–Songjiang area of China.

To model extreme weather events caused by climate

change, urban development models can be augmented

by CA-based models of fluvial and pluvial flooding, as

described by Guidolin et al. (see [7]).

Moving from conducting individual case stud-

ies to preparing meta-analyses and literature reviews,

Berberoglu, Akin, and Clarke (see [2]) compare a sim-

ilar CA model to a number of other methods aimed to

assess and predict urban growth based on a model of the

city of Adana, Turkey. They compare the simulation re-

sults to satellite and aerial images and find that the CA

model yields the most exact results. Some weaknesses

remain: namely in the quantitative aspect and the in-

ability to include the driving forces of urban growth in

the model. They recommend to overcome these weak-

nesses by combining CA with other quantitative ap-

proaches, such as Markov chains and frequency ratio

models.

4 Conclusion

This paper presented an overview on Cellular

Automata-based modeling and simulation, describing

neighhorhood concepts, border types, and transition

functions. It shared some current applications of the

paradigm in the areas of the simulation of transporta-

tion networks, additive manufacturing, as well as urban

growth and development.

Cellular Automata are an elegant, simple, and pow-

erful modeling and simulation technique, naturally em-

ployed if the system to be examined consists of a set of

uniform entities located in a one- or more-dimensional

neighborhood relation to each other. CA-based simula-

tion models have been applied in many research fields

for their explanatory power as well as for their high ex-

ecution performance.

In the sixth decade since their inception by John von

Neumann, researchers and practitioners find new ap-

plications and gain new knowledge through the explo-

ration and utilization of Cellular Automata. It should be

fascinating to watch what the future will bring for them.
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