
S N E T E C H N I C A L N O T E

SNE 30(3) – 9/2020 117

Reduction of Complexity in Q-Learning
a Robot Control for an Assembly

Cell by using Multiple Agents
Georg Kunert1*, Thorsten Pawletta1, Sven Hartmann2

1Research Group Computational Engineering and Automation, Wismar University of Applied Sciences: Technology
Business and Design, Philipp-Müller-Straße 14, D-23966 Wismar, Germany; *georg.kunert@cea-wismar.de

2 Department of Informatics, Clausthal University of Technology, Julius-Albert-Straße 4, D-38678 Clausthal-
Zellerfeld

Abstract. Production systems in Industry 4.0 are charac-
terized by a high degree of system networking and
adaptability. They are often characterized by jointed-arm
robots, which have a high degree of adaptation. Net-
working and adaptivity increase the flexibility of a sys-
tem, but also the complexity of the control, which re-
quires the use of new development methods. In this
context, the Simulation-Based Control approach, a mod-
el-based design method, and the concept of Reinforce-
ment Learning (RL) are introduced and it is shown how a
task-based robot control can be learned and executed.
Afterwards, the time complexity of the Q-learning meth-
od will be examined using the application example of a
robot-based assembly cell with two differently flexible
system configurations. It is shown that, depending on the
system configuration, the time complexity of learning
can be significantly reduced when using several agents.
In the studied case, the complexity decreases from ex-
ponential to linear. The modified RL structure is dis-
cussed in detail.

Introduction
Production systems of Industry 4.0 have a high degree
of networking and adaptivity. The latter characterizes
the flexibility of a system to adapt to changing influ-
ences [1]. Systems are often characterized by jointed-
arm robots which, according to [2], have a high degree

of flexibility in terms of design and control. Adaptivity
and networking increase the complexity of the control
software, which requires the application of new devel-
opment methods. In recent years, similar methods have
been established under various terms, such as Model-
Based Design (MBD) [3], Rapid Control Prototyping
(RCP) [4] or Virtual Commissioning (VC) [5]. What
they have in common is that they are based on a contin-
uous model- and simulation-based development from
the design to the operation phase. The Simulation-
Based-Control (SBC) approach [6] was developed ade-
quately for this purpose by the Computational Engineer-
ing and Automation research group at the University of
Applied Sciences in Wismar. This approach was
adapted in [7] and [8] specifically for task-oriented
control development for jointed-arm robots.

In [9], a connection of the SBC approach with ma-
chine learning methods based on Reinforcement Learn-
ing (RL) according to [10] is shown. The RL is defined
by a structure of at least one agent, which has a learning
method and an environment. The specific learning
method is Q-learning. Based on predefined tasks and
transformation modules, a control strategy is learned
and automatically transformed into an SBC-compliant
program. Since Q-learning is a model-free algorithm, it
can be applied to various problems. However, impracti-
cable computing times result relatively quickly, even
though learning can often be accelerated for problems
with limited state space by means of parallel processing
and binary trees [11]. A significant reduction of the state
space and, thus, the computational effort is achieved
with model-based RL approaches [12]. Here the agent
already has process-relevant knowledge at the beginning
of the learning process, but thereby loses its universali-

SNE 30(3), 2020, 117-124, DOI: 10.11128/sne.30.tn.10524
Received: August 8, 2020 (Selected ASIM vSST 2020 Postconf.
Publ.); Revised: August 15, 2020; Accepted: August 20, 2020
SNE - Simulation Notes Europe, ARGESIM Publisher Vienna,
ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

 Kunert et al. Robot Control for an Assembly Cell by using Multiple Agents

 118 SNE 30(3) – 9/2020

T N
ty. For problems with large state space, the computing
time can be reduced by combining artificial neural
networks (ANN) as function approximators [13], [14].
However, this increases the complexity of the software
architecture. Furthermore, the design and training of the
ANN requires experience and time. In contrast, the
simple architecture of the original Q-learning is an ad-
vantage if the computational effort can be mastered.

In this paper, we investigate how the computing time
for Q-learning of a task-based robot control can be re-
duced by using several agents. Two differently flexible
system structures of an assembly cell are considered and
the time complexity of learning with one agent com-
pared to several agents is analyzed. The learning is
performed on simulated system environments. The
generation of an executable robot control based on the
SBC approach and basics of the RL approach using Q-
learning are discussed in the following background
section.

1 Background
Starting from the adapted SBC framework for articulat-
ed arm robot systems according to [7] and [8], this sec-
tion deals with the principle of integration with a ma-
chine learning process and the basics of RL based on Q-
learning according to [10] and [13].

1.1 The SBC Approach
As shown in Figure 1, an SBC-based robot control is
layered in analogy to the concept of the Robot Operat-
ing System (ROS) [15].

The Control Model (CM) specifies the control strat-
egy by composing predefined basic tasks. The Process
Model (PM) implements the task transformer based on
predefined task-specific modules. Additionally, the PM
maps the state information. The Interface Model (IM)
implements the interface to the hardware using a robot
middleware. With the RCV Toolbox for MATLAB ac-
cording to [16] as middleware, SBC-based robot con-
trols can be developed and operated independently of
robot manufacturers and model-based with
MATLAB/Simulink. Virtual and real robots can addi-
tionally interact with a virtual process environment in
the form of a simulation model.

Figure 1: Structure of an SBC-based robot control.

With the integration of the SBC framework with a
RL procedure, as introduced in [9], the task-based con-
trol specification of the CM according to formula 2 is
automatically generated from a sequence of learned
state/action tuples according to formula 1:

 , , … , , , … , , , , , (1)

 … , … , … , … (2)

Learning takes place offline using a simulated process
environment. In principle, the learning algorithm could
also run during the operating phase and adapt the con-
trol strategy in certain time windows if the real-time
requirements are met.

1.2 Reinforcement Learning with Q-learning
method

Besides supervised and unsupervised learning, the RL
method forms a third class of machine learning proce-
dures. The goal of RL is to learn a behavioral strategy : that assigns an action to each state

. The RL does not require explicit training data. It
trains itself using a real or simulated environment ac-
cording to the trial and error principle.

 Kunert et al. Robot Control for an Assembly Cell by using Multiple Agents

 SNE 30(3) – 9/2020 119

T N
The RL is based on a framework as shown in Figure

2. In model-free RL, the agent only knows the allowed
action set at the start of training. The environment is
defined by different states, . When an action
takes effect, the environment determines a subsequent
state with the state transition model : and
computes a reward value for the current action.
The subsequent state and the reward are sent back
to the agent. During training, the agent receives infor-
mation about the possible states of the environment and
the benefits of actions through iterative interaction, and
gradually learns a behavioral strategy . After comple-
tion of all training episodes, the behavioral strategy is
derived from the Q-matrix.

Figure 2: RL framework with Q-learning method.

Learning takes place in phases, also known as episodes.
These are independent of each other, always start in an
initial state of the environment and end when a target
state or abort state is reached. At the be-
ginning of the training, the agent selects an action
purely randomly (exploration). As the learning process
progresses, the agent increasingly uses the knowledge it
has acquired to select an action (exploitation). The ratio
of exploration to exploitation is adjusted in the course of
training.

Q-learning is based on a table function called Q-
matrix. A matrix element , represents the benefit

 of an action when it is performed in the state of
the environment. From the cardinality | | follows the
column dimension of . The row dimension of grows
dynamically during the training with the number of
states explored.

The data of explored states are stored in an indexed
data structure based on the row index of . This
allows the agent to clearly recognize already explored
states. The first episode of the training starts with an
empty Q-matrix and an empty data structure. Subse-
quent episodes build on the already acquired knowledge
in and . After each interaction with the environ-
ment, the agent checks whether the received state is
known. If not, the Q-matrix is extended by a new row
and the state data are added to the data structure .
The successive adjustment of the Q-values results from
formula 3 according to [13]:

 , , max , ,
(3)

The updated Q-value of the current state/action tuple , is calculated from the previous Q-value, the cur-

rently received reward , and the maximum Q-value of
all possible actions in the currently received subsequent
state . The influence of the individual variables is
determined by the hyperparameters: (i) discount factor
and (ii) learning rate . The discount factor controls the
influence of rewards expected in the future and the
learning rate controls the influence of the current obser-
vation. In environments with deterministic behavior, a
high learning rate can be applied with up to 1.

2 Application Example
An automated assembly cell (AC) with an articulated
arm robot for the production of different assemblies is
considered as an example. By means of RL, product-
compliant assembly sequences are to be learned, on the
basis of which robot controls can be generated accord-
ing to Section 1.1. Figure 3 shows the system layout of
the AC. The AC consists of the articulated arm robot
(R), an assembly station (AS) and a belt conveyor (BC).
The BC feeds input parts from upstream production
sections and serves as a transfer zone (TZ) to the robot.
Depending on the specific system configuration, differ-
ent numbers of transfer locations (TL) are possible,
which influences the system flexibility. Unused input
parts and assembled modules are automatically re-
moved. The sequence in which the individual parts enter
the AC is unknown and is assumed to be random.

 Kunert et al. Robot Control for an Assembly Cell by using Multiple Agents

 120 SNE 30(3) – 9/2020

T N
Figure 4 shows an example of an assembled module

as an exploded view, whose assembly is examined be-
low for two system variants of the AC:

1. Minimum variant with only one TL as TZ and
2. Variant with three TLs as TZ.

Figure 3: System layout of the assembly cell with maxi-

mum three TLs as TZ.

Figure 4: Exploded view of an assembled module ac-

cording to [7].

For the desired complexity consideration, the as-
sembly is reduced to a pick & place application. The
assembly of the module in Figure 4 is subject to six
rules. Four of the rules are shown in [7]. Rules 5 and 6
were added:

1. Base plate (1) must be mounted first.
2. Pins (4, 5) may only be mounted after cover (7).
3. Comprehensive parts must be mounted after en-

closed parts.
4. The glass cover (8) must be mounted last.
5. Each part is only assembled once and the pins (4, 5)

are not identical.
6. Gripping attempts on empty TLs of the TZ are

prohibited.

In the following two sections, the learning of an assem-
bly strategy with first one agent for both system variants
and then using several agents for the second variant is
examined.

3 Learning with one Agent
According to Section 1.2, the RL framework consists of
an agent and an environment. In the application case
under study, the robot forms the agent and the BC and
AS form the environment. In this section, the learning
of an assembly strategy based on this RL framework is
examined for the two system variants of the AC.

3.1 System variant with one TL as TZ
In the case of only one TL, the robot has two possible
actions 0,1 . The action 0 encodes the task
None and the action 1 encodes the task
Pick&Place. The state of the environment results from
the TZ allocation and the assembly state of the module
on the AS. In the case of only one TL, there are nine
possible states of the TZ with 0,1, … 8 . The
state value 0 stands for no component and the values
greater than zero for a component according to the part
numbers in Figure 4. The final assembled module con-
sists of eight individual parts. Accordingly, the assem-
bly state on the AS can be represented by an 8-tuple.
Each tuple element describes the non-assembly or as-
sembly of a component by the values 0,1, … ,8.

A state of the entire environment is, therefore,
described by a 9-tuple. The first eight elements describe
the assembly state on the AS and the ninth element the
state of the TZ. Figure 5 shows the representation of
states of the environment with a state vector (SV).

 Kunert et al. Robot Control for an Assembly Cell by using Multiple Agents

 SNE 30(3) – 9/2020 121

T N
State represents the initial state, a possible later

subsequent state and the target state. The indi-
cated state encodes an assembly of the components’
base plate and labyrinth as well as the allocation of the
TZ with a component glass lid. The target state
is reached when the first eight elements of are not
equal to zero. The character in the initial and target
state stands for any state of the TZ.

Figure 5: Mapping of the state as a state vector (SV).

The environment reacts to an action of the agent,
as shown in Figure 2, with a reward value and a sub-
sequent state . The reward model of the environ-
ment defines three possible rewards for an action 1
based on the six assembly rules according to Section 2:

• , if the action is not allowed,
• 0, if the action is allowed and and
• 1, if the action is allowed and .

The action 0, i.e. a refusal to mount the component
on the TL, always leads to the reward value 0.

The state transition model works according to the
Markov Decision Process (MDP) paradigm. Listing 1
shows the specification of in MATLAB pseudocode.

%A={0,1} action set of the agent
1 num_parts = 8;
2 idx = num_parts + 1;
3 a = action(agent); %current action
%Pick&Place only
4 if a > 0
5 SV(SV(idx)) = SV(idx);
6 SV(idx) = 0;
7 end
%Pick&Place and None
8 SV(idx) = randi(num_parts +1) – 1;

Listing 1: State transition model for an TZ with one TL.

With a permitted action 1 (Pick&Place), the
last element of the SV that represents the part in the TC
is restored according to its value in the SV (lines 4-7),
thereby updating the assembly state. In addition, for
each allowed action 1 or 0 the last element of
SV is assigned a random integer value from the interval 0, _ , which represents a new input part in
the TC (line 8).

Each episode starts with the transfer of a start state
 of the environment to the agent. A reward is not

transferred at the beginning of an episode. Learning is
done as described in Section 1.2. The column dimension
of the Q-matrix corresponds to the cardinality of the
action set |A| 2. An episode ends when the agent
receives a reward, 1, from the environment. The
training must include enough episodes to learn a strate-
gy, . It should be noted that, with the random genera-
tion of new input parts in the TZ, the state transition
model is subject to stochastic influences.

Without assembly rules, this system structure results
in 2 1 states of the environment depending
on the number of parts to be assembled. Due to as-
sembly rules, the number of states is considerably re-
duced. For the assembly under consideration with eight
components, 144 states result according to [7].

The complexity of an algorithm as a function of the
input data is described with the big notation [17]. An
empirical analysis showed that a linear time complexity

 of the learning process resulted depending on the
number of components, , to be assembled. The compu-
ting time for learning an assembly strategy was less than
one hour on a standard PC with an implementation in
MATLAB.

3.2 System variant with three TLs as TZ
In the variant with three TLs the allocation of the TZ is
analogous to a shift register. In fixed time units, the BC
moves one position to the right. The robot always has
access to all three TLs. This results in four possible
actions for the robot, A 0,1,2,3 . The action a 0
again encodes the task None and the other three actions
encode the task Pick&Place with different parameteri-
zation depending on the TL to be approached.

The state of the environment expands by two ele-
ments to an 11-tuple. The first eight elements describe
the assembly state on the AS. The other three elements
each describe the non-occupancy or occupancy of a TL.

 Kunert et al. Robot Control for an Assembly Cell by using Multiple Agents

 122 SNE 30(3) – 9/2020

T N
Due to the three TLs, the number of possible states

of the environment increases. For the TZ with three TLs
and eight possible input parts, as well as the case of
non-occupancy of a TL, results in 729 states
with 0,0,0 , 1,0,0 , … , 5,1,1 . The values 1
to 8 encode a component according to the part numbers
in Figure 4 and the value 0 encodes the non-occupancy
of a TL.

The calculation of rewards r is analogous to the
variant with only one TL. The state transition model ,
which has been extended to a TZ with three TLs, shows
Listing 2.

%A={0,1,2,3} action set of the agent
1 num_parts = 8;
2 a = action(Agent); //current action
3 idx = a + num_parts;
//Pick&Place only
4 if a > 0
5 SV(SV(idx)) = SV(idx);
6 SV(idx) = 0;
7 end
%Pick&Place and None
%Move TL allocations (TL1 TL2 TL3)
%cardinality |A| is 4
8 for k = |A| -1 : -1 : 2
9 idx = k + num_parts;
10 SV(idx) = SV(idx -1)
11 end
%generate new input part on TL1
12 idx = num_parts + 1;
13 SV(idx) = rand_i(num_parts +1) – 1;

Listing 2: State transition model for the TZ with three

TLs.

The 11-tuple representing the state of the environment is
again implemented as a state vector (SV). If the agent
selects a permitted action a 1,2,3 for a Pick&Place
task (line 2), the input part is taken from the correspond-
ing TL in the TZ and mounted at the AS by the robot
(line 4-7). Subsequently, for each allowed action a1,2,3 of the robot, the shift register movement is real-
ized by the BC (lines 8-11) and a new input part is ran-
domly generated in the form of an integer value in the
interval 0, _ for the first TL in the TZ (lines
12-13).

Learning a behavioral strategy is analogous to the
representation in Section 3.1. However, despite the
applicable assembly rules, the state space of the envi-
ronment increases exponentially with 144 9 9=11644
states.

The complexity of the learning algorithm corre-
sponds to with the number of components to be
assembled and the number of TLs in the TZ. In an
empirical study, the computing time was about 10 hours
and it was about ten times longer than the computing
time for the variant with only one TL.

4 Learning with Multiple Agents
Based on the structure of the application problem, a
multi-agent approach to reduce the computing time
appears to be appropriate for the second system variant
with three TLs in the TZ. Figure 6 shows an RL frame-
work consisting of three agents, an environment, and a
management component.

Figure 6: RL framework with multiple agents.

The three agents are identical. Their structure and be-
havior correspond to the individual agent in Section 3.1,
and their action set 0,1 represents the two tasks
None and Pick&Place. The models and of the envi-
ronment correspond to the representation in Section 3.2.
Accordingly, the environment reacts to the action set 0,1,2,3 . In contrast to the original RL framework,
the agents and the environment do not communicate
directly with each other, but via the intermediate man-
agement. The management decomposes each state as
shown in Figure 7. The first eight elements of , which
encode the assembly state on the AS, are passed on to
all three agents. From the ninth to the tenth element,
which code the allocation of the three TLs in the TC,
each agent only receives the state of one TL at a time.

 Kunert et al. Robot Control for an Assembly Cell by using Multiple Agents

 SNE 30(3) – 9/2020 123

T N
This reduces the state space from the viewpoint of

each individual agent to 144 states, analogous to the
agent in Section 3.1.

Figure 7: Decomposition of a next state of the envi-

ronment by the management.

An episode begins with the decomposition of the ini-
tial state of the environment by the management,
analogous to Figure 7. Then, the management sends to
each agent the corresponding reduced state vector

, as shown in Figure 6. Each agent reacts individually
with an action 0,1 . The management selects one
of the three actions according to the following criteria:

1. An action 1 (Pick&Place) is preferred over an
action 0 (None).

2. If several agents send an action 1, the agent
with the highest index is selected. The prioritiza-
tion of the agents follows from the way the TZ
works as a shift register. Parts on the second and first
TL are still available in the next and next but one
cycle. According to Figure 7, 1 has the low-
est priority and 3 the highest.

The management remembers the selected agent. If an
action 0 was selected, the action is forwarded to the
environment unchanged. If an action 1 was select-
ed, the action is converted into a value of the action set 1,2,3 based on the index of the agent and sent to
the environment as action . The environment reacts to
the action with a reward and a follow-up state .
These are calculated with the reward model as well
as the state transition model according to Section 3.2.

The management sends the reward as to the
agent , whose action was selected before. The other
agents receive an empty reward value. An empty reward
means that there is no learning for the agent in this itera-
tion step because its action has been discarded. The
subsequent state is decomposed by management as
described and the reduced states are sent to the
agents. Each agent learns a behavior strategy relat-
ed to the TL assigned to it. Finally, an overall assembly
strategy is derived from the individual strategies.

The number of necessary episodes is hardly different
from learning with one agent. Since only one agent is
active in each iteration step, the state space to be ana-
lyzed has a maximum of 144 states. The empirical in-
vestigations revealed a linear complexity of learn-
ing depending on the number of components to be
assembled. The multi-agent approach is scalable regard-
ing the selection of components in the TZ and the com-
plexity is, therefore, independent of the number of TLs.
The computing time requirement is reduced to about
one hour.

5 Conclusion and Outlook
Starting from the basics of RL using the method of Q-
learning and the model-based SBC approach, it was
shown how, in principle, a task-based control can be
learned and executed.

Subsequently, the learning of a typical pick and
place strategy for two differently flexible system struc-
tures was considered using the example of a robot-based
assembly cell. The focus of the consideration was the
time complexity of learning. For the simple system
structure with binary selection option, it was found that
the learning algorithm has a linear complexity
depending on the number of assembled components.
In contrast, the second system structure with many
simultaneous choices per assembly step had an expo-
nential complexity of learning.

As a result, an RL multi-agent framework with the
Q-learning method was designed for the second system
structure. It could be shown that, for learning with the
multi-agent approach, a linear complexity results
as a function of the number of components to be as-
sembled and that the complexity is independent of the
number of simultaneous choices due to the scalability of
the approach.

 Kunert et al. Robot Control for an Assembly Cell by using Multiple Agents

 124 SNE 30(3) – 9/2020

T N
The application example under study is character-

ized by learning an assembly sequence that conforms to
the assembly. The different system structures were
purposefully modelled as environments for the RL ac-
cording to the MDP paradigm. In subsequent investiga-
tions, further influencing variables of a production pro-
cess are to be taken into account during learning, such
as the introduction of input parts as a function of buffer
capacities. This requires the integration of the RL with a
more complex dynamic simulation model of the produc-
tion, which was not explicitly developed according to
the MDP paradigm. Conceptual approaches for such
simulation-based RL experiments are presented in
Schmidt [18] and Adams [19].

References
[1] Bundesministerium für Wirtschaft und Energie. Was ist

Industrie 4.0? (Federal Ministry for Economic Affairs
and Energy. What is Industry 4.0?)
https://www.plattform-i40.de/PI40/Navigation/DE/ In-
dustrie40/WasIndustrie40/was-ist-industrie-40.html [Re-
trieved 27-July-2020].

[2] Hägele M., Nilsson K., Pires J.N. Industrial Robotics. In:
Siciliano B., Khatib O., editors. Handbook of Robotics.
Berlin: Springer Pub; 2008. 963-986.

[3] Nicolescu G., Mosterman P.J. Model-Based Design for
Embedded Systems. Boca Raton / FL: CRC Press;
2010.766 p.

[4] Abel D., Bollig A. Rapid Control Prototyping –
Methoden und Anwendungen (Methods and Applica-
tions). Berlin: Springer Pub., 2006, 400 p.

[5] Turnbull C. What is Virtual Commissioning?
https://virtualcommissioning.com/what-is-virtual-
commissioning/ [Retrieved 27-July-2020].

[6] Pawletta T., Pawletta S., Maletzki G.: Integrated Model-
ing, Simulation and Operation of High Flexible Discrete
Event Controls. In I. Troch, F. Breitenecker, editors,
Proc. Mathematical Modelling - MATHMOD 2009 Feb,
Vienna. Argesim Report No. 35, 13 p., ISBN 978-3-
901608-35-3

[7] Maletzki, G. Rapid Control Prototyping komplexer und
flexibler Robotersteuerungen auf Basis des SBC-Anatzes
(Rapid control prototyping of complex and flexible robot
controls based on the SBC approach) [Dissertation].
Universität Rostock / Hochschule Wismar; 2013. In:
ASIM FBS 25 doi: 10.11128/fbs.25.

[8] Freymann, B. Aufgabenorientierte Multi-Robotersteue-
rungen auf Basis des SBC-Frameworks und DEVS
(Task-oriented multi-robot controls based on the SBC
framework and DEVS) [Draft Dissertation]. TU
Clausthal / Hochschule Wismar; 2020 (unpublished).

[9] Kunert G. Pawletta T. Generating of Task-Based Con-
trols for Joint-Arm Robots with Simulation-based Rein-
forcement Learning. SNE – Simulation Notes Europe.
2018; 28(4):149-156. doi:10.11128/sne.28.4.1044

[10] Sutton R., Barto A. Reinforcement Learning. 2nd Edi-
tion. Cambridge/ MA: MIT Press; 2012. 334 p.

[11] Jammer D., Pawletta S., Kunert G., Pawletta T. Bes-
chleunigung eines Reinforcement-Learning-Algorithmus
durch Parallelverarbeitung für Robotikanwendungen
(Accelerate a reinforcement learning algorithm through
parallel processing for robotics applications.). In Durak
U. et al., editors. Proc. ASIM STS/GMMS Symposium;
2019 Feb; Braunschweig. Wien: ARGESIM Verlag. 49-
52. doi: 10.11128/arep.57.

[12] The MathWorks. Reinforcement Learning With
MATLAB – Part 1. Ebook. The MathWorks Inc.; 2019.
24 p.

[13] Russel S., Norvig P. Artificial Intelligence: A Modern
Approach. 4nd Edition. Cambridge / MA: MIT Press;
2020. 1115 p.

[14] Zai A., Brown B. Deep Reinforcement Learning in Ac-
tion. Shelter Island / NY: Manning Pub.; 2020. 359 p.

[15] ROS-Industrial. Homepage. https://rosindustrial.org [Re-
trieved 13-May-2020].

[16] Deatcu, C., Freymann, B., Schmidt, A., Pawletta, T.
MATLAB/Simulink Based Rapid Control Prototyping
for Multivendor Robot Applications. SNE – Simulation
News Europe. 2015; 25(2): 69-78.
doi:10.11128/sne.25.2.1029.

[17] Filho W.F. Computer Science Distilled. Las Vegas / NV:
Code Energy LLC Pub.; 168 p.

[18] Pawletta T., Durak U., Schmidt A. Modeling and Simu-
lation of Versatile and Adaptable Systems with an Ap-
plication in Engineering. In Zhang L. et al., editors,
Model Engineering for Simulation. Elsevier Inc. Pub.,
2019, Chap. 18, 29 p.

[19] Adams S. et al. Reinforcement Learning from Simulated
Environments: An Encoder Decoder Framework. In
Proc. SCS SpringSim‘20, 2020 May 19-21, Fairfax /
VA, 12 p.

