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Abstract.  Production systems in Industry 4.0 are charac-
terized by a high degree of system networking and 
adaptability. They are often characterized by jointed-arm 
robots, which have a high degree of adaptation. Net-
working and adaptivity increase the flexibility of a sys-
tem, but also the complexity of the control, which re-
quires the use of new development methods. In this 
context, the Simulation-Based Control approach, a mod-
el-based design method, and the concept of Reinforce-
ment Learning (RL) are introduced and it is shown how a 
task-based robot control can be learned and executed. 
Afterwards, the time complexity of the Q-learning meth-
od will be examined using the application example of a 
robot-based assembly cell with two differently flexible 
system configurations. It is shown that, depending on the 
system configuration, the time complexity of learning 
can be significantly reduced when using several agents. 
In the studied case, the complexity decreases from ex-
ponential to linear. The modified RL structure is dis-
cussed in detail. 

Introduction 
Production systems of Industry 4.0 have a high degree 
of networking and adaptivity. The latter characterizes 
the flexibility of a system to adapt to changing influ-
ences [1]. Systems are often characterized by jointed-
arm robots which, according to [2], have a high degree 

of flexibility in terms of design and control. Adaptivity 
and networking increase the complexity of the control 
software, which requires the application of new devel-
opment methods. In recent years, similar methods have 
been established under various terms, such as Model-
Based Design (MBD) [3], Rapid Control Prototyping 
(RCP) [4] or Virtual Commissioning (VC) [5]. What 
they have in common is that they are based on a contin-
uous model- and simulation-based development from 
the design to the operation phase. The Simulation-
Based-Control (SBC) approach [6] was developed ade-
quately for this purpose by the Computational Engineer-
ing and Automation research group at the University of 
Applied Sciences in Wismar. This approach was 
adapted in [7] and [8] specifically for task-oriented 
control development for jointed-arm robots. 

In [9], a connection of the SBC approach with ma-
chine learning methods based on Reinforcement Learn-
ing (RL) according to [10] is shown. The RL is defined 
by a structure of at least one agent, which has a learning 
method and an environment. The specific learning 
method is Q-learning. Based on predefined tasks and 
transformation modules, a control strategy is learned 
and automatically transformed into an SBC-compliant 
program. Since Q-learning is a model-free algorithm, it 
can be applied to various problems. However, impracti-
cable computing times result relatively quickly, even 
though learning can often be accelerated for problems 
with limited state space by means of parallel processing 
and binary trees [11]. A significant reduction of the state 
space and, thus, the computational effort is achieved 
with model-based RL approaches [12]. Here the agent 
already has process-relevant knowledge at the beginning 
of the learning process, but thereby loses its universali-
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ty. For problems with large state space, the computing 
time can be reduced by combining artificial neural 
networks (ANN) as function approximators [13], [14]. 
However, this increases the complexity of the software 
architecture. Furthermore, the design and training of the 
ANN requires experience and time. In contrast, the 
simple architecture of the original Q-learning is an ad-
vantage if the computational effort can be mastered. 

In this paper, we investigate how the computing time 
for Q-learning of a task-based robot control can be re-
duced by using several agents. Two differently flexible 
system structures of an assembly cell are considered and 
the time complexity of learning with one agent com-
pared to several agents is analyzed. The learning is 
performed on simulated system environments. The 
generation of an executable robot control based on the 
SBC approach and basics of the RL approach using Q-
learning are discussed in the following background 
section. 

1 Background 
Starting from the adapted SBC framework for articulat-
ed arm robot systems according to [7] and [8], this sec-
tion deals with the principle of integration with a ma-
chine learning process and the basics of RL based on Q-
learning according to [10] and [13]. 

1.1 The SBC Approach 
As shown in Figure 1, an SBC-based robot control is 
layered in analogy to the concept of the Robot Operat-
ing System (ROS) [15]. 

The Control Model (CM) specifies the control strat-
egy by composing predefined basic tasks. The Process 
Model (PM) implements the task transformer based on 
predefined task-specific modules. Additionally, the PM 
maps the state information. The Interface Model (IM) 
implements the interface to the hardware using a robot 
middleware. With the RCV Toolbox for MATLAB ac-
cording to [16] as middleware, SBC-based robot con-
trols can be developed and operated independently of 
robot manufacturers and model-based with 
MATLAB/Simulink. Virtual and real robots can addi-
tionally interact with a virtual process environment in 
the form of a simulation model. 

 

 
 
Figure 1: Structure of an SBC-based robot control. 
 

With the integration of the SBC framework with a 
RL procedure, as introduced in [9], the task-based con-
trol specification of the CM according to formula 2 is 
automatically generated from a sequence of learned 
state/action tuples according to formula 1: 

 , , … , ,  , … , , , ,   ,    (1) 

  … , … , … , …   (2) 
 
Learning takes place offline using a simulated process 
environment. In principle, the learning algorithm could 
also run during the operating phase and adapt the con-
trol strategy in certain time windows if the real-time 
requirements are met. 

1.2 Reinforcement Learning with Q-learning 
method 

Besides supervised and unsupervised learning, the RL 
method forms a third class of machine learning proce-
dures. The goal of RL is to learn a behavioral strategy :  that assigns an action  to each state 

. The RL does not require explicit training data. It 
trains itself using a real or simulated environment ac-
cording to the trial and error principle.  
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The RL is based on a framework as shown in Figure 

2. In model-free RL, the agent only knows the allowed 
action set  at the start of training. The environment is 
defined by different states, . When an action  
takes effect, the environment determines a subsequent 
state  with the state transition model :    and 
computes a reward value  for the current action. 
The subsequent state  and the reward  are sent back 
to the agent. During training, the agent receives infor-
mation about the possible states of the environment and 
the benefits of actions through iterative interaction, and 
gradually learns a behavioral strategy . After comple-
tion of all training episodes, the behavioral strategy  is 
derived from the Q-matrix. 

 

 
 
Figure 2: RL framework with Q-learning method. 
 

Learning takes place in phases, also known as episodes. 
These are independent of each other, always start in an 
initial state  of the environment and end when a target 
state  or abort state  is reached. At the be-
ginning of the training, the agent selects an action  
purely randomly (exploration). As the learning process 
progresses, the agent increasingly uses the knowledge it 
has acquired to select an action (exploitation). The ratio 
of exploration to exploitation is adjusted in the course of 
training. 

Q-learning is based on a table function called Q-
matrix. A matrix element ,  represents the benefit 

 of an action  when it is performed in the state  of 
the environment. From the cardinality | | follows the 
column dimension of . The row dimension of  grows 
dynamically during the training with the number of 
states explored.  

The data of explored states are stored in an indexed 
data structure  based on the row index of . This 
allows the agent to clearly recognize already explored 
states. The first episode of the training starts with an 
empty Q-matrix and an empty data structure. Subse-
quent episodes build on the already acquired knowledge 
in  and . After each interaction with the environ-
ment, the agent checks whether the received state  is 
known. If not, the Q-matrix is extended by a new row 
and the state data are added to the data structure . 
The successive adjustment of the Q-values results from 
formula 3 according to [13]: 

 , ,  max , ,  
(3) 

 
The updated Q-value of the current state/action tuple   ,  is calculated from the previous Q-value, the cur-

rently received reward , and the maximum Q-value of 
all possible actions in the currently received subsequent 
state . The influence of the individual variables is 
determined by the hyperparameters: (i) discount factor  
and (ii) learning rate . The discount factor controls the 
influence of rewards expected in the future and the 
learning rate controls the influence of the current obser-
vation. In environments with deterministic behavior, a 
high learning rate can be applied with up to 1.  

2  Application Example 
An automated assembly cell (AC) with an articulated 
arm robot for the production of different assemblies is 
considered as an example. By means of RL, product-
compliant assembly sequences are to be learned, on the 
basis of which robot controls can be generated accord-
ing to Section 1.1. Figure 3 shows the system layout of 
the AC. The AC consists of the articulated arm robot 
(R), an assembly station (AS) and a belt conveyor (BC). 
The BC feeds input parts from upstream production 
sections and serves as a transfer zone (TZ) to the robot. 
Depending on the specific system configuration, differ-
ent numbers of transfer locations (TL) are possible, 
which influences the system flexibility. Unused input 
parts and assembled modules are automatically re-
moved. The sequence in which the individual parts enter 
the AC is unknown and is assumed to be random. 
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Figure 4 shows an example of an assembled module 

as an exploded view, whose assembly is examined be-
low for two system variants of the AC: 

 
1. Minimum variant with only one TL as TZ and 
2. Variant with three TLs as TZ. 
 

 
 
Figure 3: System layout of the assembly cell with maxi-

mum three TLs as TZ. 
 

 
 
Figure 4: Exploded view of an assembled module ac-

cording to [7]. 
 

For the desired complexity consideration, the as-
sembly is reduced to a pick & place application. The 
assembly of the module in Figure 4 is subject to six 
rules. Four of the rules are shown in [7]. Rules 5 and 6 
were added: 

1. Base plate (1) must be mounted first. 
2. Pins (4, 5) may only be mounted after cover (7). 
3. Comprehensive parts must be mounted after en-

closed parts. 
4. The glass cover (8) must be mounted last. 
5. Each part is only assembled once and the pins (4, 5) 

are not identical. 
6. Gripping attempts on empty TLs of the TZ are 

prohibited. 

In the following two sections, the learning of an assem-
bly strategy with first one agent for both system variants 
and then using several agents for the second variant is 
examined. 

3 Learning with one Agent 
According to Section 1.2, the RL framework consists of 
an agent and an environment. In the application case 
under study, the robot forms the agent and the BC and 
AS form the environment. In this section, the learning 
of an assembly strategy based on this RL framework is 
examined for the two system variants of the AC. 

3.1 System variant with one TL as TZ 
In the case of only one TL, the robot has two possible 
actions 0,1 . The action  0 encodes the task 
None and the action 1 encodes the task 
Pick&Place. The state of the environment results from 
the TZ allocation and the assembly state of the module 
on the AS. In the case of only one TL, there are nine 
possible states of the TZ with 0,1, … 8 . The 
state value 0 stands for no component and the values 
greater than zero for a component according to the part 
numbers in Figure 4. The final assembled module con-
sists of eight individual parts. Accordingly, the assem-
bly state on the AS can be represented by an 8-tuple. 
Each tuple element describes the non-assembly or as-
sembly of a component by the values 0,1, … ,8. 

A state  of the entire environment is, therefore, 
described by a 9-tuple. The first eight elements describe 
the assembly state on the AS and the ninth element the 
state of the TZ. Figure 5 shows the representation of 
states  of the environment with a state vector (SV). 
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State  represents the initial state,  a possible later 

subsequent state and  the target state. The indi-
cated state  encodes an assembly of the components’ 
base plate and labyrinth as well as the allocation of the 
TZ with a component glass lid. The target state  
is reached when the first eight elements of  are not 
equal to zero. The character  in the initial and target 
state stands for any state  of the TZ. 

 

 
Figure 5: Mapping of the state as a state vector (SV). 
 

The environment reacts to an action  of the agent, 
as shown in Figure 2, with a reward value  and a sub-
sequent state . The reward model  of the environ-
ment defines three possible rewards for an action 1 
based on the six assembly rules according to Section 2: 

 
• , if the action is not allowed, 
• 0, if the action is allowed and  and  
• 1, if the action is allowed and . 
 

The action 0, i.e. a refusal to mount the component 
on the TL, always leads to the reward value 0. 

The state transition model  works according to the 
Markov Decision Process (MDP) paradigm. Listing 1 
shows the specification of  in MATLAB pseudocode. 

 
%A={0,1} action set of the agent 
1  num_parts = 8; 
2  idx = num_parts + 1; 
3  a = action(agent); %current action 
%Pick&Place only 
4  if a > 0 
5    SV(SV(idx)) = SV(idx); 
6    SV(idx)     = 0; 
7  end 
%Pick&Place and None 
8  SV(idx) = randi(num_parts +1) – 1; 

 
Listing 1: State transition model for an TZ with one TL. 
 

With a permitted action 1 (Pick&Place), the 
last element of the SV that represents the part in the TC 
is restored according to its value in the SV (lines 4-7), 
thereby updating the assembly state. In addition, for 
each allowed action 1 or 0 the last element of 
SV is assigned a random integer value from the interval 0, _ , which represents a new input part in 
the TC (line 8). 

Each episode starts with the transfer of a start state 
 of the environment to the agent. A reward is not 

transferred at the beginning of an episode. Learning is 
done as described in Section 1.2. The column dimension 
of the Q-matrix corresponds to the cardinality of the 
action set |A| 2. An episode ends when the agent 
receives a reward, 1,  from the environment. The 
training must include enough episodes to learn a strate-
gy, . It should be noted that, with the random genera-
tion of new input parts in the TZ, the state transition 
model  is subject to stochastic influences. 

Without assembly rules, this system structure results 
in 2 1  states of the environment depending 
on the number of parts  to be assembled. Due to as-
sembly rules, the number of states is considerably re-
duced. For the assembly under consideration with eight 
components, 144 states result according to [7]. 

The complexity of an algorithm as a function of the 
input data is described with the big  notation [17]. An 
empirical analysis showed that a linear time complexity 

 of the learning process resulted depending on the 
number of components, , to be assembled. The compu-
ting time for learning an assembly strategy was less than 
one hour on a standard PC with an implementation in 
MATLAB. 

3.2 System variant with three TLs as TZ 
In the variant with three TLs the allocation of the TZ is 
analogous to a shift register. In fixed time units, the BC 
moves one position to the right. The robot always has 
access to all three TLs. This results in four possible 
actions for the robot, A 0,1,2,3 . The action a 0 
again encodes the task None and the other three actions 
encode the task Pick&Place with different parameteri-
zation depending on the TL to be approached. 

The state of the environment expands by two ele-
ments to an 11-tuple. The first eight elements describe 
the assembly state on the AS. The other three elements 
each describe the non-occupancy or occupancy of a TL.  
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Due to the three TLs, the number of possible states 

of the environment increases. For the TZ with three TLs 
and eight possible input parts, as well as the case of 
non-occupancy of a TL, results in 729 states  
with 0,0,0 , 1,0,0 , … , 5,1,1 . The values 1 
to 8 encode a component according to the part numbers 
in Figure 4 and the value 0 encodes the non-occupancy 
of a TL. 

The calculation of rewards r  is analogous to the 
variant with only one TL. The state transition model , 
which has been extended to a TZ with three TLs, shows 
Listing 2. 

 

%A={0,1,2,3} action set of the agent 
1  num_parts = 8; 
2  a = action(Agent); //current action 
3  idx = a + num_parts; 
//Pick&Place only 
4  if a > 0 
5    SV(SV(idx)) = SV(idx); 
6    SV(idx) = 0; 
7  end 
%Pick&Place and None 
%Move TL allocations (TL1 TL2 TL3) 
%cardinality |A| is 4 
8  for k = |A| -1 : -1 : 2 
9    idx = k + num_parts; 
10   SV(idx) = SV(idx -1) 
11 end 
%generate new input part on TL1 
12 idx = num_parts + 1; 
13 SV(idx) = rand_i(num_parts +1) – 1; 

 
Listing 2: State transition model for the TZ with three 

TLs. 

The 11-tuple representing the state of the environment is 
again implemented as a state vector (SV). If the agent 
selects a permitted action a 1,2,3  for a Pick&Place 
task (line 2), the input part is taken from the correspond-
ing TL in the TZ and mounted at the AS by the robot 
(line 4-7). Subsequently, for each allowed action a1,2,3  of the robot, the shift register movement is real-
ized by the BC (lines 8-11) and a new input part is ran-
domly generated in the form of an integer value in the 
interval 0, _  for the first TL in the TZ (lines 
12-13). 

Learning a behavioral strategy  is analogous to the 
representation in Section 3.1. However, despite the 
applicable assembly rules, the state space of the envi-
ronment increases exponentially with 144 9 9=11644 
states.  

The complexity of the learning algorithm corre-
sponds to  with  the number of components to be 
assembled and  the number of TLs in the TZ. In an 
empirical study, the computing time was about 10 hours 
and it was about ten times longer than the computing 
time for the variant with only one TL. 

4 Learning with Multiple Agents 
Based on the structure of the application problem, a 
multi-agent approach to reduce the computing time 
appears to be appropriate for the second system variant 
with three TLs in the TZ. Figure 6 shows an RL frame-
work consisting of three agents, an environment, and a 
management component. 

 

 
 

Figure 6: RL framework with multiple agents. 
 

The three agents are identical. Their structure and be-
havior correspond to the individual agent in Section 3.1, 
and their action set 0,1  represents the two tasks 
None and Pick&Place. The models  and  of the envi-
ronment correspond to the representation in Section 3.2. 
Accordingly, the environment reacts to the action set 0,1,2,3 . In contrast to the original RL framework, 
the agents and the environment do not communicate 
directly with each other, but via the intermediate man-
agement. The management decomposes each state  as 
shown in Figure 7. The first eight elements of , which 
encode the assembly state on the AS, are passed on to 
all three agents. From the ninth to the tenth element, 
which code the allocation of the three TLs in the TC, 
each agent only receives the state of one TL at a time. 



  Kunert  et al.     Robot Control for an Assembly Cell by using Multiple Agents 

   SNE 30(3) – 9/2020 123 

T N 
This reduces the state space from the viewpoint of 

each individual agent to 144 states, analogous to the 
agent in Section 3.1. 

 

 
 
Figure 7: Decomposition of a next state  of the envi-

ronment by the management. 
 

An episode begins with the decomposition of the ini-
tial state  of the environment by the management, 
analogous to Figure 7. Then, the management sends to 
each agent  the corresponding reduced state vector 

, as shown in Figure 6. Each agent reacts individually 
with an action 0,1 . The management selects one 
of the three actions according to the following criteria: 
 

1. An action 1 (Pick&Place) is preferred over an 
action 0 (None). 

2. If several agents send an action 1, the agent 
with the highest index   is selected. The prioritiza-
tion of the agents follows from the way the TZ 
works as a shift register. Parts on the second and first 
TL are still available in the next and next but one 
cycle. According to Figure 7,  1 has the low-
est priority and  3 the highest. 

 
The management remembers the selected agent. If an 
action 0 was selected, the action is forwarded to the 
environment unchanged. If an action 1 was select-
ed, the action is converted into a value of the action set 1,2,3  based on the index  of the agent and sent to 
the environment as action . The environment reacts to 
the action with a reward   and a follow-up state . 
These are calculated with the reward model   as well 
as the state transition model  according to Section 3.2. 

The management sends the reward  as  to the 
agent , whose action was selected before. The other 
agents receive an empty reward value. An empty reward 
means that there is no learning for the agent in this itera-
tion step because its action has been discarded. The 
subsequent state  is decomposed by management as 
described and the reduced states  are sent to the 
agents. Each agent learns a behavior strategy  relat-
ed to the TL assigned to it. Finally, an overall assembly 
strategy  is derived from the individual strategies. 

The number of necessary episodes is hardly different 
from learning with one agent. Since only one agent is 
active in each iteration step, the state space to be ana-
lyzed has a maximum of 144 states. The empirical in-
vestigations revealed a linear complexity  of learn-
ing depending on the number  of components to be 
assembled. The multi-agent approach is scalable regard-
ing the selection of components in the TZ and the com-
plexity is, therefore, independent of the number of TLs. 
The computing time requirement is reduced to about 
one hour. 

5 Conclusion and Outlook 
Starting from the basics of RL using the method of Q-
learning and the model-based SBC approach, it was 
shown how, in principle, a task-based control can be 
learned and executed. 

Subsequently, the learning of a typical pick and 
place strategy for two differently flexible system struc-
tures was considered using the example of a robot-based 
assembly cell. The focus of the consideration was the 
time complexity of learning. For the simple system 
structure with binary selection option, it was found that 
the learning algorithm has a linear complexity  
depending on the number  of assembled components. 
In contrast, the second system structure with  many 
simultaneous choices per assembly step had an expo-
nential complexity  of learning. 

As a result, an RL multi-agent framework with the 
Q-learning method was designed for the second system 
structure. It could be shown that, for learning with the 
multi-agent approach, a linear complexity  results 
as a function of the number  of components to be as-
sembled and that the complexity is independent of the 
number of simultaneous choices due to the scalability of 
the approach. 



 Kunert  et al.      Robot Control for an Assembly Cell by using Multiple Agents 

 124 SNE 30(3) – 9/2020 

T N 
The application example under study is character-

ized by learning an assembly sequence that conforms to 
the assembly. The different system structures were 
purposefully modelled as environments for the RL ac-
cording to the MDP paradigm. In subsequent investiga-
tions, further influencing variables of a production pro-
cess are to be taken into account during learning, such 
as the introduction of input parts as a function of buffer 
capacities. This requires the integration of the RL with a 
more complex dynamic simulation model of the produc-
tion, which was not explicitly developed according to 
the MDP paradigm. Conceptual approaches for such 
simulation-based RL experiments are presented in 
Schmidt [18] and Adams [19]. 
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