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Abstract. Modern industrial production planning and
control (PPC) systems are responsible for supporting
planning decisions on how to optimally produce a given
set of products while minimizing costs and retaining pro-
duction constraints, such as delivery tardiness or off-
times. In recent years, more and more attention has
also been paid on energy efficiency as part of produc-
tion optimization, resulting in competing optimization
targets. In order to solve such complex multi-objective
scheduling problems in practice, metaheuristic methods
are used because of their ability to deliver acceptable
solutions in feasible time. In this paper, we demon-
strate the application of a General Variable Neighbor-
hood Search (GVNS) metaheuristic on a case study of
flow shop scheduling in an industrial bakery in different
scenarios and study the effect of different energy prices
on the planning result. The case study features a simple
production line with thermal processes for baking and
freezing and also incorporates the energy supply system
as well as a model of the thermal building hull. The
metaheuristic is combined with a hybrid discrete/contin-
uous simulation model to evaluate the energy efficiency
of different production scenarios. The hybrid simulation
enables to accurately capture material and energy flow
within the production in an integrated and dynamicman-
ner. Overall, this simulation-based optimization method
is intended to support energy-aware production schedul-
ing in practical applications.

Introduction
Energy efficiency in industrial production has become

an important topic in recent years because of the sub-

stantial potential for energy savings in the industrial

sector [1]. Energy-aware Production Planning and Con-

trol (PPC) strategies can be used to influence energy

demand and energy costs during operation, for exam-

ple by shifting the production of energy-intensive prod-

ucts to the night hours, where energy is often cheaper.

However, it is not sufficient to only consider energy as

an optimization goal. Instead, energy efficiency must

be seen as part of a multi-objective system of pro-

duction targets together with production variables such

as storage costs, throughput times or delivery delays.

Such multi-objective problems with complex, some-

times time-dependent constraints are hard to solve for

real-world problems. Modern solutions often rely on

heuristic or metaheuristic methods [2].

For evaluating the fitness of solution candidates dur-

ing metaheuristic search, simulation-based methods are

gaining interest because they enable to capture com-

plexity of real-world problems including difficult dy-

namic interactions without the limiting assumptions

many other approaches have. However, with regard to

energy optimization, interdisciplinary holistic simula-

tion models are required which include dynamic inter-

actions across engineering domains in order to get an

accurate prediction of the overall energy demand, that

not only includes production machinery, but also tech-

nical building services. For example, heating a produc-

tion oven generates waste heat that is dissipated into

the room and affects heating and cooling energy de-

mand for the building. Similarly, the actual setup time

for preheating the oven depends on different conditions,

including which products have been produced before,

and the setup time affects production throughput and

scheduling. Incorporating energy considerations in pro-

duction logistics simulations with their time-dependent

interactions in an accurate manner requires advanced
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modeling and simulation approaches that combine dis-

crete (product flow) and continuous dynamics (energy

flow). Describing such hybrid discrete/continuous sim-

ulation models in a consistent manner with formally

sound semantics in complex real-world applications is

still challenging [3, 2].

In our work, we aim to support modern PPC tools

in incorporating energy considerations into the plan-

ning process using simulation-based optimization tech-

niques. We present a metaheuristic procedure for

energy-aware optimization of production scheduling,

which employs a dynamic discrete/continuous simula-

tion model for evaluating overall energy demand as well

as material flow, while taking into account dynamic in-

terdependencies across domains. To this end, we have

developed a component-based hybrid simulation tool

based on a formal model description, called hyPDEVS.

The simulation tool includes reusable model compo-

nents that can be used to simulate interdisciplinary pro-

duction systems [4]. The optimization method aims

at sequencing and time scheduling a given list of pro-

duction jobs while minimizing energy demand together

with other production goals. The procedure combines

a Variable Neighborhood Search (VNS) metaheuris-

tic with Variable Neighborhood Descent and Simulated

Annealing (SA) for local search and diversification. We

demonstrate the feasibility of this method on a flow

shop scheduling problem of an industrial bakery. The

simulation model includes a production line with alter-

native paths as well as technical building services for

energy supply and a thermal building model. We com-

pare different scenarios, investigate the effect of vari-

able energy prices and on the planning result and high-

light the potential benefit of considering energy as an

optimization target.

1 Related Work

Since optimization in a complex solution space with si-

multaneous objectives is a difficult problem to solve,

practical multi-objective optimization has spawned a

wealth of approaches and solution methods [5, 6]. A

general overview is given in [7, 8, 9], while [10] fo-

cuses on optimization in the food manufacturing indus-

try. Optimization methods can be categorized in ex-

act methods, such as gradient methods, dynamic pro-

gramming, etc., and approximate/heuristic methods like

greedy heuristics, Simulated Annealing, Evolutionary

Algorithms or Variable Neighborhood Search [11].

According to [10], metaheuristics and customized

multi-objective heuristic approaches are well-suited for

applications in real-life industrial production planning

problems (which typically are NP-hard), in contrast to

exact approaches that require simplified models. Meta-

heuristics allow to explore the search space more ef-

ficiently and effectively, especially if they are tailored

to the individual problem [12]. Different metaheuris-

tic algorithms, such as Evolutionary Computation, Tabu

Search, Particle Swarm Optimization (PSO) or Simu-

lated Annealing (SA) have been successfully applied to

various logistics optimization problems [13]. In previ-

ous work, we have also investigated applying a Genetic

Algorithm on a similar case study [14, 15]. A set of

tuning and customization measures was applied to sig-

nificantly improve performance, including adapting op-

erators for a guided search, and hybridization with Tabu

Search and Pattern Search.

Besides population-based metaheuristics, like Ge-

netic Algorithms, which work with a population of

candidate solutions to concurrently sample different

regions of the solution space, single-solution-based

methods, also called trajectory methods, iterate over

a single solution are more exploitation-oriented and

usually need fewer simulation evaluations, which im-

proves overall computation time. Among these trajec-

tory methods, Variable Neighborhood Search (VNS) al-

gorithms have shown excellent capability for solving

scheduling problems [16]. This is in accordance with

other publications, e.g. [17, 18, 16], which have suc-

cessfully applied VNS for job scheduling problems in

the production domain. In [19], the authors compare

different optimization methods for simulation-based

optimization of production plans, in which VNS also

leads to the best results.

For simulation-based optimization strategies in par-

ticular, several authors employ discrete-event simula-

tions (DES). In [20], the authors combine a DES with

a Genetic Algorithm for energy-oriented machine allo-

cation planning. The DES, however, uses deterministic

energy profiles and only allows very simplified consid-

eration of dynamic energetic interdependencies. It also

does not include production periphery or building fa-

cilities in the energy consumption. Other publications

describe hybrid discrete/continuous simulation for en-

ergy efficiency in production, however, most of these

use them in a scenario-based manner without system-

atic metaheuristic optimization. In [21], a multilevel

simulation is presented to model the material flow to-
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gether with production equipment and energy system.

This includes dynamic coupling across domains, how-

ever, optimizations are conducted manually.

2 Case Study Overview
To evaluate the described method on a real-life exam-

ple, we devised a case study of a production plant.

The case study is a simplified model of a real produc-

tion plant of an industrial bakery that produces baked

goods [4]. The model features a typical production line

with machines, storage and conveyor belts, an energy

supply system with heater and cooler, and a building

model with thermal zones.
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Figure 1: Production facility consisting of production
machines (blue), logistics components (purple),
technical building services for energy supply (red)
and thermal building zones (green).

The model has been simplified compared to the orig-

inal plant by omitting unnecessary production steps and

other components, in order to reduce problem com-

plexity and simplify parametrization. However, this

does not change the structure or topology of the gen-

eral archetype and therefore does not undermine the

goal of demonstrating the feasibility of the method.

The main critical elements of the production still re-

main in the model, specifically: intertwined continuous

and discrete dynamics, cross-domain modeling with dy-

namic interdependencies, and complex product flow

with splitting, merging and batching. More details on

the simulation are given in Section 4.

The production and logistics components form a

production line for two product variants: baked and

frozen. Baked products pass a oven for baking while

frozen products are frozen directly (in a freezer) with-

out being baked. Both are designed as conveyor belts,

meaning that new entities continuously enter the sta-

tions and leave on the other side. Since these products

share all other stations, only one type of product can be

produced at any time. For both products, respective in-

gredients are being pulled from the storage, after which

they are mixed into a dough, divided into portions (split-

ting) and continue on different conveyor belts. After

baking/freezing, the finished products are packaged in

different quantities.

The building is modelled as a simple thermal com-

partment model with four thermal zones, each repre-

senting a distinct part of the facility: production hall,

plant rooms and cold storage. These zones all have in-

dependent conditioning (for example, the cold storage

is kept at 4 °C) and exchange thermal energy with one

another according to the defined wall topology. They

also exchange thermal energy with the environment, for

which a variable ambient temperature may be specified.

The energy system provides necessary technical

building services, mainly supplying energy for the pro-

duction machines as well as for heating and cooling the

thermal building zones. The energy system is com-

prised of a heater (powered by natural gas) that sup-

plies heat to the oven and building, a chiller (pow-

ered by electricity) that supplies cold to the freezer and

building, as well as respective energy grids responsi-

ble for distributing the energy. The heating and cooling

grids also include thermal energy storage that models

the storage capacity of the grid. All other production

stations receive electric energy from the grid.

The production orders are executed according to a

production schedule (Pplan), which is the main input

vector to specify the production scenario and is the

subject of optimization, which constitutes a flow shop

scheduling problem. In addition to the order starting

times, the Pplan also specifies the start of the setup pro-

cesses for the oven and freezer. During these setup pro-

cesses, the oven (or freezer) is preheated (or cooled) to

the defined operating temperature before the products

arrive at the station. This also implies that, in contrast

to traditional discrete-event material flow simulations,

the setup time is not a fixed parameter, but may change

dynamically during the optimization process.
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The case study further includes a work plan (Aplan)

that specified the production steps and process param-

eters, such as temperature set points, baking time or

batching size. It serves as a look-up table for the indi-

vidual stations and the process parameters may be dif-

ferent for different product types.

3 Optimization Method

Production optimization deals with finding an optimal

combination of production resources, such as equip-

ment, utilities or energy, to achieve a given produc-

tion target in the best possible way. Operative Produc-

tion Planning and Control (PPC) methods consider pro-

duction resources and cost factors to find optimal pro-

duction schedules. To support PPC in practice, mod-

ern APS (Advanced Planning and Scheduling) soft-

ware systems offer integrated resource planning [22].

The complexity of the underlying optimization prob-

lem with multiple competing objectives and complex

constraint conditions suggests using a simulation-based

strategy [23]. Hereby, a simulation model of the sys-

tem under consideration is part of the objective function

and serves as a prescriptive tool to predict and evaluate

the performance of a given scenario. Dynamic simula-

tion allows to consider more complex systems than with

conventional analytical models, especially for highly

time-dependent problems, while offering more accurate

predictions and overall improving planning quality [2].

Recent advances in computational techniques have also

led to an increased interest in simulation-based method-

ologies to solve optimization problems [23].

However, the fact that these methods in general do

not provide closed analytical representations of the ob-

jective function (or its derivatives) prevents straight-

forward deployment of many standard optimization al-

gorithms. Instead, many practical simulation-based

optimization solutions employ metaheuristics that rely

solely on the evaluation of the objective function itself.

These algorithms modify a candidate solution in an iter-

ative manner to find a near-optimal solution until termi-

nation criteria are met. The final solution may not be the

global optimum, but is often good enough in practice.

The overall computation cycle of using the

simulation-based optimization methodology for pro-

duction scheduling in industry is illustrated in Figure 2.

The starting point is a given demand plan (Dplan) spec-

ifying how many of which entities (i.e. products) need

to be delivered when. This Dplan serves as a basis

to generate an initial solution of a production schedule

(Pplan), which is then evaluated using a dynamic simu-

lation model. The results of the simulation are fed back

to the optimization to be evaluated for its fitness us-

ing a specified cost function f (x) (objective function).

Based on this evaluation, the optimization algorithm it-

eratively adapts the solution in order to find the mini-

mum of f (x) subject to constraints. The cycle continues

until certain termination criteria (e.g. fixed number of

iterations, computation time threshold, etc.) are met [2].

Optimization Algorithm
Metaheuristics

Simulation Model
discrete/continuous

x

Pplan

(Scenario)

Dplan

(Input)

Results

(Energy Demand,

Entities Produced)

Figure 2: Simulation optimization cycle. Input is a demand
plan (Dplan) of entities to be produced. The
optimization algorithm generates a production
schedule (Pplan), which is adapted iteratively
based on an evaluation of simulation results [2].

We employ a single-solution metheuristic method

based on a General Variable Neighborhood Search

(VNS) procedure. The VNS [16] is an effective method

guiding a local search by switching between increas-

ingly larger neighborhoods to efficiently explore the so-

lution space. The VNS consists of (1) a shaking phase

that generates randomized perturbations of the solution

for diversifying the search to escape local optima, and

(2) an intensification phase that searches for improve-

ments in the local neighborhood, typically using a local

search procedure. For improving the performance of the

search, the Generalized VNS (GVNS) replaces the lo-

cal search by a Variable Neighborhood Descent (VND)

procedure [24, 25]. The VND is similar to the VNS,

but does not include shaking and thus limits the search

to strict improvements (i.e. descent). It does not use the

same neighborhood structures as the VNS, which offers

more flexibility in tailoring the search procedure to the

problem instance [2].

Algorithm 1 presents an overview of the optimiza-

tion method as pseudocode. After generating a feasi-

ble initial solution x, the VNS component (described

in more detail in Section 3.3) guides a search for im-
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provements over a fixed number of iterations niter by

generating in each iteration a random neighboring solu-

tion x′ (by means of the neighborhood structure Nk(x))
that serves as starting point for the VND that tries to

find a local minimum x′′. If the solution is accepted,

the VNS restarts with neighborhood N1 and the new

starting solution x′′. Otherwise, the neighborhood is en-

larged. The acceptance criterion is based on Simulated

Annealing (SA) [24] for further diversifying the search

by allowing to accept potentially worse solutions dur-

ing the early search phase. Infeasible solutions are also

allowed during the search and are evaluated based on

a penalizing cost function, which is described in Sec-

tion 3.2. For the particular case study, the optimization

vector x contains the job starting times and the setup

time duration for oven and freezer, which allows to op-

timize job sequencing and scheduling as well as setup

processes, which also have an influence on the energy

demand.

Algorithm 1 GVNS/SA algorithm

1: Nk ← set of VNS neighborhood structures

2: x ← InitialSolution()
3: k ← 1

4: i ← 0

5: T ← T0

6: while i ≤ niter do
7: x′ ← shaking(Nk(x)) � random perturbation

8: x′′ ←V ND(x′,Nk) � local improvement search

9: if acceptSA(x′′,x,T ) then � SA criterion

10: x ← x′′

11: k ← 1

12: else
13: k ← (k mod kmax)+1 � next neighborhood

14: end if
15: i ← i+1

16: update T
17: end while

3.1 Initial Solution

An initial solution (function InitialSolution()) is gen-

erated by employing a custom construction heuris-

tic, which takes the jobs from the provided input list

(Dplan), sorts them in increasing order of due date and

then schedules the jobs in this order as soon as possi-

ble (forward scheduling) while considering safety gaps

between jobs as well as setup times. This method en-

sures that no collisions occur, and the initial solution

is feasible to be a valid starting point for the subsequent

improvement search. However, further constraint viola-

tions, such as delivery delay, or energy considerations,

are not checked during this phase.

3.2 Generalized Cost Function

The algorithm allows infeasible solution during the

search process. Constraints are penalized by means of

the generalized cost function

f (x) =ω1 · fdev(x)+ω2 · fen(x)+ω3 · fst(x)+ (1)

+ω4 · fdel(x)+ω5 · fsep(x)

where fdev denotes a penalization for deviating number

of entities produced, fen the energy costs, fst the storage

costs, fdel is a penalization for any potential delivery de-

lay, and fsep penalizes job separation violations. These

part goals are evaluated based on the simulation.

The energy costs fen are calculated by taking the

simulated power supply Ps from each of the external

providers s ∈ Prov, rate them with time-dependent en-

ergy prices cs and accumulate them over time to obtain

the overall energy costs:

fen(x) = ∑
s∈Prov

∑
ti

Ps,ti(x) · (ti+1 − ti) · cs(ti). (2)

This method of using variable energy prices allows to

take into account different effects that have an influence

on the energy price and therefore may potentially influ-

ence the production planning result, like for example

lower energy prices during nighttime, or an additional

photovoltaic system that provides solar energy during

the day. The storage costs fst are determined based on

the time difference between job completion and deliv-

ery due date (given in the demand plan). For more de-

tails, we also refer to [26]. The coefficients ωi > 0 are

weighting factors, which may be adapted by the user

to balance their preferences for individual part goals

and trade-offs in a transparent manner. This weighted

sum method is common for multi-objective optimiza-

tion problems in practice as it is easy to implement and

intuitive for the user. However, the results are often

highly dependent on the weights [9, 2].

3.3 Neighborhood Structures

The general operation of the VNS has been described

in Algorithm 1. It is responsible for diversifying the

SNE 30(3) – 9/2020



110

Heinzl and Kastner Metaheuristic Simulation-based Production Planning for Energy Efficiency

search in a structured way during the shaking phase

by successively changing the neighborhood structures

Nk. These neighborhood structures are usually defined

implicitly by means of operators that modify the solu-

tion. For our case, we have defined four different oper-

ators [2]:

1. OpSwitch: This operator changes the order of jobs

by taking a random number r of successive jobs

(starting from a random position) and moving them

to a different position. Hereby, r is chosen in the

interval r ∈ [1,min{rmax,n}], where n is the overall

number of jobs and rmax changes depending on the

neighborhood k, see Table 1.

2. OpShift: The shifting operator takes a random po-

sition an moves all subsequent jobs by a specified

time tshift, where tshift depends on k.

3. OpChangeSetuptime: Here, the setuptime is

changed by a specified an amount tsetup.

4. OpMerge: The merging operator takes two random

jobs, which are removed by a distance of d, and

which have the same product type and combines

them into one job. Merging jobs has the advan-

tage that it reduces the number of setup processes

and avoids gaps between jobs, thereby increasing

production and energy efficiency.

The VND, which is used in place of a local search pro-

cedure inside the VNS to improve the generated so-

lution in the intensification phase [25], uses the same

basic operations, albeit in different neighborhoods de-

pending on the current VNS neighborhood Nk(x). For

the switching operator, the VND neighborhood contain-

ing all pairs of successive jobs is explored exhaustively.

The same is done with respect to merging. For OpShift,
the VND checks shifting groups of jobs in a binary

search pattern by a set of different times tshift. Similarly

for the setup times, which are being reduced iteratively

by a set of different tsetup. The complete neighborhood

structures used for the case study are presented in Ta-

ble 1.

3.4 Acceptance Criterion

Instead of accepting only improving solutions, a mod-

ified acceptance criterion (acceptSA()) is used that is

based on a Simulated Annealing (SA) method [24, 2].

It enables to further diversify the search and better es-

cape local optima by accepting potentially worse solu-

tions, albeit with decreasing probability as the search

k Operator Shaking VND
1 1 rmax = 2 rmax = 1

2 1 rmax = 4 rmax = 1

3 2 tshift = 8 h tshift ∈ {4,2,−1,0.5} h

4 2 tshift = 12 h tshift ∈ {4,2,−1,0.5} h

5 3 tsetup = 0.5 h tsetup ∈ {0.5,0.25} h

6 4 d = 2 d = 1

Table 1: Neighborhood structures used in the GVNS.

progresses. To be more precise, while an improving so-

lution is always accepted, a deteriorating solution x′′ is

accepted with the probability

pSA = exp
(−( f (x′′)− f (x))/T

)
, (3)

where f is the generalizes cost function (see Sec-

tion 3.2) and T is the temperature that decreases linearly

after every VNS iteration in such a way that T < 10−3

during the last 10% of iterations. This effectively tight-

ens the acceptance criterion as the search progresses un-

til, finally, only improving solutions are accepted at the

end. The temperature T is initialized with T0 accord-

ing to T0 = −ΔSA/ log(0.5), meaning that, initially, a

solution being ΔSA worse than f (x) is accepted with a

probability of 50%.

4 Hybrid Simulation
Hybrid discrete/continuous simulation in the context of

interdisciplinary assessment of energy efficiency in pro-

duction enables both the material flow to be accurately

modelled as Discrete-Event system and the energy flow

by means of differential equations, while also taking

into account dynamic interactions between these do-

mains. Continuous representation of energy flow, as op-

posed to discrete energy profiles, enables to accurately

incorporate transient dynamics, for example the heat-

up process of an oven or the thermal heat capacity of

the building. For hybrid modeling and simulation, we

employ a formal model description, called hyPDEVS,

which is based on the Discrete Event System Specifica-

tion (DEVS) [27].

The hyPDEVS formalism extension aims to incor-

porate continuous model aspects into a discrete-event

model description [28]. It is similar to the DEV&DESS

formalism introduced by Prähofer [27], with the differ-

ence being that it allows improved handling of parallel

and concurrent events (since it is based on the Parallel-

DEVS extension [27]).
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DEVS formalisms follow a component-based

paradigm where the overall model is comprised of in-

dividual components being coupled together. Coupled

systems can be arranged hierarchically, meaning they

can be incorporated just like an atomic into a larger cou-

pled system. This property allows to construct modu-

lar hierarchical (tree-like) models in a component-based

manner [29, 27].

Component-based modeling as a paradigm facili-

tates modularity and separation of concerns for man-

aging the complexity of large-scale simulation mod-

els. Components can implemented as object classes in

an object-oriented programming language [30]. These

classes can then be organized in a library of model com-

ponents, to be instantiated by the user in different con-

texts, thereby facilitating component reuse. Reusing

models is crucial in an attempt to reduce the effort nec-

essary to develop new application models [31, 32]. In

order to retain modularity and reusability, it is strictly

necessary to encapsulate all aspects (in particular dis-

crete and continuous aspects) of a model component

within uniform boundaries. This may become a chal-

lenge when using e.g. co-simulation [33], as this ap-

proach forces the user to split the model into discrete

and continuous sub-models to be implemented by re-

spective simulators [34]. The hyPDEVS specification,

on the other hand, allows to integrate hybrid aspects al-

ready on the atomic level, thereby removing the restric-

tions on hybrid composability.

Based on the described hyPDEVS formalism, a sim-

ulation tool was implemented in C++ [4] together with

a library of model components for modeling produc-

tion systems, which are also used in the case study,

see Figure 1. The production stations, especially oven

and freezer, are modelled as hybrid discrete/continuous

models, where the discrete model is responsible for en-

tity flow and control logic, and the continuous model

handles energy input and conversion. In particular, the

energy conversion follows simple energy balance equa-

tions, including thermal heat capacity of the station, and

generates diffuse waste heat that is dissipated into the

respective thermal zone in the room model. Energy de-

mand for oven and freezer is controlled by a PI con-

troller located inside the component.

The energy model also interacts with the material

flow by means of state events that indicate e.g. when

the oven has reached its target temperature and is ready

to accept entities. More details are described in [29].

The building and energy system components on the

other hand are mainly continuous models (as they do

not directly interact with entities), except for simple

control logics. The building model contains four ther-

mal zones with homogeneous temperature distribution

and calculates heat transfer across the walls between

the zones as well as with the environment. For this, a

temperature profile for the ambient temperature can be

specified as simulation input, which allows to compare

different weather conditions, e.g. summer vs. winter.

For this case study, the ambient temperature is set to

20 °C. A more sophisticated thermal building model has

also been developed for the hyPDEVS simulator [35],

which is, however, not part of this case study. Outside

energy providers supply the energy across the system

boundary to the energy system, which is billed to the

customer using time-dependent energy pricing.

5 Case Study Experiments
To demonstrate the application of the proposed GVN-

S/SA method on the flow shop scheduling case study,

the optimization was implemented as a prototype in

MATLAB and coupled with the standalone hyPDEVS

simulator [36]. Table 2 presents a simplified scenario

of demand (Dplan) needing to be scheduled over the

course of two days (i.e. 48 h simulation time). The ta-

ble lists different orders (coming from customers) with

quantities and delivery due dates (measured from the

start of the simulation). Although realistic demand

plans are usually more complex, simplifying the sce-

nario allows to manually verify the results and check

the algorithm for plausibility.

For the ambient temperature, we consider a real-

world temperature curve presented in Figure 3 and

we compare different energy price profiles cs(t) (see

Equation (2)). The price profiles are depicted in Fig-

ure 4. One electricity price profile c1,real(t) was taken

from real historical electricity spot market data of the

Austrian Energy Exchange (EXAA)1, the other one

c1,const(t) represents its mean value (0.0437 C/kWh)

kept constant over the entire period. The gas price c2(t)
is also constant with 0.04 C/kWh.

Figure 5 depicts the Oven and Freezer allocations

(i.e. number of entities and temperature over time)

of the final optimization result when using the con-

stant energy price profile. The optimization ran for

niter = 50 iterations and the partgoal weights were cho-

1Source: https://www.exaa.at/en/marketdata/
historical-data
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Type Quantity Due Time
Scenario 1 Scenario 2

baked 32 48 h 48 h

baked 8 24 h —

frozen 20 48 h —

baked 4 48 h —

Table 2: Demand plan for the simulated scenario.
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Figure 3: Ambient temperature curve used for the

simulation, based on real data.

sen as ω = (ωi)i=1...5 = (1,2,2,1,1), while the dete-

rioration percentage of the Simulated Annealing (SA)

acceptance criterion was lowered to ΔSA = 0.3.

The result is by and large as expected, with all jobs

being produced as late as possible (due to the storage

costs) and the one job (Job 2 in Table 2) adhering to the

earlier delivery due date. While the overall goal was

improved by 28%, not much energy was be saved in

this case, only about 6%, as there is not much leeway

for shifting or merging jobs. This is also visible in the

cost function plot in Figure 6. While the energy costs

make up the majority of the target value, most of the

improvements are achieved through the storage costs,

which have been lowered by 77%.

Also, the variable ambient temperature itself does
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Figure 4: Energy price profiles, constant and real.
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Figure 5: Optimization results for Scenario 1. The dashed

vertical lines indicate job due times.
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Figure 6: Cost function and part goals for Scenario 1.

not have much influence on the optimization result ei-

ther. As further analyses have shown, this is partly due

to the temperature control in the building. On the one

hand, this suppresses any direct influence of the ambient

temperature on the thermal behavior of the production

stations, on the other hand, a (more or less) constant

total amount of energy has to be supplied to heat the

building over the observation period, which is only re-

duced by the waste heat of the stations. However, it is

irrelevant when exactly this waste heat is supplied.

Next, we want to take a deeper look at the influence

the energy has on the planning result. For this, we omit

the storage costs in the target system by setting the re-

spective weight to ω3 = 0. This has the effect that the

oven lots can be produced earlier, together with Job 2

that is due earlier, thereby saving a second setup pro-

cess. Switching the sequence of the oven lots does not

make much of a difference energetically. The result,

which we will call xc for further reference, is shown

in Figure 7.

If we compare this result with the planning result

xr obtained with the real energy price profile c1,real(t),
shown in Figure 8, a different picture emerges. Here,

the jobs are scheduled earlier, especially in the periods
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Figure 7: Oven and Freezer allocation xc for Scenario 1

without storage costs and constant energy price.

with low energy prices, while the periods of high en-

ergy prices are avoided. Especially the oven lots ex-

ploit these valleys, even though the oven continues to

run during these gaps.
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Figure 8: Results xr for Scenario 1 without storage costs and

real energy price (red line).

If we take xc (Figure 7), which only considers a con-

stant energy price, and evaluate it with the realistic vari-

able price profile c1,real(t) (as it would be done in re-

ality), we see that the goal would be about 5% worse

compared to xr, which considers the real energy price

in the optimization, see Table 3.

var. Price const. Price Difference
xr xc

f (x) 27.45 28.82 5%

Table 3: Comparison of Scenario 1 between xr and xc,
showing the cost value evaluated using the real
energy price profile c1,real(t).

The progression of the cost function, depicted

in Figure 9, shows that, compared to the results without

storage costs, it takes more iterations to reach a near-

optimal value, and the overall values are slightly higher.

This will become even more apparent later in Figure 10.
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Figure 9: Cost function, i.e. energy costs, for Scenario 1

without storage costs and real energy price.

The effect of job scheduling depending on the en-

ergy price can be examined more closely by looking

at a single job as defined in Scenario 2 in Table 2. By

sweeping a single job across the planning horizon (start-

ing time x1 = 2 h. . .37 h), we can determine how the

target function changes depending on the starting time.

The result is presented in Figure 10. Both with constant

energy price and real price profile, the target function

has clearly pronounced hills and valleys that correlate

approximately with the ambient temperature. However,

the optimum values do not align, namely x1 = 27 h com-

pared to x1 = 22 h with constant energy price.

What is also noticeable is that the target value is on

average about 9 % higher when using the real energy

profile, compared to the constant value, even though

the mean price over the course of the day is the same,

see Figure 4. These higher energy costs have to do with

the fact that the energy demand is unevenly distributed

throughout the day, not only due to production, but also,

for example, due to intermittent filling of the heat and

cold storage (that are part of the energy system infras-

tructure), which often occurs in times of above-average

energy prices. Even if one could have suspected that

this would balance out over the day, this does not seem

to be the case here [36].

6 Conclusion
The case study results show that including energy con-

siderations and realistic energy pricing into the plan-

ning optimization can potentially reduce overall costs

and provide a better planning result. Although the case

study has been simplified to highlight the essential char-

acteristics, it is easy to imagine applying the described

method to more complex production systems with more
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Figure 10: Target value plotted over the start time sweep,
both for constant energy price and real energy
price profile. The red dots indicate the respective
minima.

diverse material flow and product types, as part of a

practical PPC tool. This makes the optimization prob-

lem even more interesting because of the job comple-

tion times being more difficult to predict due to poten-

tial bottlenecks etc. From the current point of view, the

presented simulation-based approach should also be ap-

plicable for these cases.

Many factors potentially influence the overall en-

ergy demand, which have to be included into the sim-

ulation. The building facilities contribute a significant

portion to that, but also setup times of thermal processes

can be optimized in order to not only save energy, but

also improve production tardiness and reduce storage

costs. These factors, however, have to be considered si-

multaneously, as part of a multi-objective optimization,

instead of individually.

One advantage of the VNS metaheuristic is that it

allows to tailor the operators and neighborhood struc-

tures to the individual problem instance, thereby allow-

ing more efficient search and decreasing computation

time. Neighborhoods (i.e. switching, shifting, etc.) are

explored repeatedly and iteratively instead of sequen-

tially, and the trade-off between exploration and ex-

ploitation can be controlled by the user. In contrast to

population-based approaches, like Genetic Algorithms,

VNS as a single-solution-based methods needs fewer

function evaluations (i.e. simulation runs), which is a

topic of importance for simulation-based methods. In

the future, more extensive comparisons to population-

based methods are planned.

Experiments on the case study have also shown that

the Simulated Annealing (SA) acceptance criterion is

important especially for the merging operator, since, al-

though merging two jobs might be beneficial in the end,

there might sill be a short-term increase in the cost func-

tion (e.g. if the products from the second job are being

produced sooner and therefore increase storage costs).

In the future, VNS parameter and neighborhood cali-

bration might still be improved and even be automated

to directly adjust to the problem instance without the

need for user intervention.

The hyPDEVS-based simulation itself, despite its

hybrid nature, delivers sufficient performance to be fea-

sible for simulation-based optimization tasks with with

a large number of iterations. This has also been tested

with larger real-world case studies, see e.g. [37].

Acknowledgement

This work is funded by the Austrian Research Pro-

motion Agency (FFG) as part of the project AS-

PeCT (Adaptive Smoothed Production, project number:

858655) within the research program "Production of the

Future". The authors would like to thank all project

partners for their contributions.

References

[1] Chan Y, Kantamaneni R, Allington M. Study on Energy

Efficiency and Energy Saving Potential in Industry and

on Possible Policy Mechanisms. Tech. rep., ICF Cons.

Ltd. 2015.

[2] Heinzl B, Kastner W. A General Variable Neighborhood

Search for Simulation-Based Energy-Aware Flow Shop

Scheduling. In: Proceedings of the 2020 Summer
Simulation Conference. Virtual Event: SCS. 2020; .

[3] Brailsford SC, Eldabi T, Kunc M, Mustafee N, Osorio

AF. Hybrid Simulation Modelling in Operational

Research: A State-of-the-Art Review. European
Journal of Operational Research. 2019;

278(3):721–737.

[4] Heinzl B, Kastner W. Platform-Independent Modeling

for Simulation-Based Energy Optimization in Industrial

Production. International Journal of Simulation:
Systems, Science and Technology. 2019;

20(6):10.1–10.10.

[5] Hwang CL, Masud ASM. Multiple Objective Decision
Making — Methods and Applications: A
State-of-the-Art Survey. Springer Science & Business

Media. 2012.

[6] Ehrgott M, Gandibleux X. Multiobjective

Combinatorial Optimization — Theory, Methodology,

SNE 30(3) – 9/2020



115

Heinzl and Kastner Metaheuristic Simulation-based Production Planning for Energy Efficiency

and Applications. In: Multiple Criteria Optimization:
State of the Art Annotated Bibliographic Surveys, edited

by Ehrgott M, Gandibleux X, International Series in

Operations Research & Management Science, pp.

369–444. Boston, MA: Springer US. 2002;.

[7] Boussaïd I, Lepagnot J, Siarry P. A Survey on

Optimization Metaheuristics. Information Sciences.

2013;237:82–117.

[8] Xiujuan L, Zhongke S. Overview of Multi-Objective

Optimization Methods. Journal of Systems Engineering
and Electronics. 2004;15(2):142–146.

[9] Freitas AA. A Critical Review of Multi-Objective

Optimization in Data Mining: A Position Paper. ACM
SIGKDD Explorations Newsletter. 2004;6(2):77–86.

[10] Wari E, Zhu W. A Survey on Metaheuristics for

Optimization in Food Manufacturing Industry. Applied
Soft Computing. 2016;46:328–343.

[11] Karimi-Nasab M, Aryanezhad M. A Multi-Objective

Production Smoothing Model with Compressible

Operating Times. Applied Mathematical Modelling.

2011;35(7):3596–3610.

[12] Güller M, Uygun Y, Noche B. Simulation-Based

Optimization for a Capacitated Multi-Echelon

Production-Inventory System. Journal of Simulation.

2015;9(4):325–336.

[13] Silva CA, Runkler TA, Sousa JM, da Costa JMS.

Optimization of Logistic Processes in Supply-Chains

Using Meta-Heuristics. In: Progress in Artificial
Intelligence, edited by Goos G, Hartmanis J, van

Leeuwen J, Pires FM, Abreu S, vol. 2902 of Lecture
Notes in Computer Science (LNCS, Volume 2902), pp.

9–23. Berlin, Heidelberg: Springer Berlin Heidelberg.

2003;.

[14] Sihn W, Sobottka T, Heinzl B, Kamhuber F.

Interdisciplinary Multi-Criteria Optimization Using

Hybrid Simulation to Pursue Energy Efficiency through

Production Planning. CIRP Annals – Manufacturing
Technology. 2018;67(1):447–450.

[15] Sobottka T, Kamhuber F, Sihn W. Increasing Energy

Efficiency in Production Environments through an

Optimized, Hybrid Simulation-Based Planning of

Production and Its Periphery. In: Proceedings of the
24th CIRP Conference on Life Cycle Engineering.

Kamakura, Japan. 2017; pp. 440–445.

[16] Roshanaei V, Naderi B, Jolai F, Khalili M. A Variable

Neighborhood Search for Job Shop Scheduling with

Set-up Times to Minimize Makespan. Future
Generation Computer Systems. 2009;25(6):654–661.

[17] Yazdani M, Amiri M, Zandieh M. Flexible Job-Shop

Scheduling with Parallel Variable Neighborhood Search

Algorithm. Expert Systems with Applications. 2010;

37(1):678–687.

[18] Adibi MA, Zandieh M, Amiri M. Multi-Objective

Scheduling of Dynamic Job Shop Using Variable

Neighborhood Search. Expert Systems with
Applications. 2010;37(1):282–287.

[19] Gansterer M, Almeder C, Hartl RF. Simulation-Based

Optimization Methods for Setting Production Planning

Parameters. International Journal of Production
Economics. 2014;151.

[20] Rager M. Energieorientierte Produktionsplanung:
Analyse, Konzeption und Umsetzung. Springer-Verlag.

2008.

[21] Thiede S, Schönemann M, Kurle D, Herrmann C.

Multi-Level Simulation in Manufacturing Companies:

The Water-Energy Nexus Case. Journal of Cleaner
Production. 2016;139:1118–1127.

[22] Kilger C, Meyr H, Stadtler H. Supply Chain
Management and Advanced Planning: Concepts,
Models, Software, and Case Studies. Springer. 2015.

[23] Swisher J, Hyden P, Jacobson S, Schruben L. A Survey

of Simulation Optimization Techniques and Procedures.

In: Proceedings of the 2000 Winter Simulation
Conference, vol. 1. Orlando, FL, USA: IEEE. 2000; pp.

119–128.

[24] Siarry P. Metaheuristics. Springer. 2016.

[25] Hansen P, Mladenović N. Variable Neighborhood
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