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Abstract. Logistic Characteristic Curves (LCCs) or Logis-
tic Operating Curves (LOCs) describe relationships be-
tween various Key Performance Indicators (KPIs) of pro-
duction and logistics systems. These relationships can be
qualitatively or quantitatively visualized by charts to illus-
trate the performance of these systems. Discrete Event
Simulation (DES) allows a detailed investigation of the dy-
namic behavior of production and logistics systems un-
der consideration of uncertainties and thus contributes
to their planning reliability. Using simulation models and
the data generated by the experiments, KPIs of the mod-
eled systems are measured. Of course, different pro-
duction and logistics systems also have several target
systems whereby the individual target variables inter-
act with each other and can, therefore, conflict. In this
paper, a methodology is presented that combines DES
and a statistical technique for empirical model building,
namely the response surface model, to predict the be-
havior of production and logistics systems by using LOCs
and thereby decrease the effort for experimentation by
reducing the number of simulation runs.

Introduction
Logistic Characteristic Curves (LCCs) graphically

show the qualitative and quantitative interrelationships

between logistic key performance indicators (KPIs) in

an in-house production and logistics systems.

Often, different logistic KPIs are in a field of con-

flict between logistic performance and logistic costs,

and it is impossible to achieve a system optimum for

all of them at the same time. Generally, the goals given

for a planning task must be positioned within the lo-

gistic KPIs. LCCs, also known as Logistic Operating

Curves (LOCs), provide a tool for supporting this pro-

cess [1, 2]. In difference to performance indicators,

which can also be measured in a running production

process, complete operating curves can only be deter-

mined by mathematical or simulation models, since ex-

periments on the real system are not possible for eco-

nomic reasons.

In the field of production and logistics system plan-

ning, Discrete Event Simulation (DES) is a recognized

problem-solving method [3] and, therefore, also an im-

portant Digital Factory method [4]. DES supports the

detailed examination of production and logistics sys-

tems with discrete unit loads by analyzing the dynamic

and random behavior to uncover possible planning er-

rors and inaccuracies in behavior. Simulation offers the

possibility to examine a system without developing or

disturbing real systems, so that process alternatives can

be checked, system structures can be varied, and dif-

ferent controls and parameter settings of systems can

be tested. The better the data situation of a simula-

tion study is (i.e., the output data of the experiments),

the more precise are the statements about the system

that are to be made based on the designed experiments.

Both the design of suitable experiments and the analy-

sis of the data generated by the simulation models are

challenges in a simulation study.

In this paper, we propose to derive LCCs for a sim-

ulation model of a manufacturing logistics system by

statistical metamodels.
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Thereby LCCs are able to be inferred for complex

systems. It is also possible to show the effect of sev-

eral system parameter configurations at the same time.

The general idea behind dealing with expensive func-

tion evaluations or simulation experiments by using

surrogate- or metamodels is discussed in Section 1,

which also deals with the concept of LCCs and DES.

In Section 2, we introduce the general approach to de-

rive LCCs from a limited number of well-selected sim-

ulation runs by building metamodels for selected logis-

tic KPIs. The approach is exemplified in Section 3 by

an application to a manufacturing logistics system with

two workstations, as described in the DOSIMIS-3 tuto-

rial [5]. We conclude with a summary and outlook in

Section 4.

1 Background
1.1 Logistic characteristic curves

Using LCCs, the interrelationships between logistic

KPIs in in-house production and logistics systems are

shown in the form of graphs. The core processes of

these systems comprise procurement, production, and

distribution [1, 2]. The LOC theory [6] is built on

a deductive-experiment effects model. This model is

used as a starting point for the development of approx-

imation equations for the mathematical description of

a real logistics system using LOCs. These curves re-

duce the complexity and, therefore, the costs of model-

ing the behavior of logistics systems [8]. With the help

of LOCs, it is possible to describe KPIs of systems. The

principle of mapping the relationships between the ef-

fects of the KPIs of production and logistics systems

using the LOC theory can be transferred to the produc-

tion areas for each networked system. LOCs can be

used to control and improve the reliability of logistical

system performance [1]. LOCs realize effectivity sup-

port in the planning and control of operations by giv-

ing qualitative and quantitative descriptions of, for ex-

ample, the KPI Work-In-Process (WIP) and its effects

on the output rate and the throughput time. The ob-

jectives can be weighted, and then the parameters can

be adjusted. An enterprise can adapt its internal re-

quirements in conformity with the market. LOCs make

it possible to understand and mathematically describe

the interrelationships between the logistic goals such as

output rate, lead-time, and WIP [8]. They are an ex-

cellent basis for supporting and monitoring the process

safety and capability and can be used to evaluate the

process during production control. For instance, under

the existing structural condition, they can demonstrate

that throughput times and WIP value can be reached at

one workstation without having to calculate the material

flow disruptions or the associated power losses. For a

successful implementation of LOCs in production plan-

ning and control, goal-oriented system parameters are

derived and adapted [7, 8]. The LOC theory is closely

related to the simulation of production and logistics sys-

tems. The evaluation of the system performance is a

central issue in production planning and control, as well

as in simulation and optimization of production and lo-

gistics processes. Often, specific parameters are used,

which only allow an evaluation in the selected operating

point. Unlike the performance parameters, which can

also be measured in a running production process, com-

plete operating curves can only be determined through

simulation models, since experiments in the real sys-

tem are not possible for economic reasons. Real logis-

tics systems can be compared with each other using the

standardized characteristic curves. In most cases, how-

ever, the reference values for this standardization can

only be determined using simulation methods [9].

1.2 Discrete event simulation

The use of the DES in production and logistics is pre-

sented in detail in the series of standards VDI 3633

[10], as well as in [11], [12], and others. DES dif-

fers from continuous simulation methods by mapping

the progress of time via atomic events that trigger state

changes. Each event has a timestamp and is added to an

event queue, the simulation time is set according to the

timestamp (from the first event in the queue), and then

the event is processed [3]. The scope of DES applica-

tions ranges from the consideration of in-house manu-

facturing logistics to procurement and distribution lo-

gistics. The evaluation criteria in a simulation study are

determined according to the objectives and the object of

investigation. Among other things, buffer dimensions

and performance data of the machines are evaluated

and processing times, transport speeds, or batch sizes

are varied in order to determine throughput times and

capacity utilization or to reduce transport, or storage

times. A simulation-supported examination can prove,

for example, whether the planned production quantity

can be handled, transported, and produced based on the

production concept developed. Within the framework

of a simulation study, a model is built using a suitable

software tool.
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The simulation models are used in the operating

phase, as well as in the planning phase of production

and logistics systems. By means of a systematic varia-

tion of individual parameters of a simulation model and

corresponding experiments, planning concepts can be

analyzed according to the defined objectives of a sim-

ulation study. To be able to make more precise state-

ments about the systems under investigation, it is nec-

essary to examine a large volume of simulation data.

When investigating complex production and logistics

systems with comprehensive questions, not only valid

models have to be built, but also many complex experi-

ments with a lot of simulation runs must be carried out.

The design and implementation of experiments are usu-

ally very complicated. However, the generated exper-

imental output data is not the only result of a simula-

tion study. A visualization of the input and output data

of the simulation model supports the preparation of the

simulation results. The interpretation of the experimen-

tal data can be reasonably supported by the methods of

statistics and data visualization.

1.3 Metamodel-based analysis – response
surface models

The word “metamodel” points to the fact that this tech-

nique is used to generate a model of a model. A meta-

model, or surrogate model, approximates the relation-

ship between the varied input parameters, also called

input variables, of a simulation model and so-called re-

sponse or target variables using a limited number of

well-chosen points generated with the simulation model

[13]. These points, i.e., settings of the input vari-

ables, are determined by a statistical experimental de-

sign, which depends on the kind of metamodel and the

problem to be solved. Metamodels can be either inter-

polating or smoothing. The so-called Kriging model is

a popular interpolating surrogate model and is most of-

ten used for solving expensive black-box optimization

problems [13]. It has the ability to not only give point

predictions on the target variable, but also to provide the

predictive distribution and thereby an uncertainty eval-

uation over the complete space of input variables. Re-

sponse surface models, on the other hand, are a class of

smoothing models [14]. They can be used for solving

optimization problems as well but are especially suit-

able for the approximation of the unknown relationship

between input variables and response variables – the so-

called response surface – with minimal quadratic loss.

Given a set of independent input variables x1, . . . ,xp,

the model has the form Y = f (x1, . . . ,xp) + ε , where

Y denotes the response considered, i.e., in our con-

text one of the logistic KPIs, f is typically a low-order

polynomial and ε a Gaussian error term. Predictions

of the expected response achieved by least-square es-

timates of the unknown parameters of the function f ,

provide LCCs. The accuracy of a fitted response sur-

face model may be evaluated by some additional sim-

ulation runs and observing the differences between the

outcomes and the predictions given by the model. The

finally achieved LCCs not only capture the behavior of

the logistic KPIs over the whole domain of different in-

put variables but, moreover, the uncertainty inherent to

LCCs can be presented by prediction intervals.

Set domains of input
parameters

Select a statistical
experimental design

Execute simulation experiment

Prepare result data

Build statistical metamodels
for KPIs

Generate LCCs

Assess and interpret LCCs

Use LCCs in production
planning and control

A
d

ju
st

 if
 n

ec
es

sa
ry

Valid simulation model

Figure 1: Procedure model for the metamodel-based

generation of LCCs
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2 LCCs frommetamodeling of a
simulation model

We now use the metamodel-based analysis of a simu-

lation model to derive LCCs. Our approach is summa-

rized in Figure 1. As a starting point, we assume the

existence of a valid simulation model. It must present

a reliable image of the real system to be analyzed and

return the logistic KPIs of interest as output. We take it

that the typical simulation model used in the context of

logistics will have some element of uncertainty, e.g., by

system loads generated by some statistical distribution.

Simulation runs with the same parameter setting but dif-

ferent seeds of the involved random number generator,

i.e., replications, then vary in their output. We, there-

fore, concentrate on response surface models as meta-

models in our application in Section 3.

Before we can build a metamodel, we need to dis-

cuss which input variables are assumed or known to

have an effect on the KPIs and in which range or on

which values they can be varied. If we have a list of

potential input variables to start with, we might have

to conduct a screening analysis first. This can be done

by fitting a first-order main effect regression model to

the result of a limited number of simulation runs. The

primary goal is a rough understanding of the process

and to identify the least influential variables by using as

few simulation runs as possible. If some of the candi-

date variables do not display an apparent effect on the

measured KPIs, they are set to a fixed value. For the

remaining input variables, domains of interest need to

be determined, or more specifically, it has to be decided

which values or intervals of them are later to be dis-

played in the LCCs.

Next, a statistical experimental design is set up,

which gives the settings of the simulation runs to be

done. A more flexible model like a second-order poly-

nomial response surface model with interactions is then

to be built from the results of these runs as the basis

for the LCCs. Typically, for Kriging models, the meth-

ods of choice are so-called Latin Hypercube Designs as

they cover the whole domain and thus are called space-

filling designs. Many different experimental designs ex-

ist for response surface models. The most popular are

two-level factorial and two-level fractional factorial de-

signs for variable screening – i.e., finding out which in-

put variables have an effect on the response and which

are negligible.

For the actual response surface fit, often central

composite designs, D-optimal designs, or even higher-

order factorial designs are the methods of choice [14].

All input variable settings contained in the selected

statistical experimental design are then executed. As a

result, we have a data set containing measured values

for the KPIs for each executed simulation run.

This set of data is subject to an initial analysis to de-

tect possible inconsistencies and get a first impression

of structural features. At this point, it might be neces-

sary to return to the beginning of the procedure model

(see Figure 1), e.g., if unforeseen effects within the sim-

ulation model require an adaption of it.

The next goal is to build a metamodel from the sim-

ulation runs, which approximates the true response sur-

face well. A well-chosen metamodel reflects the influ-

ences of input parameters and their interdependencies

on the KPIs.

LCCs are then created by graphically displaying

prediction curves from the response surface (or Krig-

ing) model. To see the effect of different logistic strate-

gies and uses of resources on the logistic KPIs, the

predictions are displayed against the varied input vari-

ables. Both, response surface models and Kriging mod-

els, provide an uncertainty quantification of the predic-

tion, which can be presented as valuable additional in-

formation on the plot. While assessing and interpreting

the derived LCCs, issues might occur which make a re-

turn to previous steps of the procedure model and an

adjustment of them necessary, for example, by extend-

ing or reducing the range of the input variables. Finally,

the procedure model delivers LCCs to be used in plan-

ning and control of production and logistics systems.

3 Demonstration of the
procedure model

3.1 DOSIMIS-3 simulation model

For the demonstration of the procedure model described

above, the finished basic model of the DOSIMIS-3 tu-

torial (Figure 2) is used. DOSIMIS-3 is a simulation

tool that allows the graphical modeling, visualization,

simulation, and analysis of production and logistics sys-

tems. The simulation model is described in detail in the

DOSIMIS-3 user manual of the SimulationsDienstleis-

tungsZentrum GmbH [5] and is one part of the corre-

sponding DOSIMIS-3 tutorial.
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Figure 2: Simulation model in DOSIMIS-3 (for the basic model see [5]).

Model element Parameter Range

Source system load [54,62]

Shuttle right-of-way strategy {FIFO, Priority to correction route (Prio Corr.)}
Bulk conveyor batch size {1, . . . ,8}

Table 1: Input variables and selected parameter settings.

The analyzed logistics system is an example of a

production process from the electricity industry, which

manufactures consumer goods. The borders of this sys-

tem are the receipt of parts (one source and one queue)

and the exit of goods (one queue and one sink). The

two product parts (A and B) are randomly generated by

the source and conveyed via a shuttle to one of the two

workstations (type A to the upper one and type B to the

lower one) since each workstation can only produce one

product type. In the simulation model, product part type

A is coded with 1 and product part type B with 2.

The quality control of the products is performed in a

separate section, as can be seen in Figure 2. Those prod-

ucts that have some defect must return to one of the two

workstations, depending on the type of product, via a

shuttle based on the disposition of batch lots.

The faulty product parts are marked either with 10

(for type A) or with 20 (for type B). Those that have no

defects leave the model at the sink. At the workstations,

a set-up is necessary between the parts coming from the

source and the faulty parts. As a consequence, there are

high set-up times in the model [5].

The model used in our example is improved by com-

parison to the basic model of the tutorial (the parameter

settings are shown in Figure 2). Therefore, the velocity

(v) of the shuttle, as well as the buffer sizes, are im-

proved, and a bulk conveyer organizes different batch

sizes.

The simulation model is used to check the effects of

different right-of-way strategies of the shuttle (“FIFO”:

First In First Out, or “Prio Corr.”: prioritize correction

route), as well as system loads at the source, and dif-
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ferent batch sizes on the possibility to reach a desired

throughput per hour. In addition, the simulation model

is used to examine the utilization rate of the two work-

stations and to uncover possible bottle-necks in the sys-

tem.

3.2 Response surface model-based LCCs

Based on the described DOSIMIS-3 simulation model,

we apply the procedure model from Section 2 to de-

rive LCCs for the KPIs average throughput and utiliza-
tion rate at the upper workstation. The KPI average

throughput is the average number of parts processed per

hour. The KPI utilization rate is measured as the time

the workstation is in use in percentage, including set-

up times. Each of our simulation runs covers five days

of simulation time with a four hour lead time. As an

advantage of our metamodel-based approach, we can

explore the behavior of these KPIs depending on vari-

ous input variables, here the right-of-way strategy, the

system load, and the batch size.

Figure 3: Settings of system load and batch size used in the

statistical experimental design.

Table 1 contains the possible values these input vari-

ables can be set on in the simulation model. As the

system load may be set on any value in the consid-

ered range from 54 to 62, we get an infinite num-

ber of possible settings. Now, consider reducing the

choice to every integer between 54 and 62, i.e., nine

system loads. Together with the eight possible batch
sizes in {1, . . . ,8} and the two considered right-of-way
strategies, this leads to 144 possible combinations. As

we plan to replicate each considered parameter setting

three times with different random seeds, this would re-

sult in 432 simulation runs.

Figure 4: Scatterplot of average throughput vs. system load.
The black points belong to the right-of-way strategy
“FIFO” while the blue points belong to “Prio Corr.”.

Figure 5: Scatterplot of utilization rates vs. system loads. The
black points belong to right-of-way strategy “FIFO”,
the blue points to “Prio Corr.”.

Instead, using the statistical Design of Experiments

(DoE), we decide on a combination of a Central Com-

posite Design (CCD) with axial points on the box and a

full factorial design for two intermediate levels, which

is to be conducted for each of the two right-of-way
strategies. CCDs are classical design for the fitting of

second-order response surface models [14]. A CCD

consists of a full-factorial design of all combinations of

high and low values (54 and 62 for system load and 1

and 8 for batch size), a center point (system load = 58

and batch size = 4 in our case) and so called axial or star

points. In our chosen design, the axial points are on the

box of the full-factorial design to cover the boundary

area well.
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Figure 6: LCCs of average throughput and utilization rate of the upper workstation in dependence of system load, selected batch

sizes, and both right-of-way strategies.

We extend the CCD by adding a full-factorial design

on two medium levels (system load = 56/60 and batch
size = 2/6) to achieve a more space-filling effect. Figure

3 indicates the 13 combinations of values for the sys-
tem load and the batch size. These parameter settings

are used for both right-of-way strategies, resulting in 26

different parameter settings in our experimental design.

Each of these settings is replicated three times. Using a

new random seed for each run, altogether 78 simulation

runs are done, and the KPIs are observed.

Figure 4 and 5 show the average throughputs, and

the utilization rates of the top workstation, respectively

plotted against the system load. It is evident that most of

the points’ average throughputs are close to the related

system loads. However, there are some deviating val-

ues with less than 50 parts per hour in average. For the

utilization rate, a similar phenomenon can be observed.

The outliers of both KPIs are identical and belong ex-

clusively to the right-of-way strategy “FIFO”. In these

runs, a deadlock occurred. We omit the five runs in our

building of LCCs by response surface models as they

obviously display a very different pattern from the be-

havior of the remaining simulation results.

We build linear regression models for the KPIs by

least-square estimation and separately for each right-
of-way strategy. For the remaining input variables sys-
tem load and batch size, a full second-order model of

main effects, quadratic terms, and the interaction term

is fitted [15]. The adjusted determination of coefficients

(R2) measures the goodness-of-fit of a regression model

with possible values between 0 and 1. For the four fitted

models, R2 takes values between 0.84 and 0.95, indicat-

ing a good fit in each case.

Figure 6 contains LCCs for both average through-
put and utilization rate of the upper workstation. They

consist of the models’ predictions (the lines) together

with the 99% prediction intervals (the ribbons). Note,

that we can generate these predictions for all parame-

ter settings within the domain. We are especially not

restricted to batch sizes 1, 2, 4, 6, and 8 only. Here,

we display LCCs for small batch sizes (1 and 2), for a

medium batch size (5) and for batch sizes at the upper

end of our considered range (7 and 8).
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For example, the solid line depicted in Figure 6 for

the average throughput in case of “Prio Corr.” as right-
of-way strategy is calculated by the estimated prediction

equation

average throughputPrio Corr. =−105.766

+5.345 · system load−4.612 ·batch size

−0.043 · system load2 −0.070 ·batch size2

+0.096 · system load ·batch size.

It is obvious that the LCCs vary between batch sizes
and right-of-way strategies. They show what can be

achieved with the different considered variations of the

simulated production process. For example, in case

that a system load of 54 parts per hour has to be pro-

cessed, the average throughput should also equal 54.

This can be achieved with both right-of-way strategies
using only a batch size of 1. However, for larger system
loads, “FIFO” as a right-of-way strategy is not success-

ful. With higher required average throughputs, “Prio

Corr.” needs to be chosen along with increasing batch
sizes. E.g., a system load of 58 requires at least batch
size 5. With an even higher batch size, the utilization
rate can be reduced. The upper limit of considered sys-
tem loads can only successfully be processed by using

at least batch size 8.

3.3 Validation of the procedure model

To validate our procedure model in the case of the

DOSIMIS-3 simulation model, we conduct further sim-

ulation runs. We extend our data set to contain each

combination of system loads with an integer value be-

tween 54 and 62, batch sizes 1, 2, 4, 6, and 8, as well as

the two right-of-way strategies, replicated three times.

Altogether, we end up with 270 simulation runs.

In Figure 7, we have plotted the data points against

the model’s predictions for the average throughput.
Within the additional simulation runs, seven more dead-

locks for right-of-way strategy “FIFO” occurred, which

we exclude for clarity’s sake.

We can see that only a few points do not lie within

the prediction intervals, e.g., for “FIFO”, a system load
of 61 and batch sizes of 4 or 6. The three replications

for each of these two locations, exhibit a greater vari-

ance than most of the other replications, which cannot

be covered by the model. Altogether, the model shows

a good prediction accuracy.

Figure 8 shows the predictions of the utilization rate
of the upper workstation for the same system loads
along with the 99% prediction intervals. For the right-
of-way strategy “Prio Corr.”, all of the points lie within

the prediction interval. For “FIFO” again, a few points

lie outside the interval. However, the overall behavior

of the model seems more than plausible.

4 Summary and outlook
In this paper, we have presented a new procedure model

to obtain LCCs based on simulation models and statis-

tical metamodeling. Although only a few simulation

runs are required, it is possible to describe the sys-

tem behavior and the resulting KPIs depending on dif-

ferent system configurations. Using statistical models

also allows for quantifying the system-inherent uncer-

tainty. With a first example of application, the basic

feasibility and usefulness of the procedure model are

shown. Based on these results, other research is planned

to prove the applicability and the general validity of

the procedure model, also for more complex systems

and further KPIs. Extensions of the approach and new

methodological developments also appear to be useful

with regard to statistical modeling. For example, the

prediction intervals capturing the uncertainty are sym-

metrical in the presented simulation model, although,

the average throughput, in particular, cannot, in gen-

eral, be higher than the system load. Also, the occurring

deadlocks are not pursued further in our investigations.

It is conceivable to define the probability of the occur-

rence of deadlocks as a KPI through suitable metamod-

els and to represent it in LCCs.
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