
51

S N E T E C H N I C A L N O T E

Timed Discrete-Event Simulation
of Aviation Scenarios

Hai Nguyen Van*, Frédéric Boulanger**, Burkhart Wolff**

Université Paris-Saclay, CNRS, LRI, 91405 Orsay, France; *ORCID 0000-0002-0585-1651 ; **firstname.lastname@lri.fr

SNE 30(2), 2020, 51-60, DOI: 10.11128/sne.30.tn.10512

Received: February 2, 2020; Revised April 25, 2020;

Accepted: May 2, 2020

SNE - Simulation Notes Europe, ARGESIM Publisher Vienna,

ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Abstract. Ensuring systems behave as they are expected is

unavoidable in the context of critical environments. In the avi-

ation industry, certification standards provide rules and pro-

tocols to ensure correct maneuvers with respect to logical or

timed events. These are targeted to computer-intensive sys-

tems as well as to human flight crews. In this setting, we are

interested in the modeling and simulation of event-driven and

time-driven behaviors at a high level. This study focuses on the

TESL language [1] that provides a logical framework for timed

behaviors with monitoring and testing features. In particular,

we model various aviation scenarios and focus our study on

fault monitoring.

Introduction

In past years, an increase in modeling and simulation

in industry has emerged to assist engineers and design-

ers of various process levels. In a broader way, this has

been ensured by the emergence of Model-Based Design

that allows the differentiation of stages and components

composing large systems. These large systems consist

of modeled components of various nature and form a

multi-paradigm environment where each part is mod-

eled with its own semantics of execution: this is com-

monly called heterogeneous modeling [2]. For instance

in control systems, mode switches can be modeled with

finite-state machines, and sensor data processors with

dataflow models. Recent advances have proved that

these submodels could be unified to form a supermodel.
Figure 1 highlights this idea where each submodel is

described by a different paradigm, then they are coordi-

nated as a supermodel.

Complementary to modeling, the increased demand

of automatic validation relates to the critically-large

models where sole human analysis no longer suffices.

The addition of mathematics and logics to the under-

standing of modeling and computing problems at a

larger scale is named formal methods. The problem is

two-fold. On one side, heterogeneous modeling raises

the question of the adaptability of paradigms. Indeed,

each modeling paradigm comes with a specific model

of computation detailing a precise semantics of execu-

tion for each submodel. On the other side, validation

demands a unified environment for safety property ver-

ification or test generation for these various paradigms.

In the last decades, several multi-paradigm frameworks

have appeared and attempt to address these issues, e.g.,
Ptolemy II [3, 4], ModHel’X [5], BCool [6].

Supermodel

Submodel 1 Submodel 2

Submodel 3

∂x

∂t
= V cos γ

∂h

∂t
= V sin γ

Figure 1: A supermodel for heterogeneous submodels

Our study focuses on TESL [1] which has been in-

troduced as the inner language of the ModHel’X frame-

work. Similarly to intermediate programming lan-

guages in compiler theory, models in ModHel’X are

coordinated using TESL. Indeed, it is a specification

language that describes discrete-events with time anno-

SNE 30(2) – 6/2020

52

Nguyen Van et al. Timed Discrete-Event Simulation of Aviation Scenarios

tations (tags). This flavor of chronometric time is nec-

essary to compose modeled systems where events are

described with respect to chronometric time durations,

instead of logical time as would be found in temporal

logics [7].

In this paper, we highlight the application of this

language to aeronautical systems. We are interested in

modeling standard scenarios used by common aircrafts,

and validated by airworthiness authorities (ICAO An-

nex 8 [8], EASA AIR OPS [9]). Our goal is to exhibit

a unified modeling framework suited for validation and

verification by means of:

• multi-level model specification;

• generation of execution traces for simulation pur-

poses;

• real-time testing and system monitoring.

In the heterogeneous context, our framework allows

to abstract from programming details in order to rea-

son on high-level behaviors. We believe this is partic-

ularly useful for aviation-related systems. Indeed, soft-

ware in current airborne systems are usually certified

for the highest Design Assurance Level as defined by

RTCA/DO-178C [10, 11]. This certification is known

to provide guidance for software life-cycle processes,

and emphasizes on verifying the relation between high-

level requirements and low-level implementation. The

testing topic of this certification is especially focused

on requirements. Our work precisely targets this prob-

lem by providing a specification-based testing/monitor-

ing framework. For these reasons, we believe our study

addresses several current Flight Control Systems (FCS):

Multi-pilot aircrafts. The Airbus A320 aircraft fam-

ily is a well-known system made of fault-tolerant com-

ponents based on redundancy and dissimilarity. Tra-

verse [12, 13] reported that the aircraft primary con-

trol surface computers were designed by different de-

sign analysts on independent architectures. This case

of heterogeneity clearly exhibits how a multi-paradigm

environment needs to be unified in order to be validated

at a higher-level.

Unmanned aircrafts. Furthermore, recent advances

in unmanned aircrafts [14, 15] make the topic of verifi-

cation and validation even more crucial due to the need

of safe, reliable and fully automated software-intensive

systems [16, 17] where, accordingly, design and test

procedures tend to be fully automated.

1 The TESL Language

The core language of our study is the TESL language.

It is inspired from the CCSL language [18, 19] and

the Tagged Signal Model [20]. It lies at the heart of

the ModHel’X modeling and simulation framework and

serves as an intermediate representation for simulation

solvers. In our setting, events are described and speci-

fied by clocks. A clock that ticks means that the asso-

ciated event is occurring. Theses entities are ruled by

three kinds of modality:

• Event-driven implications. An occurring event can

trigger another one: “If clock K1 ticks, then clock

K2 will tick under conditions”.

• Time-driven implications. An occurring event trig-

gers another one after a chronometric time delay

measured on the time scale of a specific clock. Re-

mark that this delay is a duration expressed as a

difference between two tags, and not as a number

of ticks.

• Tag relations. By default, clocks live in indepen-

dent time islands. The purpose of tag relations is

to link these different time scales, e.g., time ex-

pressed in seconds and minutes admits an arith-

metic relation stating that time flows 60 times as

fast in seconds than in minutes. This does not

mean that the seconds clock ticks 60 times more

than the minutes clock, but simply that their tag

annotation satisfies this arithmetic relation.

To provide a glimpse of the core features of TESL,

we present a brief grammar of the language:

• tag relation �K1, K2� ∈ R
The time frames of clocks K1 and K2 are related by

the arithmetic relation R.

• Kevt sporadic τ on Kmeas

Some event will occur on clock Kevt at timestamp

τ measured on clock Kmeas.

• Kmaster implies Kslave

At every instant, if Kmaster ticks, then Kslave instan-

taneously ticks.

• Kmaster sustained from Kbegin to Kend implies Kslave

In the interval between a tick on clock Kbegin and

a tick on clock Kend, Kmaster implies Kslave as

previously (scoped implication).

SNE 30(2) – 6/2020

53

Nguyen Van et al. Timed Discrete-Event Simulation of Aviation Scenarios

• Kmaster time delayed by τ on Kmeas implies Kslave

Whenever the master clock Kmaster ticks, the time

tag on the measuring clock Kmeas is measured and

delayed by duration τ to yield the date of a future

instant at which clock Kslave will tick.

• K1 strictly precedes K2

Any event occurring on K2 is preceded in the strict

past by a distinct event occurring on K1.

2 The Takeoff Scenario

Figure 2: Airspeed indicator and altimeter (courtesy of Laminar

Research)

To illustrate how time scales can be constructed in

TESL, we are interested in modeling the takeoff pro-

cedure of a small single engine aircraft with basic pa-

rameters: time, airspeed and altitude. We assume usual

atmospheric conditions and specifically chose to model

performance parameters extracted from the Cessna 172

aircraft [21, 22]. The rotation speed VR specifies when

the pilot should move the pitch control backwards to

generate lift.

Speed Description

VR = 55 kt Rotation speed

Table 1: Extract of V-speeds of the Cessna 172

In the next subsections, we first introduce an execu-

tion trace to provide intuitions for our case study. Then,

we will exhibit the TESL specification for this scenario.

2.1 Clocks and execution traces

To define the basic quantities and events in which we

are interested, we define clocks that describe the time-

line of events. These are embedded with time tag an-

notations that rule how quantities and units are related.

Each clock denotes a quantity with a specific unit:

// Declaring quantities and units

rational-clock time-S // in [s]

rational-clock time-MIN // in [min]

rational-clock speed-MPS // in [m.s−1]

rational-clock speed-KT // in [kt]

rational-clock altitude-FT // in [ft]

Moreover, the specification is augmented with three

clocks for the events of our interest:

• VR-reach: speed reaches VR;

• liftoff: the aircraft is airborne;

• flaps-retract: flaps are retracted.

The TESL language is a specification language that

allows to describe traces. Figure 3 depicts a minimal

execution trace with three instants. At the first instant,

time is just 0 s. Then at the second instant, speed has

reached VR = 55 kt at 12.2 s. Hence, clock VR-reach
is triggered, and so is liftoff consequently: they are

said to be ticking synchronously. Then at the third in-

stant, flaps-retract ticks at the altitude of 400 ft

at 27.2 s.

time-S

time-MIN

speed-MPS

speed-KT

altitude-FT

VR-reach

liftoff

flaps-retract

0.

55.

12.2

0.203

28.29

0. 400.

27.2

0.453

� � �

0 VR
400 ft

0.

0.

0.

Figure 3: Execution trace when performing takeoff

Remark. The above trace depicts a minimal run.

It illustrates an observation. Other instants may exist

in between those mentioned, where none of our events

occur. These instants are simply not “observed”.

SNE 30(2) – 6/2020

54

Nguyen Van et al. Timed Discrete-Event Simulation of Aviation Scenarios

2.2 Causality and Timestamp Relations

Units In the next paragraphs, we use TESL to de-

scribe the above potential behavior.

// Unit conversion between [s] and [min]

tag relation time-S = 60.0 * time-MIN

// ... and between [m.s−1] and [kt]

tag relation speed-KT = <3600/1852> * speed-MPS

Clocks time-S and time-MIN respectively ex-

press time given in seconds and minutes. Clocks

speed-MPS and speed-KT respectively denote

speeds in meters per second and knots (as given by the

airspeed indicator). We use tag relations to describe

unit conversions between such quantities. In particu-

lar, tags on clocks time-S and time-MIN shall sat-

isfy the arithmetic relation that one minute is equiva-

lent to sixty seconds. Likewise, one knot is equiva-

lent to 3600
1852 m .sec−1. In our context, the notion of time

lies under tag annotations. Compared to temporal log-

ics where time is purely logical, we precisely capture

chronometric durations.

Acceleration and liftoff Tag relations also allow to

describe how quantities are related and can define the

acceleration profile of the modeled aircraft. Here we

consider the uniform acceleration of a light aircraft

gaining speed at 4.5 kt .sec−1:

tag relation speed-KT = 4.5 * time-S

Remark. The permissive nature of the language

also allows to leave this unspecified. We could have

also required to design a general-purpose specification

independently from the physical profile.

Whenever speed reaches VR at 55 kt, the event

VR-reach is triggered, and instantaneously triggers

liftoff indicating that the aircraft is airborne.

VR-reach sporadic 55.0 on speed-KT

VR-reach implies liftoff

Flaps retraction To quickly reach the desired alti-

tude, the pilot controls the pitch (longitudinal axis) to

maintain the airspeed at fixed value Vy while climbing.

This approximately corresponds to a vertical speed of

1200 ft .min−1. The relation is written:

tag relation altitude-FT =

1200.0 * time-MIN + -244

Finally, the aircraft reaches the altitude for flaps re-

traction at 400 ft.

liftoff time delayed by 400. on altitude-FT

implies flaps-retract

3 The Autobrake System

In this section, we explore more complex specifications

by employing a mix of event and time-triggered events,

and the usage of sequential and asynchronous opera-

tors. We are interested in modeling the takeoff proce-

dure of a transport-category aircraft with takeoff rejec-

tion components such as the Airbus A320 [24, 25]. As

said earlier, decision, rotation and lift off do not neces-

sarily coincide (depending on the aircraft performance

category). As a matter of fact, the manufacturer distin-

guishes and specifies the following speed thresholds as

illustrated in Table 2.

Speed Description

V1 = 118 kt Decision speed

VR = 126 kt Rotation speed

Table 2: Extract of V-speeds of the A320 under given physical

assumptions [26]

As depicted in Figure 4, decision speed V1 defines

the speed limit at which the pilot in command is al-

lowed to reject takeoff (RTO). Then VR is the rotation

speed as previously described, and lift off occurs 3s af-

ter. Should the pilot decide to reject after V1, the air-

craft would brake on a too short remaining runway, and

hence overrun.

3.1 Acceleration and Speed Thresholds

We define speed thresholds as previously and also add

a precedence constraint. This emphasizes on the fact

that reaching VR must have been preceded by reaching

V1 prior.

V1-reach strictly precedes VR-reach

V1-reach sporadic 118.0 on speed-KT

VR-reach sporadic 126.0 on speed-KT

Again, to define a specification independently from

the aircraft performance, the precedence operator is

SNE 30(2) – 6/2020

55

Nguyen Van et al. Timed Discrete-Event Simulation of Aviation Scenarios

time-S

speed-MPS

speed-KT

V1-reach

VR-reach

SPLR-arm

AUTOBRK-arm

AUTOBRK-active

AUTOBRK-inactive

RTO

BRK-apply

liftoff

0.

72.

37.04

16.

118.

60.70

26.22

126.

64.82

28. 31.

139.5

71.765

1 2 3 4 5

0.

72.

37.04

16. 20.

90.0

46.3

1 2 3

0 V1 VR liftoff

3 s

0 RTO

(a) Go Situation (b) No Go Situation

Figure 4: Execution trace when rejecting takeoff

Figure 5: Autobrake command switch on panel board (extracted

from [23])

enough and the two following lines could have been ig-

nored. Finally, the aircraft is airborne 3s after rotation

speed has been reached.

VR-reach time delayed by 3. on time-S

implies liftoff

3.2 Rejecting Takeoff with Autobrake

One of the aircraft braking systems is named Auto-
brake [24], and opposes to manual pedal braking. Its

usage is preferable as:

• The number of brake pressure is minimized, reduc-

ing brake wear;

• A symmetrical brake pressure is applied ensuring

an equal braking effect on gear wheels, especially

on wet runways.

The system is activated whenever the following con-

ditions are met:

1. Ground spoilers ARMED

2. Auto brake ARMED

3. Speed exceeds 72 kt

4. Accelerate-stop with THRUST on IDLE

SNE 30(2) – 6/2020

56

Nguyen Van et al. Timed Discrete-Event Simulation of Aviation Scenarios

These above conditions are written as:

SPLR-arm strictly precedes AUTOBRK-active

AUTOBRK-arm strictly precedes AUTOBRK-active

AUTOBRK-active sporadic 72.0 on speed-KT

Finally in the event of takeoff rejection (RTO), the

system applies brakes if autobrakes were in an active

state.

RTO sustained from AUTOBRK-active

to AUTOBRK-inactive implies BRK-apply

Event Death Killing a clock allows to prevent it from

ticking, i.e. from having further event occurrences. This

mechanism can be used to describe different forms of

race conditions. Likewise, we can specify that reach-

ing V1 will prevent the event of rejecting takeoff. Con-

versely, applying brakes prevents from reaching V1.

V1-reach kills RTO

BRK-apply kills V1-reach

3.3 Simulation

Two situations that satisfy the above specification are

depicted in Figure 4. The first execution trace in Fig-

ure 4a shows the Go situation where the pilot normally

proceeds to aircraft takeoff. In the first instant, the pilot

arms ground spoilers and autobrake. Consequently, au-

tobrake is activated when speed exceeds 72 kt. There is

no takeoff rejection (clock RTO), and the aircraft keeps

on accelerating by reaching V1 and VR speeds until be-

ing airborne (clock liftoff) after a delay of 3s.

On the other side, a No Go situation is illustrated

in Figure 4b where speed has exceeded 72 kt but take-

off rejection has been declared at 20s when the speed

is 90kt, which immediately triggers brakes. This pre-

vents from reaching V1 and consequently VR and air-

craft liftoff.

4 Towards Hybrid Systems:
Accelerate-Stop Distance

Our language also addresses the modeling of hybrid

systems. This is exhibited by the ability to define dif-

ferential equations in tag relations. In our case study,

we can refine our specification to take into account dif-

ferential quantities. In the case of a takeoff rejection, it

is necessary to ensure that the two-stage acceleration-

deceleration ensures that the aircraft does not overrun,

and remains within the limits of the runway. To provide

a good abstraction level to the reader, we chose to de-

liberately simplify the definition of the Accelerate-Stop

Distance and not take into account the recognition and

decision time as specified by airworthiness authorities

([9], CAT.POL.A.205 Take-off).

Acceleration To compute these distances, we need to

express instantaneous distance with respect to current

time and speed. If we denote x as the distance of the

running aircraft, provided time t and speed v, we have

dx = v.d t

In our setting, this is straightforwardly expressed as

tag relation (d distance-M)

= speed-MPS * (d time-S)

where distance-M is the quantity denoting the run

distance during acceleration phase.

Deceleration As done previously, we need to define

how deceleration is expressed and accordingly the run

distance. To proceed so, we will define new clocks

for this deceleration stage: speed-MPS-DECEL,

speed-KT-DECEL and distance-M-DECEL.

Likewise, to keep our model simple enough but still

relevant, we will assume a uniform deceleration of

−3kt .s−1. In TESL, this would be expressible as a

linear tag relation as previously, or equivalently with a

differential equation between speed and time:

tag relation (d speed-KT-DECEL)

= -3.0 * (d time-S)

Finally, distance during deceleration relates to the

following tag relation:

tag relation (d distance-M-DECEL)

= speed-MPS-DECEL * (d time-S)

To run our specification with a concrete example,

let us assume that takeoff rejection has been declared

at 20s. Figure 6 illustrates this process where the air-

craft has approximately reached 520m at 20s. Finally,

the aircraft reaches speed zero at 50s with a final run

distance of approximately 1159m.

Remark. The precision of the differential calcu-

lus lies in the ODE solver in use. In this example, we

SNE 30(2) – 6/2020

57

Nguyen Van et al. Timed Discrete-Event Simulation of Aviation Scenarios

time-S

speed-MPS

speed-KT

distance-M

speed-MPS-DECEL

speed-KT-DECEL

distance-M-DECEL

RTO

0.

0.

0.

0.

2.5

11.25

5.787

14.468

5.

22.5

11.575

43.406

7.5

33.75

17.362

86.812

10.

45.

23.15

144.68

12.5

56.25

28.937

217.03

15.

67.5

34.72

303.84

17.5

78.75

40.512

405.12

20.

90.

46.3

520.87

20.

90.

46.3

90.

46.3

520.87

520.87

22.5

82.5

42.441

626.97

25.

75.

38.583

723.43

71.333

36.697

26.222

768.28

27.5

67.5

34.725

812.66

30.

60.

30.866

889.82

32.5

52.5

27.008

957.34

35.

45.

23.15

1015.2

37.5

37.5

19.291

1063.4

40.

30.

15.433

1102.0

42.5

22.5

11.575

1130.9

45.

15.

7.716

1150.2

47.5

7.5

3.858

1159.9

50.

0.

0.

1159.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 RTOAcceleration Deceleration

Figure 6: Execution trace when performing accelerate-stop

used the simple first-order forward Euler with an inte-

gration step of 2.5s. Our language is agnostic to this

design choice and potentially admits any other relevant

ODE solver. It aims at bridging gaps between different

paradigms generally found for modeling complex sys-

tems.

5 Formal methods

5.1 Testing and Monitoring

In the previous sections, we have observed that the

TESL language specifies execution traces. These

can be constructively generated with a solver named

Heron [27]. It is a multicore-aware solver made of ap-

proximately 4,000 lines of Standard ML [28] code com-

piled with MPL [29]/MLton [30]. It solves TESL spec-

ifications by exhaustively constructing execution traces

as illustrated in the previous paragraphs. In particu-

lar, this allows to exhaustively test and monitor sys-

tems to the extent of the system observation interfaces.

Our solver fetches observations provided by an external

driver and filters out irrelevant execution trace branches.

By keeping the only satisfying runs of the specification

combined with those compliant with the observation of

the system, the solver keeps exploring exhaustive possi-

bilities. Whenever the solver faces an unwanted behav-

ior, it will finally filter out all branches and remain in

an inconsistent state, meaning that the system has pro-

duced a violating behavior.

For this purpose, it is possible to suggest a scenario

to the solver and request a simulation trace (if it ex-

ists). From the specification of the Autobrake in Sec-

tion 3 and its corresponding satisfying execution traces

in Figure 4, we can specify an additional directive to the

solver and request a run where the clock RTO is the only

one allowed to tick at instant 3. This is written

@scenario strict 3 RTO

The Heron solver will find no possibly satisfying

run as it is not possible for RTO to tick alone without

BRK-apply to tick as well. After successfully gen-

erating 2 instants, it will eventually fail and output the

following:

Solve [1]
-> Consistent premodels: 1
-> Step solving time measured: 0.005 s

Solve [2]
-> Consistent premodels: 1
-> Step solving time measured: 0.016 s

Solve [3]
-> Consistent premodels: 0
-> Step solving time measured: 0.003 s

ERROR: No further state found.

The solver, its source code and all men-

tioned examples in this paper are provided at

github.com/heron-solver/heron.

5.2 Formalized Semantics

In an effort to fully validate our language and its log-

ical foundations, a fragment of the TESL language,

which consists of core formulae, has been proved to

enjoy good and formal properties ensuring its well-

foundedness. It has been formalized with two kinds of

logical semantics providing an accurate meaning of lan-

guage terms and how they are supposed to behave:

• a denotational semantics [31] mathematically de-

scribes the set of execution traces denoted by the

language;

• an operational semantics [27] describes how the

languages behaves/executes to generate traces.

SNE 30(2) – 6/2020

58

Nguyen Van et al. Timed Discrete-Event Simulation of Aviation Scenarios

These two semantics have been proved to be equiv-

alent in the Isabelle/HOL proof assistant [32, 33]. This

ensures that the language qualifies for two key proper-

ties:

compositionality The semantic composition of two

models yields the semantics of the supermodel. This

is notably emphasized by the property of stuttering-
invariance which shows that the addition of observation

instants does not “break” a run and preserves specifica-

tion satisfiability.

executability The specification is constructive and

allows the derivation of execution traces. This allows

for trace generation for testing and simulation purposes.

Figure 7: Executing the operational semantics in the Isabelle/HOL

proof assistant

6 Related Work

The aim of our study and its purpose to the avia-

tion community is similar to the goal of the real-time

on-board Fault Detection and Diagnosis introduced by

Goupil et al. [34] but differs in the scope of their study.

Their study focuses on numerical aspects of signals and

emphasizes on the link between academic and industrial

R&D. Our research work aims at bringing new knowl-

edge regarding timed aspects of discrete-event models.

Chhaya et al. [35] introduced the Aviation Sce-

nario Definition Language (ASDL) which provides a

Domain-Specific Language for scenarios of the same

kind of our study. They provide an extensive frame-

work to design aviation-related procedures. On the

mathematical side, specifications consider only logical

time and are translated into finite-state machines which

employ traditional model-checking for verification pur-

poses. Compared to our approach, our language aims at

remaining a general-purpose and multi-level coordina-

tion framework, combined with the ability of specifying

constraints containing chronometric time and physical

quantities.

On a system-oriented level, Lustre/SCADE [36] is

a well-known asset for the development of critical em-

bedded systems. It has been qualified for DO-178B and

is used for specifying flight control systems onboard the

Airbus A340-600 and A380 [37]. Lustre/SCADE con-

siders a unique and global driving clock for all specified

components, whereas our framework allows to specify

independent time islands where no global clock may ex-

ist. Moreover, time in SCADE is purely logical and

does not consider chronometric time. In the problem

we attempt to address, it may be necessary to consider

the latter while designing and specifying real-time sys-

tems. Indeed, time delay constraints are crucial for

closed loop controls of FCSs as time lags may exist due

to computing, latency or storage [37].

Dealing with test oracles [38], our framework right-

fully determines correctness on the outputs of a system.

Indeed, the previously mentioned semantics allows to

exhaustively generate execution traces that are correct

with respect to specifications. The test oracle consists

in filtering out generated branches which no longer sat-

isfy the current outputs. The test oracle detects a vi-

olation whenever all possibly-satisfying branches have

been filtered out.

7 Future Work

The permissive nature of the language allows to leave

time relations between different quantities unspecified

by default. Time related clocks can be gathered and

are said to live in time islands. Leaving them unre-

lated means that they live independently. This feature

is particularly interesting for distributed computing as

it is not always possible to determine how time flows in

one computing unit relatively to another. Yet, it has to

be made sure that any computation is completed even-

tually. A similar synchronization mechanism can be

found, for instance, in the Airbus A380 [39].

SNE 30(2) – 6/2020

59

Nguyen Van et al. Timed Discrete-Event Simulation of Aviation Scenarios

8 Conclusion

Our study highlights the TESL specification language

as a unified environment for modeling and validation

along the different stages of (1) designing models,

(2) running their simulation, and (3) monitoring their

runtime-compliance. We have presented a case study of

fundamental operational scenarios found in the aviation

industry, with high-level models addressing large-scale

systems. In particular, our language and its associated

high-level specifications are agnostic to concrete hard-

ware implementations, providing a suitable framework

for testing and monitoring systems similarly to black-

box testing. We believe our framework also addresses

the current trend for distributed computing [40] which

is increasingly finding its way in critical embedded sys-

tems.

References

[1] Boulanger F, Jacquet C, Hardebolle C, Prodan I. TESL:

a Language for Reconciling Heterogeneous Execution

Traces. In: Formal Methods and Models for Codesign
(MEMOCODE), 2014 Twelfth ACM/IEEE International
Conference on. Lausanne, Switzerland. 2014; pp.

114–123.

URL http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?arnumber=6961849

[2] Liu X, Liu J, Eker J, Lee EA. Heterogeneous Modeling
and Design of Control Systems, chap. 7, pp. 105–122.

Wiley-Blackwell. 2005;.

URL https://onlinelibrary.wiley.com/
doi/abs/10.1002/047172288X.ch7

[3] Ptolemaeus C, ed. System Design, Modeling, and
Simulation using Ptolemy II. Ptolemy.org. 2014.

URL http://ptolemy.org/books/Systems

[4] Eker J, Janneck JW, Lee EA, Liu J, Liu X, Ludvig J,

Neuendorffer S, Sachs S, Xiong Y. Taming

heterogeneity - the Ptolemy approach. Proceedings of
the IEEE. 2003;91(1):127–144.

[5] Boulanger F, Hardebolle C, Jacquet C, Marcadet D.

Semantic Adaptation for Models of Computation. In:

2011 Eleventh International Conference on Application
of Concurrency to System Design. 2011; pp. 153–162.

[6] Vara Larsen ME, Deantoni J, Combemale B, Mallet F.

A Behavioral Coordination Operator Language

(BCOoL). In: 18th International Conference on Model
Driven Engineering Languages and Systems (MODELS
2015). 2015; .

[7] Pnueli A. The temporal logic of programs. In: 18th
Annual Symposium on Foundations of Computer
Science (sfcs 1977). 1977; pp. 46–57.

[8] Annex 8 - Airworthiness of Aircraft. International Civil

Aviation Organization. 2018.

URL https://store.icao.int/products/
annex-8-airworthiness-of-aircraft

[9] Easy Access Rules for Air Operations (Regulation (EU)
No 965/2012). European Union Aviation Safety

Agency. 2019.

URL https://www.easa.europa.eu/
document-library/
general-publications/
easy-access-rules-air-operations

[10] Ferrell TK, Ferrell UD. RTCA DO-178C/EUROCAE

ED-12C. In: Digital Avionics Handbook, pp. 16–1.

Taylor & Francis. 2017;.

[11] RTCA DO-178C. Software Considerations in Airborne
Systems and Equipment Certification. RTCA Inc.,

Washington, D.C. 1992. This document is also known

as EUROCAE ED-12C in Europe.

[12] Traverse P. Airbus Electrical Flight Controls: A Family

of Fault-Tolerant Systems. In: Digital Avionics
Handbook, pp. 31–1. Taylor & Francis. 2015;.

[13] Spitzer C, Ferrell U, Ferrell T, eds. Digital Avionics
Handbook. Electrical engineering handbook series.

Boca Raton: CRC Press. 2015.

[14] Weibel RE, Hansman RJ. Safety considerations for

operation of unmanned aerial vehicles in the national

airspace system. Tech. rep. 2006.

[15] Garcia R, Barnes L. Multi-UAV Simulator Utilizing

X-Plane. Journal of Intelligent and Robotic Systems.

2009;57(1):393.

URL https:
//doi.org/10.1007/s10846-009-9372-4

[16] Jung D, Tsiotras P. Modeling and hardware-in-the-loop

simulation for a small unmanned aerial vehicle. In:

AIAA Infotech@ Aerospace 2007 Conference and
Exhibit. 2007; p. 2768.

[17] Livadas C, Lygeros J, Lynch NA. High-level modeling

and analysis of the traffic alert and collision avoidance

system (TCAS). Proceedings of the IEEE. 2000;

88(7):926–948.

[18] Mallet F. Clock constraint specification language:

specifying clock constraints with UML/Marte.

Innovations in Systems and Software Engineering.

2008;4(3):309–314.

[19] André C. Syntax and Semantics of the Clock Constraint

Specification Language (CCSL). Research Report

SNE 30(2) – 6/2020

60

Nguyen Van et al. Timed Discrete-Event Simulation of Aviation Scenarios

RR-6925, INRIA. 2009.

URL

https://hal.inria.fr/inria-00384077

[20] Lee EA, Sangiovanni-Vincentelli AL. The Tagged

Signal Model A Preliminary Version of a Denotational

Framework for Comparing Models of Computation.

Tech. Rep. UCB/ERL M96/33, EECS Department,

University of California, Berkeley. 1996.

URL http://www2.eecs.berkeley.edu/
Pubs/TechRpts/1996/3030.html

[21] Cessna Aircraft Company. Cessna Skyhawk Information
Manual.

[22] Linton JO. The physics of flight: I. Fixed and rotating

wings. Physics Education. 2007;42(4):351.

URL http://stacks.iop.org/0031-9120/
42/i=4/a=003

[23] Airbus. Airbus A320 - Front Panel. 2007.

[24] Airbus. A318/A319/A320/A321 Flight Crew Training
Manual. 2002.

[25] Ladkin PB. Analysis of a technical description of the

Airbus A320 braking system. High Integrity Systems.

1995;1:331–350.

[26] Airbus. A318/A319/A320/A321 Performance Training
Manual. 2006.

[27] Nguyen Van H, Balabonski T, Boulanger F, Keller C,

Valiron B, Wolff B. A Symbolic Operational Semantics

for TESL - With an Application to Heterogeneous

System Testing. In: Formal Modeling and Analysis of
Timed Systems - 15th International Conference,
FORMATS 2017, Berlin, Germany, September 5-7,
2017, Proceedings. 2017; pp. 318–334.

[28] Milner R, Tofte M, Macqueen D. The Definition of
Standard ML. Cambridge, MA, USA: MIT Press. 1997.

[29] Westrick S, Yadav R, Fluet M, Acar UA.

Disentanglement in Nested-Parallel Programs. Proc
ACM Program Lang. 2019;4(POPL).

URL https://doi.org/10.1145/3371115

[30] Weeks S. Whole-program Compilation in MLton. In:

Proceedings of the 2006 Workshop on ML, ML ’06.

New York, NY, USA: ACM. 2006; pp. 1–1.

URL http:
//doi.acm.org/10.1145/1159876.1159877

[31] Nguyen Van H, Boulanger F, Wolff B. A Formal

Development of a Polychronous Polytimed

Coordination Language. Archive of Formal Proofs.

2019;2019.

URL https://www.isa-afp.org/entries/
TESL_Language.html

[32] Nipkow T, Klein G. Concrete Semantics: With
Isabelle/HOL. Springer Publishing Company,

Incorporated. 2014.

[33] Nipkow T, Wenzel M, Paulson LC. Isabelle/HOL: A
Proof Assistant for Higher-order Logic. Berlin,

Heidelberg: Springer-Verlag. 2002.

[34] Goupil P, Dayre R, Brot P. From theory to flight tests:

Airbus Flight Control System TRL5 achievements.

IFAC Proceedings Volumes. 2014;47(3):10562 – 10567.

19th IFAC World Congress.

URL http://www.sciencedirect.com/
science/article/pii/S147466701643291X

[35] Chhaya B, Jafer S, Durak U. Formal Verification of

Simulation Scenarios in Aviation Scenario Definition

Language (ASDL). Aerospace. 2018;5(1).

URL

https://www.mdpi.com/2226-4310/5/1/10

[36] Halbwachs N, Caspi P, Raymond P, Pilaud D. The

synchronous data flow programming language

LUSTRE. Proceedings of the IEEE. 1991;

79(9):1305–1320.

[37] Ameur YA, Boniol F, Wiels V. Toward a wider use of

formal methods for aerospace systems design and

verification. International Journal on Software Tools for
Technology Transfer. 2009;12:1–7.

URL https:
//doi.org/10.1007/s10009-009-0131-4

[38] Durrieu G, Waeselynck H, Wiels V. LETO - A

Lustre-Based Test Oracle for Airbus Critical Systems.

In: Formal Methods for Industrial Critical Systems,

edited by Cofer D, Fantechi A. Berlin, Heidelberg:

Springer Berlin Heidelberg. 2009; pp. 7–22.

[39] Sánchez-Puebla MA, Carretero J. A new approach for

distributed computing in avionics systems. In:

Proceedings of the 1st international symposium on
Information and communication technologies. Trinity

College Dublin. 2003; pp. 579–584.

[40] Hildenbrand Y. ED-247 (VISTAS) Gateway for Hybrid

Test Systems. In: SAE Technical Paper. SAE

International. 2018; .

URL

https://doi.org/10.4271/2018-01-1949

SNE 30(2) – 6/2020

