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Abstract. Let us consider a heat conduction problem
on the unit square, solve it analytically and compare
this series solution with both the results obtained by
MATLAB/PDE-Toolbox (using the FE-method) and a self-
implementation achieved with Mathematica (using the
method of lines). Extending Finite-Difference formulae
to higher precision gives rise to the idea of utilizing the
CTDS-method, best suitable on regular and equidistant
grids, also on other domains. By introducing apt co-
ordinates one is therefore able to do a parametrization,
e.g. of the unit disk, by the square. Conformal trans-
formation from square to disk provides this parametriza-
tion, the original implementation can easily be extended
and we find by again comparing a series solution to our
obtained simulation results, that order of convergence
is being preserved. Moreover, our conformal transfor-
mation provides the fundamental tensor and no further
structural errors are being introduced as the involved el-
liptic functions can be evaluated to arbitrary precision.

Introduction

By application of the CTDS-method ("Continuous

Time Discrete Space") spatial derivatives in a PDE

are replaced by their Finite-Difference approximations

which yields a coupled system of ODEs getting stiffer

with grid refinement. These systems can be treated with

standard algorithms and we show that order of conver-

gence can easily be adjusted to the requirements. Re-

stricted to the unit square and regular grids, conformal

maps then provide access to more general domains.

1 Series Solution on Unit Square
For a given heat conduction problem on unit square Q:

ut = κ �u, u(x,y,0) = 1

with NEUMANN boundary conditions

∇n u(1,y, t) = ∇n u(−1,y, t) = ∇n u(x,1, t) = 0

and a NEWTON-type BC on the south side,

∇n u(x,−1, t)+ γu(x,−1, t) = 0,

a series solution can be obtained [4] by means of eigen-

values and eigenfunctions of the negative Laplacian:

u(x,y, t) =
∞

∑
j=1

2

ξ j

sinξ j

1+ 2γ
4γ2+ξ 2

j

cos
ξ j(y−1)

2
e−

κξ 2
j

4 t ,

where (for γ > 0) the ξ j are solutions to tanξ = 2γ/ξ .

This rapidly converging series (t > 0) is well suited for

a comparison with simulation solutions on an n×n-grid

{(−1+
2(i−1)

n−1
,−1+

2( j−1)

n−1
); i, j = 1, . . .n}.

Figure 1: Analytical solution onQ (t = 4,γ = κ = 1).
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n=101; nx=ny=n; dx=2/(nx-1); dy=2/(ny-1); dx2=dx2; dy2=dy2; tend=5;
Z=Array[z,{nx,ny}]; X=Array[zreal,{nx,ny}]; Y=Array[zimag,{nx,ny}];
For[i=1,i≤nx,i++,For[j=1,j≤ny,j++,Z[[i,j]]=-1+(i-1)dx+I(-1+(j-1)dy);];]
func[t_][i_,j_]:=u[i,j][t]; U=Array[func[t],{nx,ny}]; X=Re[Z]; Y=Im[Z];

u[1,j_][t_]:=u[2,j][t]; u[nx,j_][t_]:=u[nx-1,j][t];
u[i_,1][t_]:=u[i,2][t]/(1+dy); u[i_,ny][t_]:=u[i,ny-1][t];

uxx[i_,j_][t_]:=(u[i+1,j][t]-2u[i,j][t]+u[i-1,j][t])/dx2;
uyy[i_,j_][t_]:=(u[i,j+1][t]-2u[i,j][t]+u[i,j-1][t])/dy2;

eqn=Table[u[i,j]′[t]==uxx[i,j][t]+uyy[i,j][t],{i,2,nx-1},{j,2,ny-1}];
ic=Table[u[i,j][0]==1,{i,2,nx-1},{j,2,ny-1}];eqns=Flatten[Join[eqn,ic]];
vars=Flatten[Table[u[i,j][t],{i,2,(nx-1)},{j,2,(ny-1)}]];

result=NDSolve[eqns,vars,{t,0,tend},InterpolationPrecision→20,
Compiled→True,Method→{"EquationSimplification"→"Residual"}];

U=U/.result; lsg=Flatten[Table[{X[[i,j]],Y[[i,j]],
SetAccuracy[U[[1,i,j]]/. t→4,50]},{i,1,n},{j,1,n}],1];

2 Simulation Solution on Square

On a computational grid like above, functions ui j(t) are

now taking over and are being considered in each grid

point (xi,y j). Replacing the Laplacian and the boundary

conditions with their discrete approximations yields a

consistent system of ODEs to the original problem. The

boxed Mathematica code demonstrates a crude but fully

functional implementation that we shall call FD1. Note

that two-point forward/backward boundary approxima-

tions and a five-star for the Laplacian in the interior

points only produce a first-order convergent algorithm.

Finite difference formulae. Let us therefore first

look out for higher order finite-difference approxima-

tions to the spacial derivatives involved. SCHIESSER[6]

provides some of them and according to FORNBERG[1],

his method is smartly being generalized to our two-

dimensional needs: Suppose we are interested in find-

ing the approximation

∂ μ+ν u(x,y)
∂ μ x∂ ν y

≈
m1−m0

∑
m=−m0

n1−n0

∑
n=−n0

amnu(x+mΔx,y+nΔy)

for a (potentially mixed) partial derivative of orders μ
and ν in x- and y-direction. For generally given grid-

points let now Mathematica develop

ξ m0ηn0 (lnξ )μ (lnη)ν

Δx
μ Δy

ν ≈
m1

∑
m=0

n1

∑
n=0

am−m0,n−n0
ξ mηn

in the Taylor series at (ξ = 1,η = 1) to find the

weights amn for the approximation in a specific grid-

point. Equidistance between the gridpoints is sup-

posed but with m0,m1,n0,n1 we are able to claim how

many neighbour points to the left/right and above/below

should be incorporated which is necessary to specif-

ically handle boundary or boundary-near points, de-

pending on the desired order of convergence (expand to

the proper Taylor polynomial). That is, m0 is the count

of intervals between the utmost left point and the point

of interest whereas m1 counts the intervals between the

utmost points and similar for n0,n1 in y-direction.

For example, if we are interested in a fourth-order

approximation of the x- derivative in a gridpoint lying

on the left side of our unit square, we set μ = 1, ν = 0,

m1 = 4 and m0 = n0 = n1 = 0 to find

lnξ
Δx

≈=
1

12Δx

(−25+48ξ −36ξ 2 +16ξ 3 −3ξ 4
)

which means that at the left boundary we can change

the first-order approximations in our code to

u′ ≈ (−3u5 +16u4 −36u3 +48u2 −25u1)/12Δx.
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The other boundary sides are treated very similar and

with u′ = 0 or u′ = γu1 (take in the latter case care of

the derivative orientation) we solve this for u1 to ob-

tain a fourth-order accurate boundary approximation. It

is clear that to obtain a global fourth order convergent

algorithm, interior points for the Laplacian have to be

treated in an appropriate way. Taking this into consid-

eration, for i = 3, . . .n−2 we make use of

uxx(xi,y j, t)≈ −ui+2 +16ui+1 −30ui +16ui−1 −ui−2

12Δ2
,

whereas in case of i = 2 (cases i = n−1 and uyy analog)

uxx(xi,y j, t)≈ u6 −6u5 +14u4 −4u3 −15u2 +10u1

12Δ2

can be deployed. Replace the blue/bf highlighted code

and you are ready to run a higher order code, FD2.

Results. With the presented series solution, we are

able to validate the implementation of our CTDS-Code

and also compare it against the results obtained by

MATLAB’s PDE-Toolbox. Let û(x,y, t) be the series

solution on Q, then by considering the relative error

(cf. Figure 2, Figure 3) in a grid point (xi,y j),

ei, j(t) :=
û(xi,y j, t)−u(xi,y j, t)

û(xi,y j, t)
,

one has a tool for such a comparison at hand. Another

possible way for checking the results is regarding the

absolute errors Ei, j(t) := |u(xi,y j, t)− û(xi,y j, t)|, see

Figure 4, or their arithmetic average,

E(t) :=
1

n2 ∑
i, j

Ei, j(t).

Using different sized grid spacings on Q (e.g. 51×51,

101× 101 and 201× 201 is a good idea) by halving Δ
also gives a clue about orders of convergence. O(Δ) and

O(Δ4) are as expected for FD1 and FD2 while PdeTbx
shows up quadratically, cf. Table 1.

As a conclusion, major benefits in applying CTDS-

methods are that orders of convergence can easily be

adjusted and higher order difference formulae show

up with formidable error behaviour even on coarse

grids which helps to save computational time. Further-

more, replacing spatial derivatives by discrete differ-

ences gives rise to treatment of more general classes of

PDEs while PdeT bx has its limitations in this regard.

A severe limitation is that our method is bound to or-

thogonal grids (and working best on equidistant grid

sizes). We focus on that by regarding conformal maps.

Figure 2: Rel. errors ei, j(4) onQ for n = 101, method FD1.

Figure 3: Rel. errors ei, j(4) onQ for n = 101, method FD2.

Method Points Avg. Abs. Error Calc. Order

FD1 2.601 0.00627 —

FD1 10.201 0.00312 2.00717

FD1 40.401 0.00156 2.00360

FD2 2.601 4.67382∗10−9 —

FD2 10.201 2.99177∗10−10 15.62228

FD2 40.401 1.82074∗10−11 16.43158

PdeT bx 2.577 3.47640∗10−6 —

PdeT bx 10.145 8.64349∗10−7 4.02199

PdeT bx 40.257 2.15899∗10−7 4.00349

Table 1: Comparing mean arithmetic absolute errors, t = 4.
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FD1 2.601 Pt FD1 10.201 Pt FD1 40.401 Pt

FD2 2.601 Pt FD2 10.201 Pt FD2 40.401 Pt

PdeT bx 2.577 Pt PdeT bx 10.145 Pt PdeT bx 40.257 Pt

Figure 4: Absolute errors Ei, j(4) for different grid sizes onQ.
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3 Conformal Transformations

Conformal maps preserve angles between intersecting

grid lines. Moreover, using cartesian co-ordinates on

Q, local base vectors in a specific grid point are rotated

but stretched by the same factor by such a transforma-

tion, f (z). To construct the map itself, we argument by

means of a point transformation of the complex plane

while mapping the square to a given domain (demon-

strated with the unit disk, E) will later on be interpreted

as a transformation of co-ordinates to simulate a PDE

on this domain. Under this point of view the given do-

main is being parameterized by the unit square.

Regarding our heat equation, the Laplacian is not in-

variant but transforms in a very convenient way, merely

a (from point to point differing) factor 1/| f ′(z)|2 ap-

pears to correct the impact of the new curvilinear but

orthogonal co-ordinates. Keeping this in mind, we com-

pute the map from Q to E, save its derivative values in

each gridpoint and use them in a simulation study on E.

Back in about 1869 H.A. SCHWARZ and E.B.

CHRISTOFFEL independently found that the upper com-

plex plane ℑ(w) > 0 (or E respectively, just consider a

Moebius transformation) can be conformally mapped to

a polygonal arc with vertices zk by elliptic integrals [2]

z = f (w) =C+D
∫ w

0

n

∏
k=1

(ζ −wk)
−βk dζ .

The constants C and D act as translation and rota-

tion/stretching respectively, to map E to Q we can fix

them immediately demanding f (0) = 0 and f (1) = 1.

With πβk denoting the outer tangent turning angle in

vertex zk, we determine βk = 1/2 for all four square

vertices and the vertex preimages wk can in this case be

prescribed by wk+1 = exp[i(π
4 + kπ

2 )], k = 0, . . .3. Note

that for more general polygonal arcs finding the preim-

ages can be a tough task [7]. Putting all togheter,

z = f (w) =−2 4
√−1

Ek; 1
2

E f

[
iarsinh

(
4
√−1 w

)
;−1

]

maps the disk to our unit square where elliptic

functions help us to express the map in closed

form. As f is bi-holomorphic and we are inter-

ested in the inverse transformation from square to

disk, Mathematica handles this by the definition

-(-1)1/4JacobiSN[z*EllipticF[I*ArcSinh[(-1)
1/4],-1],-1].

Obviously not only the conformal map but also its

derivatives can be evaluated to any desired precision.
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Figure 5: Computational grid (n = 101) before (t) and after (c)
transformation with | f ′(x,y)|2 shown at the
bottom. The conformal map from square to disk
can also be interpreted as an introduction of
curvilinear co-ordinates onE which changes the
fundamental tensor from δi j → | f ′(z)|2δi j .
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4 Series Solution on Unit Disk

Let us now consider a heat conduction problem on E:

ut = κ �u, u(ξ ,η ,0) = 1− (
ξ 2 +η2

)

with DIRICHLET boundary condition

u(ξ ,η , t) = 0, |ζ |= 1 ∀ζ = ξ + iη .

Similar to the problem on Q a (symmetric) solution on

E can be derived by means of BESSEL functions [3]

u(r, t) = 4
∞

∑
k=1

e−κtλ 2
0,k J0(rλ0,k) J2(λ0,k)

λ 2
0,k

(
J0(λ0,k)2 +J1(λ0,k)2

)

with zeroes λ0,k of J0(x) and (for t>0) staggering con-

vergence behavior, thus well suited for comparison with

simulation results (Figure 6). If you do not like to cal-

culate by hand, in case of our specific problem you can

even let Mathematica do the job1 for you.

Figure 6: Analytical solution onE (t = 2,κ = 1/10).

5 Simulation Solution on Disk

To get the simulation of the disk problem ready to run,

one merely has to numerically calculate the first deriva-

tives f ′(z) = ξx + iηx of the conformal transformation

on any considered grid to the desired precision, save

them as a list on the grid and merely replace the Lapla-

1 eqn = r D[u[r,t],t,1] == κ D[rD[u[r,t],r],r];
bc = u[1,t] == 0; ic = u[r,0] == 1-r2;
dsol=DSolve[{eqn,bc,ic},u[r,t],{r,t}]

cian on the righthandside of the equation:

�u → �u
ξ 2

x +η2
x
.

Obviously our boxed Mathematica code is very easy to

adapt, we just have to modify the bf/italic expression.

Note that the singularities arising in the vertex points

caused by the map can be neglected since values at these

points are not being used in the simulation run and must

not be provided. This argument is given with respect to

transformed Newton boundary conditions.

As for the pre-given Dirichlet boundary conditions,

it turns out that convergence order of FD1 increases to

be quadratic, by replacing the first section of the blue-

colored code dealing with the boundary conditions by

assignment of fixed zero values our simulation code is

ready to run and comparable to the series solution.

For a valid comparison with PdeT bx results, it is

now necessary to focus on grid sizes with a similar

amount of grid points and for that reason the grids

46×46,91×91 and 181×181 seem to be appropriate.

Table 2 shows that even algorithm FD1 performs

slightly better than PdeT bx with respect to averaged ab-

solute errors. As for FD2, note that forth order conver-

gence is not achieved when switching from 46× 46 →
91×91 grid but only shows up with a factor 5.7 instead

of about 16 - we suspect this is essentially caused by the

fact that in this case of an even number of gridpoints the

origin point is not being used in the calculations. Over-

all absolute errors on disk are shown in Figure 7.

For our specific heat conduction problem on unit

disk it enlightens that application of conformal transfor-

mation had no impact of error or convergence behavior

(numerical values calculated up to 50 digits precision).

Method Points Avg. Abs. Error Calc. Order

FD1 2.116 6.27281∗10−5 —

FD1 8.281 1.61182∗10−5 3.89176

FD1 32.761 4.08124∗10−6 3.94933

FD2 2.116 2.58897∗10−7 —

FD2 8.281 4.55414∗10−8 5.68487

FD2 32.761 2.83388∗10−9 16.07035

PdeT bx 2.129 1.48329∗10−4 —

PdeT bx 8.385 3.76648∗10−5 3.93812

PdeT bx 33.281 9.48946∗10−6 3.96912

Table 2: Error comparison on disk. Quadratic order for FD1,

non-optimal starting grid for FD2.
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FD1 2.116 Pt FD1 8.281 Pt FD1 32.761 Pt

FD2 2.116 Pt FD2 8.281 Pt FD2 32.761 Pt

PdeT bx 2.129 Pt PdeT bx 8.385 Pt PdeT bx 33.281 Pt

Figure 7: Absolute errors Ei, j(2) for different grid sizes onE.
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Summary

The results of this paper show that combining the

method of lines with conformal mappings is principally

apt for numerical and/or symbolical treatment of PDEs.

Moreover, the analytic solutions to problems on unit

square and unit disk presented in this article are con-

venient for checking your own simulation code.

The developed simulation code in Mathematica can

be regarded as a starting point from which one is able

to march out and adapt it to his own needs: In keep-

ing things modular, a diversity of higher-order deriva-

tive approximations can externally be implemented and

loaded according to the desired error requirements (see

the blue/bf coded section in the box).

On the other hand, a very broad range of PDE-

classes are accessible by this approach (for time-

dependent problems the bf/italic coded section is to be

modified). While even tensor-valued state variables can

be considered, the presented method is definitely re-

stricted to two-dimensional geometries. This is caused

by the fact that conformal transformations arise in com-

plex analysis mapping C → C.

So if we are able to construct a highly accurate con-

formal map from square to a more general domain [5]

(aside the unit disk but potentially for convenience with

the unit disk interconnected) and same holds for the nu-

merical values of its derivatives, we would be in a good

position to treat PDEs on such domains as well. This

will be shown in a subsequent contribution.

In addition, another level of abstraction will be in-

troduced by regarding physical laws in invariant PDE-

formulation. The domains under consideration will then

appear as two-dimensional (flat) Riemannian manifolds

where the calculated derivatives of the conformal map

are hence to be interpreted as metric quantities correct-

ing the effect of using curvilinear co-ordinates: Funda-

mental tensor and Christoffel symbols will be used to

realize the PDE in this ’conformal co-ordinates’.

In the presented method the conformal map played a

double game: Grasping it as a point map we constructed

the transformation from square to disk. On the other

hand, to get a glimpse at the metric conditions, the map

acted as transformation of co-ordinates supporting sim-

ulation - the disk has been parameterized by the square.
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