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Abstract.  Real production systems that rely on manual 
productionand transportation processes are especially 
prone to disturbances. Thus, schedules often have to be 
revised on the spot by the operators using simple heuris-
tics. These methods do not generate optimal solutions. 
Other approaches use agent-based control systems 
where the agents enable decentralized rescheduling 
based on local information. The following paper de-
scribes a simulation model of a production system that 
allows a quantitative comparison of the alternative con-
trol and planning logics by using the simulation software 
FlexSim®. 

Introduction 
In today’s competitive environment, manufacturing 
companies are confronted with the need of increasing 
flexibility [1]. This can be attributed to e.g. shortened 
product life cycles, increasing variety, and competitive 
pressure, which requires short and reliable delivery 
times [2]. Therefore, the production system must not 
only be able to produce efficiently, but moreover it 
needs to be resilient to disturbances and adaptable to 
changing demands. In addition, a modularized system 
architecture is advisable to enable system reconfigura-
tions during ongoing production without having to ad-
just the control code. 

Classic optimization or scheduling methods often 
struggle with these requirements [3]. Although these 
techniques can calculate an optimal solution, they re-
quire a considerable amount of time for complex prob-
lems. Furthermore, when using e.g. linear programming, 

it is neglected that significant and frequent changes to 
the production schedule create considerable noise and 
thus problems within the factory. Therefore, in many 
real production systems, classic optimization processes 
are usually not suitable for dynamic rescheduling. In-
stead, there are mostly two approaches to deal with 
rescheduling. One is that the operators make the dynam-
ic control decisions on their own. Often these decisions 
consider only a fraction of the available information, 
e.g., what the operator assumes to be the most important 
job to fulfil next. Some companies employ software 
with simple algorithms which mimic such heuristics, 
e.g. the right shift (i.e. the postponement of all follow-
up orders corresponding to the delayed order). This type 
of control results in production schedules that lag (far) 
behind an optimal solution, which could have been 
attained by using a more sophisticated algorithm. 

In order to meet the stated requirements for flexibil-
ity and quality of the solution, several researchers pro-
pose agent-based control approaches. The agents enable 
decentralized decision-making and rescheduling based 
on local information. Usually, this interaction is much 
faster than classic optimization methods and allows a 
focused adaptation of the plan. However, the results 
achieved with decentral decision-making are usually not 
globally optimal. 

The distribution of control intelligence and the in-
formation linked to it makes production systems more 
robust and represents a major goal in Industry 4.0 [4].  

Despite an abundant amount of available literature 
on the development of multi-agent systems [1], there is 
still a lack of comparison – qualitatively and quantita-
tively – of agent-based control in case of disturbances 
with ‘traditional’ solutions [5]. Benchmark systems are 
one way to cope with this problem [6], but they mostly 
do not consider manual and thus less predictable pro-
cesses.  

SNE 30(1), 2020, 15 - 22,  DOI: 10.11128/sne.30.tn.10504  
Received: June 10, 2019 (Selected  ASIM SST Hamburg 2018   
Postconf. Publ.), Accepted: October 10, 2019 
SNE - Simulation Notes Europe, ARGESIM Publisher Vienna         
ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org 



 Sundermeier  et al.   Simulation of Decentral Rescheduling Algorithms in Production Systems 

 16 SNE 30(1) – 3/2020 

T N 
They also do not provide much help in terms of ana-

lysing the effects of rescheduling instead of just applying 
decentral control algorithms that take local decisions on 
the spot. Recent approaches, however, already give ad-
vice on how to measure qualitative factors such as ro-
bustness of a system that reacts to dynamic scenarios [7]. 

This paper describes a simulation model that enables 
the quantitative and qualitative comparison of different 
rescheduling algorithms – e.g. simulated operator deci-
sion-making, right-shift algorithms and agent-based 
dynamic rescheduling – to analyse the aforementioned 
effects. The context of the simulation model and the 
agentsystem is outlined in Section 1. Section 2 gives a 
brief introduction into the simulation software that was 
used to build the model. The communication scheme 
between the simulation and the decision maker (e.g. an 
MAS (multiagent system)) is explained in Section 3. 
This is followed by a description of the simulation mod-
el itself in Section 4. Section 5 briefly outlines the func-
tionalities of the MAS and examines the interactions 
between simulation and the agents. The paper closes 
with a short validation of the developed simulation 
concepts in Section 6 and concludes in Section 7 with a 
brief summary and outlook. 

1 Application Context 
The simulation model resembles a factory where heavy 
single workpieces have to be moved between subse-
quent production steps. The factory comprises different 
production stages in two hall bays. In at least one pro-
cess step, alternative workstations allow parallel pro-
cessing of workpieces. Manually operated cranes in 
each hall bay connect the workstations. A limited num-
ber of operator teams operates the cranes. It is one goal 
of the simulation to replicate the estimated durations of 
these transport operations, as they have a significant 
impact on the overall productivity of the factory. These 
estimated durations stem from the ERP system of the 
considered factory and look similar to the following 
example in Table 1. 

Start Destination  Time needed [min] 

Workstation 1 Workstation 2 30 
Workstation 2 Workstation 3 45 

…   

Table 1: Excerpt of the ERP system transport data. 

These times include the time that is necessary to 
load and unload the workpieces but do not include the 
time needed to reach the workpiece, i.e. the time to 
move the crane from its previous position to the start 
position of this transport. 

Shuttle cars connect the two hall bays. Two product 
variants are produced that are made of one main body 
and one additional part. These additional parts require 
different work- and transportation processes (e.g. only 
one crane for transportation instead of two for the main 
body). One major problem is the coordination of the 
crane system. Due to various restrictions (e.g. the 
weight distribution on the ceiling construction), this task 
becomes particularly challenging. 

If disturbances occur during production, today’s hu-
man endeavours mainly constitute the right-shift after a 
delayed order and on the spot decisions by e.g. crane 
operators. This has to be replicated within the simula-
tion model. Furthermore, it is necessary that the simula-
tion is able to follow a specified production schedule, 
which is stored in a database.   

In addition, there must be the possibility that an 
agent-based decentralized planning algorithm (or any 
other algorithm) can dynamically adjust or replace the 
production schedule when disturbances occur and thus 
control the simulation. If the simulation is controlled by 
an external planning algorithm it strictly follows the 
production schedule that is provided by the algorithm 
via the database. It does not execute any planning or 
rescheduling functions itself (e.g. right-shift). 

2 FlexSim® Simulation Software  
FlexSim® is an object oriented, discrete-event simula-
tion software distributed by FlexSim Software Products 
Inc. (Orem, Utah, USA). Also declared as application-
oriented simulation package [8], it is especially common 
for the simulation of production and intra-logistic pro-
cesses. FlexSim® offers a GUI with a 2D or 3D view of 
the model and several standard library objects that can 
be included into the model via drag & drop.  

Generally, FlexSim® can process numerical and 
string values which can be stored in global variables or 
tables or locally in labels on an object. For further in-
formation on the capabilities of FlexSim® see [9].  

FlexSim® has been chosen due to two advantages 
compared to other simulation software [10]: on the one 
hand, all library objects can be edited and complex logic 
can be integrated into their event-triggers by using 
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ID Step1 
Target start 
time 1 

Target finish 
time 1 

Processing 
started 1 

Actual finish 
time 1 

Processing 
finished 1 Step 2 … 

1 Value of the label 
“Object_ID” indicates 
on which workstation 
from the table “re-
sources” the order 
should be processed 

Elapsed 
simulation 
time at 
which pro-
cess step 1 
should start 

Elapsed simula-
tion time at 
which the pro-
cessing of pro-
cess step 1 has 
actually started 

=1, if pro-
cessing of 
process 
step 1 has 
started; =0, 
otherwise 

Elapsed 
simulation 
time at 
which pro-
cess step 1 
should end 

=1, if pro-
cessing of 
process 
step 1 has 
ended; =0, 
otherwise 

Value of the label 
“Object_ID” indicates 
on which workstation 
from the table “re-
sources” the order 
should be processed 

… 

… … … … … … … … … 

Table 3: Schematic structure of the table 'productionplan'. 

Object_ID designation WIP/BU On/Off Error_Type Error_Occure_Time 

1 Designation of the 
workstation where 
the label ‘Object_ID’ 
has the value 1 in 
the simulation 

=1 if an order is 
being processed in 
the workstation / 
buffered in a buffer; 
=0, otherwise 

=1 if the workstation 
is functional; =0, if 
there is a disturbance 
and the workstation 
is not available 

=1 if a defect in the 
wokpiece itself has 
been detected; =…, is 
not considered in this 
paper 

Past simulation time at 
which the disturbance 
occurred 

… … … … … … 

Table4: Schematic structure of the table ‘resources’. 

FlexScript, an embedded programming language. Logic 
can also be added by use of C++, but this code needs to 
be compiled before the model can be run. On the other 
hand, FlexSim® provides a standard interface to a 
MySQL database, which can be used for the necessary 
access to the production schedule. The use of a standard 
interface facilitates the data exchange, as no new inter-
face has to be configured. 

3 Connecting to the Simulation 
via MySQL 

To ensure the required data exchange, the communica-
tion scheme depicted in Figure 1 was used. 

Both, the decentralized planning algorithm and the 
simulation model in FlexSim® act as MySQL-clients 

 
Figure 1. Communication scheme between simulation 

and agent-system. 

 via appropriate interfaces to a MySQL-server with the 
MySQL-database. The database itself contains the three 
tables ‘productionplan’, ‘resources’ and ‘monitoring’. 

In the table ‘productionplan’ (see Table 3), all orders 
are listed according to their unique value of the label 
’ID’, which is used inside the simulation model. Starting 
at column two, every seventh column contains the title 
of a production step. The value of the element that is at 
the intersection of a row and such a column indicates 
the assignment of a workstation for an explicit order. 
The columns in between are used for data collection of 
the target start/finish and actual start/finish date of a 
process and whether the processing of an order has 
already been started or completed. 

In the table ‘resources’ (see Table 4), all work-
stations are listed according to their unique value of the 
label 'Object_ID' which is used in the simulation model. 
In addition, the table provides information on the re-
spective operating status of a workstation and contains 
information on when and where a disturbance has oc-
curred.  

For the decentralized planning algorithm only those 
entries are relevant which concern the occurrence of a 
disturbance. For this reason, a third table called "moni-
toring" has been created, consisting of only one ele-
ment. This element serves as a binary indicator of 
whether rescheduling is required or not. Thus, the de-
centralized planning algorithm only has to monitor this 
value and only become active when there is a change.  
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This value also serves as an auxiliary value for the 

algorithm to detect whether it has already responded to 
a disturbance or not. The database that serves as an inter-
face between the simulation and a planning algorithm is 
integrated within the process depicted in Figure 2. 

 
Figure 2: Sequence diagram of disturbance handling  

between simulation and MAS. 

This process shows how the simulation and the decen-
tralized planning algorithm interact in case of disturb-
ances. Section 5.2 explains the details of this interaction. 
Due to the intended application of the decentralized plan-
ning algorithm within a real factory (see section 5.1) there 
should be no more than ten seconds between the occur-
rence of a disturbance and further processing after the 
rescheduling algorithm has been executed. 

For the execution of the rescheduling algorithm, the 
decentralized planning algorithm might need up to nine 
of the ten seconds available. In the remaining second, 
there are four accesses to the database (see numbers one 
to four in Figure 2). First, a disturbance occurs in the 
simulation and the simulation sets corresponding pa-
rameters in the database. Second, the decentralized 
planning algorithm reads these parameters and executes 
the rescheduling algorithm. Third, after the execution is 
completed, the production schedule is updated in the 
database. Finally, the simulation queries the database to 
receive the updated production schedule and runs the 
model accordingly.  

To validate if this concept is feasible it should be de-
termined whether the access time to the database can 
fulfil a real-time criterion of a maximum of 250 ms 
(four accesses in one second). Within that access time, 
the connection to the database must be established and 
all query parameters exchanged. To analyse the access 
times a proof of concept model has been created (see 
Figure 3).  

A source object creates ‘flowitems’ that are buffered 
in a queue object. The transport from the queue object 

to the processor object can be done either by an operator 
or by a transporter. The respective assignment is stored 
in a MySQL database. After processing on the processor 
object, the ‘flowitems’ leave the system via a sink ob-
ject. If either the operator or the transporter fails during 
a simulation run, an agent system is activated which 
adjusts the assignments in the database to transport all 
‘flowitems’ from the remaining resource.  

 
Figure 3: Structure of the proof of concept model. 

In the proof of concept model, parameters from the 
database were queried and / or manipulated by firing 
individual event triggers. To determine the required 
access time for such an operation, the FlexSim® internal 
FlexScript Code Profiler tool was used (see Figure 4). 

 
Figure 4: Excerpt from the FlexScript Code Profiler tool. 

Lines two through four include function calls that both 
query and manipulate parameters from the database. In 
the simulated time, the functions were called four times 
(see second row, third column) or three times (see third 
and fourth row, third column). Overall, the function 
calls in total according to the second column have re-
quired between 29.65 ms and 24.49 ms. This results in 
an average access time of 5.666 ms per function call for 
reading and writing a parameter into the database. The 
fifth row contains a trigger in which only one value is 
entered (not read) into the database. This results in an 
access time of 3.432 ms per function call. In summary, 
access times are short enough to guarantee the real-time 
capability of 250 ms.  

4 Simulation Model  
This section first discusses the conception of the simula-
tion model. For this purpose, the basic requirements and 
the particular restrictions are emphasized. Subsequently, 
the respective implementation will be briefly discussed.  
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4.1 Conception  
A basic requirement for the control of the simulation 
model is that the orders run through the system accord-
ing to the given production schedule. It must be ensured 
that the sequence of the production processes is adhered 
to and the actual start and finish dates are entered into 
the database.   

Beside the basic material flow, particular restrictions 
must be respected during implementation. This includes 
e.g. compliance with follow-up constraints arising from 
production requirements. 

The crane system is a key component of the produc-
tion system, because it is indispensable for the material 
flow. In this context, a transport can be understood as a 
process characterized by a movement to the pick-up 
location and a transport time. These times correspond to 
the set-up and processing time in a production process. 
For this reason, a crane in the simulation model can also 
be represented by the standard object 'processor'. Alt-
hough this abstraction restricts the visualization of the 
material flow in the model, it also offers an advantage. 
Namely, the routing of the ‘flowitems’ can be more 
easily controlled because the behavior of the input and 
output ports of a processor object can be specified via 
appropriate event triggers. Both, the time for the move-
ment to the pick-up location as well as the transport 
time are stored in the database. If the production sched-
ule was created by a decentralized planning algorithm, 
the time required for the movement to the pick-up loca-
tion is eliminated since this movement is anticipated in 
advance. 

In order to avoid coordination problems due to over-
lapping work areas of the cranes in a hall bay, capability 
profiles are created which define the executable 
transport processes of a crane. As these profiles are 
mutually exclusive, there are only very few possible 
collision points. These can be disregarded due to the 
very low probability and the capability of human opera-
tors in the real application to avoid the actual collision 
(e.g. by waiting until the other crane has been removed).  

A last challenging problem occurs from the re-
striction that FlexSim® does not provide an option 
within its standard commands to cancel the processing 
of a ‘flowitem’ on a processor object. However, this is 
exactly what should happen when a material defect is 
detected so that the ‘flowitem’ can be transported to 
another workstation for a post-processing.   

4.2 Implementation  
To facilitate later adaptation or reconfiguration of the 
model, only standard library objects have been used for 
the implementation.   

The routing of the ‘flowitems’ and the associated 
adherence to the process sequence is ensured by the two 
labels ‘ID’ and ‘NextStep’, which are stored on each 
‘flowitem’. While the value of the label ‘ID’ is constant, 
the value of the label ‘NextStep’ is adapted dynamically 
after the successful completion of a production step. 

This is done via the ‘OnProcessFinish‘ trigger of 
each processor object that represents a workstation in 
the simulation model. The value of the label ‘NextStep’ 
starts at 2, so it points to the second column of the table 
‘production-plan’, where the assignment of the work-
station for production step 1 takes place (compare Table 
3). After the production step finished, the value is in-
creased by the value 7 so it points to the ninth column etc. 

For the modeling of the cranes, a pull system was 
implemented, which ensures that a ‘flowitem’ is not 
transported until its processing is completed and the 
following workstation is idle. If both conditions are 
fulfilled, the ‘flowitem’ gets pulled and the value of the 
label ‘NextStep’ is read out. Thereafter, the ‘flowitem’ is 
processed (this represents the ongoing transport) and 
finally send to the target workstation. The processing 
times correspond to the estimated times from the ERP 
and are chosen according to the destination. Each crane 
is connected to other workstations through its output 
ports, which reflects the implementation of its capability 
profile.   

The actual start and finish date of a production step 
is set by the ‘OnEntry’ and ‘OnExit’ trigger of a proces-
sor object which represents a workstation.   

Compliance with the follow-up constraints can easi-
ly be achieved due to the routing concept used.  

In order to simulate the detection of a material de-
fect, including all subsequent repair processes, a slightly 
more cumbersome solution was implemented. For this, 
a queue object was created for each workstation and 
then connected via the center port. After that, a separate 
mean time between failure / mean time to repair (MTBF 
/ MTTR) object was created for each workstation, 
which is not intended to control the failure behavior of a 
work-station, but instead simulates the detection of a 
material defect. For this reason, the MTTR has been set 
to a very small value.  
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The ‘OnBreakdown’ trigger contains the functions 

that cause the canceling of the current production step. 
The ‘flowitem’, which is located on the workstation 

whose ‘OnBreakdown’ trigger was fired, is duplicated 
and the duplication is send to the connected queue ob-
ject. Then the original ‘flowitem’ is destroyed, which 
represents the cancellation of the processing. When 
executing this command while processing a ‘flowitem’ 
on a processor object, the FlexSim® engine can no 
longer execute the other scheduled events of the proces-
sor object (e.g. completion of processing). 

For this reason, another command must destroy all 
scheduled events. At the same time, this command caus-
es the affected processor object to never receive 
‘flowitems’ again, even if it is intended in the produc-
tion plan. However, this can be removed by executing a 
command that resets the properties of the processor 
object.  

After all commands of the ‘OnBreakdown’ trigger 
have been executed, post-processing of the duplicated 
‘flowitem’ must be scheduled by the decentralized plan-
ning algorithm. This process – among others – is ex-
plained in the next section.  

5 Interaction Between 
Simulation and Decentralized 
Planning Algorithm 

This section examines the interactions that take place 
between the decentralized planning algorithm (hence-
forth, an MAS is assumed to fulfil this role) and the 
simulation in case of disturbances as well as the func-
tionalities of the MAS itself. The detailed design of the 
MAS is not a part of this paper, however, it is briefly 
outlined which functionalities are provided by the MAS. 

5.1 Functionalities of the MAS  
Starting point for the interaction between the MAS and 
the simulation is the creation of an initial schedule. The 
MAS in place is designed similar to approaches like 
[11] or [12]. Workpiece agents are responsible for the 
fulfilment of all necessary production steps for the 
workpiece which they represent. Requirements regard-
ing the number and type of workpieces to be produced 
as well as the production plan for each type of work-
piece are stored in the database. A production plan looks 
similar to the following example. 

ID 
Product 
Name Step 

Operation 
(Op) 

First 
Operation 

Last 
Operation 

1 A 1 Op_1.1 1 0 

1 A 2 Op_1.2 0 0 

Table 2: Exemplary excerpt of a production plan. 

All information regarding the resources is also stored in 
the database. The agent system uses the same table for 
this information as the simulation. Each resource has a 
certain capability. These capabilities are mapped to 
operations that can be accomplished by the resource.   

This design, which uses a database to store all nec-
essary information for products and resources, makes 
the MAS easily adjustable to changing needs and pro-
duction technologies as there are no changes necessary 
within the code of the agents itself. When all agents are 
created, which happens automatically based on the 
information in the database, the workpieces use an auc-
tion-based process based on the Contract Net [13], 
which is the most common coordination mechanism for 
MAS [14]. As the MAS is implemented in JADE [15], 
the workpiece agents can search for resources that pro-
vide certain operations by using the so-called Directory 
Facilitator of the JADE platform.  

The main goal of the agent system is to reschedule 
in case of disturbances. Thus, the scheduling process is 
not focussed on creating the optimal solution for the 
factory for all orders at the same time but instead sched-
ules one job after another and tries to keep as close to 
already scheduled operations as possible. This results in 
a completely decentralized approach in which no super-
visory component or agent knows all information and 
each agent manages its own schedule.    

Each workpiece schedule is created including the 
transport processes, as these might be a bottleneck with-
in the production system. To achieve this, the operations 
at workstations (WS) are scheduled as depicted in Fig-
ure 5, similar to [12]. 

 
Figure 5: Exemplary scheduling in a regular case. 
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The workpiece agent uses an estimation of the 

transport time as the earliest possible start date for the 
initial production operation request or CFP (call for 
proposal).  

After the transport operations have been scheduled, 
the agent sends messages to the production resource 
agents that inform them about the actual arrival and 
departure times. In case the transport process is the 
bottleneck, the production step is cancelled and re-
booked at the earliest possible arrival time. This time is 
derived from the best proposal of all transport resources. 
If a disturbance has happened that demands a deviation 
from the initial production plan – here a repair process 
at another workstation – the scheduling process follows 
a similar approach. The difference is that not only the 
production operation has to be scheduled but also the 
buffering and repair process. The production operation 
has to be scheduled first because the necessary duration, 
i.e. the end of the buffering process, depends on the 
earliest start of the production process.   

5.2 Interaction in case of disturbances  
Different situations can trigger a rescheduling process 
by the MAS. These vary from equipment breakdowns to 
process delays. The focus of this paper is on defects that 
are detected in the workpiece itself. When combining 
the MAS with the simulation, the simulation has to set 
the triggers for the MAS in the database that will start a 
rescheduling process (as shown in Figure 2). 

The information provided include the error type and 
occurrence time in the resource table at the applicable 
resource. In addition, the parameter in the table ‘moni-
toring’ is set to true. The simulation also goes into a 
mode of slower simulation speed. This is necessary 
because the FlexSim® engine does not offer an oppor-
tunity to completely stop a simulation run for a certain 
period of time. The dynamic adaptation of the simula-
tion speed uses the object orientation of FlexSim®. 
Thus, the ‘OnBreakdown’ trigger, which is fired anyway 
in the detection of a material defect, spawns a new 
‘flowitem’ in a specially created Queue object. This 
‘flowitem’ fires the ‘OnEntry’ trigger of the Queue 
object, which reduces the simulation speed to one hun-
dredth of the original simulation speed. In addition, the 
‘OnEntry’ trigger sends a message to a second Queue 
object with a delay of 10 real-time seconds. Upon re-
ceiving the message, the second Queue object increases 
the simulation speed to its original value.  

This procedure does not prevent the case that, during 
the time when the simulation is running at a reduced 
speed, another event occurs which relies on information 
from the database. However, this case is considered 
very unlikely and thus acceptable.  

The MAS monitors a parameter that triggers its ac-
tivities. If this parameter is set, the agent detects this 
change and reads all necessary disturbance information 
from the database. Afterwards the parameter in table 
‘monitoring’ is set back to false. The information at 
which resource and what time the disturbance occurred 
enables the agent to conclude which workpiece agent is 
involved and needs to be contacted. The disturbance 
information is sent to the corresponding agent. The 
workpiece agent in turn up-dates its own schedule with 
the process finished values from the database that the 
simulation has set for each operation. The workpiece 
agent then determines which actions are needed for the 
disturbance that occurred. In this case, all operations 
that are not finished yet have to be cancelled and the 
already explained error handling with booking of a 
buffer place is started.  

After the new schedule is complete, the agent sends 
this schedule to an agent that has the capability to insert 
this schedule correctly into the database (DB Connect-
or). A socalled Sniffer Agent that comes with the JADE 
platform can automatically monitor and visualize the 
exchange of messages. An abbreviated (as can be seen 
from the number of messages on the left) and comment-
ed example is shown in Figure 6. 

 
Figure 6: Sequence diagram of disturbance handling 

within the MAS. 

The simulation now uses these actualized values to 
determine the correct destinations of the objects within 
the simulation. 
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6 Validation and Analysis  
It is necessary to validate whether the simulation model 
does correctly implement the production schedule that 
the agent system has provided and show the effects of 
default solutions in case of incorrect schedule data. In 
addition, it must be analyzed whether the production 
schedule is correctly implemented after a rescheduling 
by the agent system.  

In order to validate that a provided production 
schedule is implemented correctly, two labels were 
stored on each flowitem. The production schedule as 
provided in advance is stored on one label. On the other 
label, the actual process sequence that a ‘flowitem’ 
passes through is plotted during a simulation run. When 
a ‘flowitem’ reaches the sink and both labels match, the 
production schedule was implemented correctly. This 
result was achieved in the evaluation of several simula-
tion runs. If the rescheduling algorithm was executed 
during a simulation run, probably the labels no longer 
match. In this case, it is currently necessary to manually 
check whether the updated production schedule has 
been adhered to.  

On the other hand, it could be shown that the simula-
tion model cannot implement incorrect production 
schedules. If the simulation implements such a produc-
tion schedule, the material flow stagnates and the simu-
lation run is aborted.   

The provided target times could be adhered to with 
minor deviations. This results from the comparison of 
the corresponding values in the database with the actual 
times entered by the simulation.  

7 Conclusion and Outlook  
This paper presents an approach how control algo-
rithms, such as a decentralized planning algorithm, can 
be tested in combination with a simulation model in 
FlexSim®, linked via a production schedule in a data-
base. Since it is possible to link arbitrary algorithms to 
the database, the simulation model can be used to com-
pare algorithms which implement different production 
schedules. Possible metrics that can be examined are 
e.g. the throughput time of the orders, the makespan or 
the impact of the occurrence of a disturbance. 
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