
S N E T E C H N I C A L N O T E

 SNE 30(1) – 3/2020 15

Development of a Simulation Model to Analyze
the Performance of Decentral Rescheduling

Algorithms in Production Systems
Julian Sundermeier*, Felix Gehlhoff, Alexander Fay

Helmut-Schmidt-University / University of the Federal Armed Forces Hamburg, Institute of Automation
Technology, Holstenhofweg 85, 22043 Hamburg, Germany; *Sundermeier.julian@hsu-hh.de

Abstract. Real production systems that rely on manual
productionand transportation processes are especially
prone to disturbances. Thus, schedules often have to be
revised on the spot by the operators using simple heuris-
tics. These methods do not generate optimal solutions.
Other approaches use agent-based control systems
where the agents enable decentralized rescheduling
based on local information. The following paper de-
scribes a simulation model of a production system that
allows a quantitative comparison of the alternative con-
trol and planning logics by using the simulation software
FlexSim®.

Introduction
In today’s competitive environment, manufacturing
companies are confronted with the need of increasing
flexibility [1]. This can be attributed to e.g. shortened
product life cycles, increasing variety, and competitive
pressure, which requires short and reliable delivery
times [2]. Therefore, the production system must not
only be able to produce efficiently, but moreover it
needs to be resilient to disturbances and adaptable to
changing demands. In addition, a modularized system
architecture is advisable to enable system reconfigura-
tions during ongoing production without having to ad-
just the control code.

Classic optimization or scheduling methods often
struggle with these requirements [3]. Although these
techniques can calculate an optimal solution, they re-
quire a considerable amount of time for complex prob-
lems. Furthermore, when using e.g. linear programming,

it is neglected that significant and frequent changes to
the production schedule create considerable noise and
thus problems within the factory. Therefore, in many
real production systems, classic optimization processes
are usually not suitable for dynamic rescheduling. In-
stead, there are mostly two approaches to deal with
rescheduling. One is that the operators make the dynam-
ic control decisions on their own. Often these decisions
consider only a fraction of the available information,
e.g., what the operator assumes to be the most important
job to fulfil next. Some companies employ software
with simple algorithms which mimic such heuristics,
e.g. the right shift (i.e. the postponement of all follow-
up orders corresponding to the delayed order). This type
of control results in production schedules that lag (far)
behind an optimal solution, which could have been
attained by using a more sophisticated algorithm.

In order to meet the stated requirements for flexibil-
ity and quality of the solution, several researchers pro-
pose agent-based control approaches. The agents enable
decentralized decision-making and rescheduling based
on local information. Usually, this interaction is much
faster than classic optimization methods and allows a
focused adaptation of the plan. However, the results
achieved with decentral decision-making are usually not
globally optimal.

The distribution of control intelligence and the in-
formation linked to it makes production systems more
robust and represents a major goal in Industry 4.0 [4].

Despite an abundant amount of available literature
on the development of multi-agent systems [1], there is
still a lack of comparison – qualitatively and quantita-
tively – of agent-based control in case of disturbances
with ‘traditional’ solutions [5]. Benchmark systems are
one way to cope with this problem [6], but they mostly
do not consider manual and thus less predictable pro-
cesses.

SNE 30(1), 2020, 15 - 22, DOI: 10.11128/sne.30.tn.10504
Received: June 10, 2019 (Selected ASIM SST Hamburg 2018
Postconf. Publ.), Accepted: October 10, 2019
SNE - Simulation Notes Europe, ARGESIM Publisher Vienna
ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

 Sundermeier et al. Simulation of Decentral Rescheduling Algorithms in Production Systems

 16 SNE 30(1) – 3/2020

T N
They also do not provide much help in terms of ana-

lysing the effects of rescheduling instead of just applying
decentral control algorithms that take local decisions on
the spot. Recent approaches, however, already give ad-
vice on how to measure qualitative factors such as ro-
bustness of a system that reacts to dynamic scenarios [7].

This paper describes a simulation model that enables
the quantitative and qualitative comparison of different
rescheduling algorithms – e.g. simulated operator deci-
sion-making, right-shift algorithms and agent-based
dynamic rescheduling – to analyse the aforementioned
effects. The context of the simulation model and the
agentsystem is outlined in Section 1. Section 2 gives a
brief introduction into the simulation software that was
used to build the model. The communication scheme
between the simulation and the decision maker (e.g. an
MAS (multiagent system)) is explained in Section 3.
This is followed by a description of the simulation mod-
el itself in Section 4. Section 5 briefly outlines the func-
tionalities of the MAS and examines the interactions
between simulation and the agents. The paper closes
with a short validation of the developed simulation
concepts in Section 6 and concludes in Section 7 with a
brief summary and outlook.

1 Application Context
The simulation model resembles a factory where heavy
single workpieces have to be moved between subse-
quent production steps. The factory comprises different
production stages in two hall bays. In at least one pro-
cess step, alternative workstations allow parallel pro-
cessing of workpieces. Manually operated cranes in
each hall bay connect the workstations. A limited num-
ber of operator teams operates the cranes. It is one goal
of the simulation to replicate the estimated durations of
these transport operations, as they have a significant
impact on the overall productivity of the factory. These
estimated durations stem from the ERP system of the
considered factory and look similar to the following
example in Table 1.

Start Destination Time needed [min]

Workstation 1 Workstation 2 30
Workstation 2 Workstation 3 45

…

Table 1: Excerpt of the ERP system transport data.

These times include the time that is necessary to
load and unload the workpieces but do not include the
time needed to reach the workpiece, i.e. the time to
move the crane from its previous position to the start
position of this transport.

Shuttle cars connect the two hall bays. Two product
variants are produced that are made of one main body
and one additional part. These additional parts require
different work- and transportation processes (e.g. only
one crane for transportation instead of two for the main
body). One major problem is the coordination of the
crane system. Due to various restrictions (e.g. the
weight distribution on the ceiling construction), this task
becomes particularly challenging.

If disturbances occur during production, today’s hu-
man endeavours mainly constitute the right-shift after a
delayed order and on the spot decisions by e.g. crane
operators. This has to be replicated within the simula-
tion model. Furthermore, it is necessary that the simula-
tion is able to follow a specified production schedule,
which is stored in a database.

In addition, there must be the possibility that an
agent-based decentralized planning algorithm (or any
other algorithm) can dynamically adjust or replace the
production schedule when disturbances occur and thus
control the simulation. If the simulation is controlled by
an external planning algorithm it strictly follows the
production schedule that is provided by the algorithm
via the database. It does not execute any planning or
rescheduling functions itself (e.g. right-shift).

2 FlexSim® Simulation Software
FlexSim® is an object oriented, discrete-event simula-
tion software distributed by FlexSim Software Products
Inc. (Orem, Utah, USA). Also declared as application-
oriented simulation package [8], it is especially common
for the simulation of production and intra-logistic pro-
cesses. FlexSim® offers a GUI with a 2D or 3D view of
the model and several standard library objects that can
be included into the model via drag & drop.

Generally, FlexSim® can process numerical and
string values which can be stored in global variables or
tables or locally in labels on an object. For further in-
formation on the capabilities of FlexSim® see [9].

FlexSim® has been chosen due to two advantages
compared to other simulation software [10]: on the one
hand, all library objects can be edited and complex logic
can be integrated into their event-triggers by using

 Sundermeier et al. Simulation of Decentral Rescheduling Algorithms in Production System

 SNE 30(1) – 3/2020 17

T N

ID Step1
Target start
time 1

Target finish
time 1

Processing
started 1

Actual finish
time 1

Processing
finished 1 Step 2 …

1 Value of the label
“Object_ID” indicates
on which workstation
from the table “re-
sources” the order
should be processed

Elapsed
simulation
time at
which pro-
cess step 1
should start

Elapsed simula-
tion time at
which the pro-
cessing of pro-
cess step 1 has
actually started

=1, if pro-
cessing of
process
step 1 has
started; =0,
otherwise

Elapsed
simulation
time at
which pro-
cess step 1
should end

=1, if pro-
cessing of
process
step 1 has
ended; =0,
otherwise

Value of the label
“Object_ID” indicates
on which workstation
from the table “re-
sources” the order
should be processed

…

… … … … … … … … …

Table 3: Schematic structure of the table 'productionplan'.

Object_ID designation WIP/BU On/Off Error_Type Error_Occure_Time

1 Designation of the
workstation where
the label ‘Object_ID’
has the value 1 in
the simulation

=1 if an order is
being processed in
the workstation /
buffered in a buffer;
=0, otherwise

=1 if the workstation
is functional; =0, if
there is a disturbance
and the workstation
is not available

=1 if a defect in the
wokpiece itself has
been detected; =…, is
not considered in this
paper

Past simulation time at
which the disturbance
occurred

… … … … … …

Table4: Schematic structure of the table ‘resources’.

FlexScript, an embedded programming language. Logic
can also be added by use of C++, but this code needs to
be compiled before the model can be run. On the other
hand, FlexSim® provides a standard interface to a
MySQL database, which can be used for the necessary
access to the production schedule. The use of a standard
interface facilitates the data exchange, as no new inter-
face has to be configured.

3 Connecting to the Simulation
via MySQL

To ensure the required data exchange, the communica-
tion scheme depicted in Figure 1 was used.

Both, the decentralized planning algorithm and the
simulation model in FlexSim® act as MySQL-clients

Figure 1. Communication scheme between simulation

and agent-system.

 via appropriate interfaces to a MySQL-server with the
MySQL-database. The database itself contains the three
tables ‘productionplan’, ‘resources’ and ‘monitoring’.

In the table ‘productionplan’ (see Table 3), all orders
are listed according to their unique value of the label
’ID’, which is used inside the simulation model. Starting
at column two, every seventh column contains the title
of a production step. The value of the element that is at
the intersection of a row and such a column indicates
the assignment of a workstation for an explicit order.
The columns in between are used for data collection of
the target start/finish and actual start/finish date of a
process and whether the processing of an order has
already been started or completed.

In the table ‘resources’ (see Table 4), all work-
stations are listed according to their unique value of the
label 'Object_ID' which is used in the simulation model.
In addition, the table provides information on the re-
spective operating status of a workstation and contains
information on when and where a disturbance has oc-
curred.

For the decentralized planning algorithm only those
entries are relevant which concern the occurrence of a
disturbance. For this reason, a third table called "moni-
toring" has been created, consisting of only one ele-
ment. This element serves as a binary indicator of
whether rescheduling is required or not. Thus, the de-
centralized planning algorithm only has to monitor this
value and only become active when there is a change.

 Sundermeier et al. Simulation of Decentral Rescheduling Algorithms in Production Systems

 18 SNE 30(1) – 3/2020

T N
This value also serves as an auxiliary value for the

algorithm to detect whether it has already responded to
a disturbance or not. The database that serves as an inter-
face between the simulation and a planning algorithm is
integrated within the process depicted in Figure 2.

Figure 2: Sequence diagram of disturbance handling

between simulation and MAS.

This process shows how the simulation and the decen-
tralized planning algorithm interact in case of disturb-
ances. Section 5.2 explains the details of this interaction.
Due to the intended application of the decentralized plan-
ning algorithm within a real factory (see section 5.1) there
should be no more than ten seconds between the occur-
rence of a disturbance and further processing after the
rescheduling algorithm has been executed.

For the execution of the rescheduling algorithm, the
decentralized planning algorithm might need up to nine
of the ten seconds available. In the remaining second,
there are four accesses to the database (see numbers one
to four in Figure 2). First, a disturbance occurs in the
simulation and the simulation sets corresponding pa-
rameters in the database. Second, the decentralized
planning algorithm reads these parameters and executes
the rescheduling algorithm. Third, after the execution is
completed, the production schedule is updated in the
database. Finally, the simulation queries the database to
receive the updated production schedule and runs the
model accordingly.

To validate if this concept is feasible it should be de-
termined whether the access time to the database can
fulfil a real-time criterion of a maximum of 250 ms
(four accesses in one second). Within that access time,
the connection to the database must be established and
all query parameters exchanged. To analyse the access
times a proof of concept model has been created (see
Figure 3).

A source object creates ‘flowitems’ that are buffered
in a queue object. The transport from the queue object

to the processor object can be done either by an operator
or by a transporter. The respective assignment is stored
in a MySQL database. After processing on the processor
object, the ‘flowitems’ leave the system via a sink ob-
ject. If either the operator or the transporter fails during
a simulation run, an agent system is activated which
adjusts the assignments in the database to transport all
‘flowitems’ from the remaining resource.

Figure 3: Structure of the proof of concept model.

In the proof of concept model, parameters from the
database were queried and / or manipulated by firing
individual event triggers. To determine the required
access time for such an operation, the FlexSim® internal
FlexScript Code Profiler tool was used (see Figure 4).

Figure 4: Excerpt from the FlexScript Code Profiler tool.

Lines two through four include function calls that both
query and manipulate parameters from the database. In
the simulated time, the functions were called four times
(see second row, third column) or three times (see third
and fourth row, third column). Overall, the function
calls in total according to the second column have re-
quired between 29.65 ms and 24.49 ms. This results in
an average access time of 5.666 ms per function call for
reading and writing a parameter into the database. The
fifth row contains a trigger in which only one value is
entered (not read) into the database. This results in an
access time of 3.432 ms per function call. In summary,
access times are short enough to guarantee the real-time
capability of 250 ms.

4 Simulation Model
This section first discusses the conception of the simula-
tion model. For this purpose, the basic requirements and
the particular restrictions are emphasized. Subsequently,
the respective implementation will be briefly discussed.

 Sundermeier et al. Simulation of Decentral Rescheduling Algorithms in Production System

 SNE 30(1) – 3/2020 19

T N
4.1 Conception
A basic requirement for the control of the simulation
model is that the orders run through the system accord-
ing to the given production schedule. It must be ensured
that the sequence of the production processes is adhered
to and the actual start and finish dates are entered into
the database.

Beside the basic material flow, particular restrictions
must be respected during implementation. This includes
e.g. compliance with follow-up constraints arising from
production requirements.

The crane system is a key component of the produc-
tion system, because it is indispensable for the material
flow. In this context, a transport can be understood as a
process characterized by a movement to the pick-up
location and a transport time. These times correspond to
the set-up and processing time in a production process.
For this reason, a crane in the simulation model can also
be represented by the standard object 'processor'. Alt-
hough this abstraction restricts the visualization of the
material flow in the model, it also offers an advantage.
Namely, the routing of the ‘flowitems’ can be more
easily controlled because the behavior of the input and
output ports of a processor object can be specified via
appropriate event triggers. Both, the time for the move-
ment to the pick-up location as well as the transport
time are stored in the database. If the production sched-
ule was created by a decentralized planning algorithm,
the time required for the movement to the pick-up loca-
tion is eliminated since this movement is anticipated in
advance.

In order to avoid coordination problems due to over-
lapping work areas of the cranes in a hall bay, capability
profiles are created which define the executable
transport processes of a crane. As these profiles are
mutually exclusive, there are only very few possible
collision points. These can be disregarded due to the
very low probability and the capability of human opera-
tors in the real application to avoid the actual collision
(e.g. by waiting until the other crane has been removed).

A last challenging problem occurs from the re-
striction that FlexSim® does not provide an option
within its standard commands to cancel the processing
of a ‘flowitem’ on a processor object. However, this is
exactly what should happen when a material defect is
detected so that the ‘flowitem’ can be transported to
another workstation for a post-processing.

4.2 Implementation
To facilitate later adaptation or reconfiguration of the
model, only standard library objects have been used for
the implementation.

The routing of the ‘flowitems’ and the associated
adherence to the process sequence is ensured by the two
labels ‘ID’ and ‘NextStep’, which are stored on each
‘flowitem’. While the value of the label ‘ID’ is constant,
the value of the label ‘NextStep’ is adapted dynamically
after the successful completion of a production step.

This is done via the ‘OnProcessFinish‘ trigger of
each processor object that represents a workstation in
the simulation model. The value of the label ‘NextStep’
starts at 2, so it points to the second column of the table
‘production-plan’, where the assignment of the work-
station for production step 1 takes place (compare Table
3). After the production step finished, the value is in-
creased by the value 7 so it points to the ninth column etc.

For the modeling of the cranes, a pull system was
implemented, which ensures that a ‘flowitem’ is not
transported until its processing is completed and the
following workstation is idle. If both conditions are
fulfilled, the ‘flowitem’ gets pulled and the value of the
label ‘NextStep’ is read out. Thereafter, the ‘flowitem’ is
processed (this represents the ongoing transport) and
finally send to the target workstation. The processing
times correspond to the estimated times from the ERP
and are chosen according to the destination. Each crane
is connected to other workstations through its output
ports, which reflects the implementation of its capability
profile.

The actual start and finish date of a production step
is set by the ‘OnEntry’ and ‘OnExit’ trigger of a proces-
sor object which represents a workstation.

Compliance with the follow-up constraints can easi-
ly be achieved due to the routing concept used.

In order to simulate the detection of a material de-
fect, including all subsequent repair processes, a slightly
more cumbersome solution was implemented. For this,
a queue object was created for each workstation and
then connected via the center port. After that, a separate
mean time between failure / mean time to repair (MTBF
/ MTTR) object was created for each workstation,
which is not intended to control the failure behavior of a
work-station, but instead simulates the detection of a
material defect. For this reason, the MTTR has been set
to a very small value.

 Sundermeier et al. Simulation of Decentral Rescheduling Algorithms in Production Systems

 20 SNE 30(1) – 3/2020

T N
The ‘OnBreakdown’ trigger contains the functions

that cause the canceling of the current production step.
The ‘flowitem’, which is located on the workstation

whose ‘OnBreakdown’ trigger was fired, is duplicated
and the duplication is send to the connected queue ob-
ject. Then the original ‘flowitem’ is destroyed, which
represents the cancellation of the processing. When
executing this command while processing a ‘flowitem’
on a processor object, the FlexSim® engine can no
longer execute the other scheduled events of the proces-
sor object (e.g. completion of processing).

For this reason, another command must destroy all
scheduled events. At the same time, this command caus-
es the affected processor object to never receive
‘flowitems’ again, even if it is intended in the produc-
tion plan. However, this can be removed by executing a
command that resets the properties of the processor
object.

After all commands of the ‘OnBreakdown’ trigger
have been executed, post-processing of the duplicated
‘flowitem’ must be scheduled by the decentralized plan-
ning algorithm. This process – among others – is ex-
plained in the next section.

5 Interaction Between
Simulation and Decentralized
Planning Algorithm

This section examines the interactions that take place
between the decentralized planning algorithm (hence-
forth, an MAS is assumed to fulfil this role) and the
simulation in case of disturbances as well as the func-
tionalities of the MAS itself. The detailed design of the
MAS is not a part of this paper, however, it is briefly
outlined which functionalities are provided by the MAS.

5.1 Functionalities of the MAS
Starting point for the interaction between the MAS and
the simulation is the creation of an initial schedule. The
MAS in place is designed similar to approaches like
[11] or [12]. Workpiece agents are responsible for the
fulfilment of all necessary production steps for the
workpiece which they represent. Requirements regard-
ing the number and type of workpieces to be produced
as well as the production plan for each type of work-
piece are stored in the database. A production plan looks
similar to the following example.

ID
Product
Name Step

Operation
(Op)

First
Operation

Last
Operation

1 A 1 Op_1.1 1 0

1 A 2 Op_1.2 0 0

Table 2: Exemplary excerpt of a production plan.

All information regarding the resources is also stored in
the database. The agent system uses the same table for
this information as the simulation. Each resource has a
certain capability. These capabilities are mapped to
operations that can be accomplished by the resource.

This design, which uses a database to store all nec-
essary information for products and resources, makes
the MAS easily adjustable to changing needs and pro-
duction technologies as there are no changes necessary
within the code of the agents itself. When all agents are
created, which happens automatically based on the
information in the database, the workpieces use an auc-
tion-based process based on the Contract Net [13],
which is the most common coordination mechanism for
MAS [14]. As the MAS is implemented in JADE [15],
the workpiece agents can search for resources that pro-
vide certain operations by using the so-called Directory
Facilitator of the JADE platform.

The main goal of the agent system is to reschedule
in case of disturbances. Thus, the scheduling process is
not focussed on creating the optimal solution for the
factory for all orders at the same time but instead sched-
ules one job after another and tries to keep as close to
already scheduled operations as possible. This results in
a completely decentralized approach in which no super-
visory component or agent knows all information and
each agent manages its own schedule.

Each workpiece schedule is created including the
transport processes, as these might be a bottleneck with-
in the production system. To achieve this, the operations
at workstations (WS) are scheduled as depicted in Fig-
ure 5, similar to [12].

Figure 5: Exemplary scheduling in a regular case.

 Sundermeier et al. Simulation of Decentral Rescheduling Algorithms in Production System

 SNE 30(1) – 3/2020 21

T N
The workpiece agent uses an estimation of the

transport time as the earliest possible start date for the
initial production operation request or CFP (call for
proposal).

After the transport operations have been scheduled,
the agent sends messages to the production resource
agents that inform them about the actual arrival and
departure times. In case the transport process is the
bottleneck, the production step is cancelled and re-
booked at the earliest possible arrival time. This time is
derived from the best proposal of all transport resources.
If a disturbance has happened that demands a deviation
from the initial production plan – here a repair process
at another workstation – the scheduling process follows
a similar approach. The difference is that not only the
production operation has to be scheduled but also the
buffering and repair process. The production operation
has to be scheduled first because the necessary duration,
i.e. the end of the buffering process, depends on the
earliest start of the production process.

5.2 Interaction in case of disturbances
Different situations can trigger a rescheduling process
by the MAS. These vary from equipment breakdowns to
process delays. The focus of this paper is on defects that
are detected in the workpiece itself. When combining
the MAS with the simulation, the simulation has to set
the triggers for the MAS in the database that will start a
rescheduling process (as shown in Figure 2).

The information provided include the error type and
occurrence time in the resource table at the applicable
resource. In addition, the parameter in the table ‘moni-
toring’ is set to true. The simulation also goes into a
mode of slower simulation speed. This is necessary
because the FlexSim® engine does not offer an oppor-
tunity to completely stop a simulation run for a certain
period of time. The dynamic adaptation of the simula-
tion speed uses the object orientation of FlexSim®.
Thus, the ‘OnBreakdown’ trigger, which is fired anyway
in the detection of a material defect, spawns a new
‘flowitem’ in a specially created Queue object. This
‘flowitem’ fires the ‘OnEntry’ trigger of the Queue
object, which reduces the simulation speed to one hun-
dredth of the original simulation speed. In addition, the
‘OnEntry’ trigger sends a message to a second Queue
object with a delay of 10 real-time seconds. Upon re-
ceiving the message, the second Queue object increases
the simulation speed to its original value.

This procedure does not prevent the case that, during
the time when the simulation is running at a reduced
speed, another event occurs which relies on information
from the database. However, this case is considered
very unlikely and thus acceptable.

The MAS monitors a parameter that triggers its ac-
tivities. If this parameter is set, the agent detects this
change and reads all necessary disturbance information
from the database. Afterwards the parameter in table
‘monitoring’ is set back to false. The information at
which resource and what time the disturbance occurred
enables the agent to conclude which workpiece agent is
involved and needs to be contacted. The disturbance
information is sent to the corresponding agent. The
workpiece agent in turn up-dates its own schedule with
the process finished values from the database that the
simulation has set for each operation. The workpiece
agent then determines which actions are needed for the
disturbance that occurred. In this case, all operations
that are not finished yet have to be cancelled and the
already explained error handling with booking of a
buffer place is started.

After the new schedule is complete, the agent sends
this schedule to an agent that has the capability to insert
this schedule correctly into the database (DB Connect-
or). A socalled Sniffer Agent that comes with the JADE
platform can automatically monitor and visualize the
exchange of messages. An abbreviated (as can be seen
from the number of messages on the left) and comment-
ed example is shown in Figure 6.

Figure 6: Sequence diagram of disturbance handling

within the MAS.

The simulation now uses these actualized values to
determine the correct destinations of the objects within
the simulation.

 Sundermeier et al. Simulation of Decentral Rescheduling Algorithms in Production Systems

 22 SNE 30(1) – 3/2020

T N
6 Validation and Analysis
It is necessary to validate whether the simulation model
does correctly implement the production schedule that
the agent system has provided and show the effects of
default solutions in case of incorrect schedule data. In
addition, it must be analyzed whether the production
schedule is correctly implemented after a rescheduling
by the agent system.

In order to validate that a provided production
schedule is implemented correctly, two labels were
stored on each flowitem. The production schedule as
provided in advance is stored on one label. On the other
label, the actual process sequence that a ‘flowitem’
passes through is plotted during a simulation run. When
a ‘flowitem’ reaches the sink and both labels match, the
production schedule was implemented correctly. This
result was achieved in the evaluation of several simula-
tion runs. If the rescheduling algorithm was executed
during a simulation run, probably the labels no longer
match. In this case, it is currently necessary to manually
check whether the updated production schedule has
been adhered to.

On the other hand, it could be shown that the simula-
tion model cannot implement incorrect production
schedules. If the simulation implements such a produc-
tion schedule, the material flow stagnates and the simu-
lation run is aborted.

The provided target times could be adhered to with
minor deviations. This results from the comparison of
the corresponding values in the database with the actual
times entered by the simulation.

7 Conclusion and Outlook
This paper presents an approach how control algo-
rithms, such as a decentralized planning algorithm, can
be tested in combination with a simulation model in
FlexSim®, linked via a production schedule in a data-
base. Since it is possible to link arbitrary algorithms to
the database, the simulation model can be used to com-
pare algorithms which implement different production
schedules. Possible metrics that can be examined are
e.g. the throughput time of the orders, the makespan or
the impact of the occurrence of a disturbance.

References
[1] Leitão P. Agent-based distributed manufacturing control.

A state-of-the-art survey. In: Engineering Applications
of Artificial Intelligence 22 (7), pp. 979–991.

[2] Wiendahl HP, ElMaraghy HA, Nyhuis P, Zäh MF,
Wiendahl HH, Duffie N, Brieke M. (2007) Changeable
Manufacturing - Classification, Design and Operation.
In: CIRP Annals 56 (2), pp. 783–809.

[3] Paolucci M, Sacile R. (2005) Agent-based manufactur-
ing and control systems. New agile manufacturing solu-
tions for achieving peak performance. Boca Raton Fla.:
CRC Press

[4] Spath D, (Hrsg.) Ganschar O, Gerlach S, Hämmerle M,
Krause T, Schlund S. Studie des Fraunhofer-Insti-tut für
Arbeitswirtschaft und Organisation IAO: Produk-
tionsarbeit der Zukunft – Industrie 4.0, Stuttgart 2013.

[5] Wior I, Jerenz S, Fay A. Automated transportation sys-
tems subject to interruptions in production and in-
tralogistics - a survey and evaluation. In: International
Journal of Logistics Systems and Management (IJLSM),
Vol. 30, No. 4, 2018. DOI:
http://dx.doi.org/10.1504/IJLSM.2018.10011675

[6] Schreiber S, Fay A. ARGESIM Benchmark C20 ‘Com-
plex Production System’ – Definition and Call. In: SNE
Simulation Notes Europe, vol. 21 (3-4), 2011.

[7] Trentesaux D, Pach C, Bekrar A, Sallez Y, Berger T,
Bonte T, Leitão P, Barbosa J. (2013) Benchmark-ing
flexible job-shop scheduling and control systems. In:
Control Engineering Practice 21 (9), pp. 1204–1225.

[8] Law AM. Simulation Modelling & Analysis. New York:
McGraw-Hill, 2007, pp. 182-185

[9] Beaverstock M, Greenwood A, Lavery E, Nordgren W.
Applied Simulation: Modelling and Analysis Using
FlexSim. Orem, Utah, USA: Flexsim Simulation Soft-
ware, 2011.

[10] Swain JJ. Simulation software survey: Simulated worlds.
In: OR/MS Today, Vol. 42, No. 5, October 2015, pp. 36-
49.

[11] Heinze M, Lüder A, Gantner W, Kühnle H, Peschke J.
(2008) Structure and Functionality of a
PABADIS’PROMISE Agent System. In: Klaus-Dieter
Thoben (Hg.): ICE2008. The 14th International Confer-
ence on Concurrent Enterprising, a new wave of innova-
tion in collaborative networks, Lisbon, Portugal, 23 - 25
June 2008.

[12] Badr I, Schmitt F, Göhner P. (2010) Integrating Trans-
portation Scheduling with Production Scheduling for
FMS: An Agent-Based Approach. In: IEEE Interna-
tional Symposium on Industrial Electronics (ISIE), 2010.

[13] FIPA Contract Net Interaction Protocol Specification,
Geneva 2002. URL:
www.fipa.org/specs/fipa00029/SC00029H.pdf (Stand
26.07.2018).

[14] Caridi M, Cavalieri S. (2007) Multi-agent systems in
production planning and control. An overview. In: Pro-
duction Planning & Control 15 (2), S. 106–118.

[15] Bellifemine F, Caire G, Greenwood D. Developing Mul-
ti-Agent Systems with JADE, Chichester 2007.

