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Abstract. This paper proposes a Python-based infra-
structure for studying the characteristics and behavior of
families of systems. The infrastructure allows automatic
execution of simulation experiments with varying system
structures as well as with varying parameter sets in dif-
ferent simulators. Possible system structures and pa-
rameterizations are defined using a System Entity Struc-
ture (SES). The SES is a high level approach for variabil-
ity modeling, particularly in simulation engineering. An
SES describes a set of system configurations, i.e. differ-
ent system structures and parameter settings of system
components. In combination with aModel Base (MB), ex-
ecutable models can be generated from an SES. Based
on an extended SES/MB approach, an enhanced soft-
ware framework is introduced that supports variability
modeling and automatic model generation for different
simulation environments. By means of an engineering
application it is shown, how a set of Python-based open
source software tools can be used to model an SES and
to automatically generate and execute signal-flow ori-
ented models.

Introduction

This paper is a modified version of [1]. It clarifies the

scope of the discussed tools for variability modeling.

Generally, variability modeling can be seen as an ap-

proach to describe more than one system configuration.

A system configuration incorporates the structure of the

model as well as the parameter settings. Different sys-

tem configurations arise e.g. when modeling varying

real world systems or when modeling system variations

for finding an optimal system design.

In software engineering, a classical approach to vari-

ability modeling is the use of Feature Models (FM) in

combination with 150% models. Feature Models spec-

ify components and relations, which are used for mod-

eling the variability of a system or product [2]. By se-

lecting features a Variant Model (VM) can be generated

from the FM. Thus, the VM represents a subset of all

variants defined in the FM. The FM and the VM are

platform-independent. For generating executable mod-

els, platform dependent dynamic models are needed,

which are linked to the FM. All dynamic models are

organized as an 150% model. With the help of a variant

generator an executable model is generated based on a

VM and the 150% model. The software pure::variants

is a prominent example supporting this approach [3].

Another approach is the executable Unified Modeling

Language with its standard Foundational Unified Mod-

eling Language (fUML). The fUML is a subset of the

graphical notation of the UML with executable seman-

tics in order to generate platform dependent software

[4]. Based on the UML the executable Systems Mod-

eling Language (SysML) was developed in the field of

systems engineering.

Analogous to approaches coming from software en-

gineering the systems theory community introduced

methods for platform-independent variability modeling

with subsequent platform-dependent model generation

of specific variants. One method is the System Entity

Structure (SES) and Model Base (MB) approach. In

this paper the theory of an extended SES/MB approach

is discussed and software tools implementing the theory

are presented using an engineering application example.
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1 SES/MB Theory and
Implementation

This section briefly discusses the general SES/MB the-

ory and the derived extended SES/MB (eSES/MB) in-

frastructure. Subsequently, an implementation of the

infrastructure is presented.

1.1 SES/MB Basics and the eSES/MB
Infrastructure

An SES is represented by a tree structure comprising

entity nodes, descriptive nodes and attributes. Differ-

ent system structures can be coded in an SES tree. In

the context of modeling and simulation entity nodes are

linked to basic models organized in an MB. Attributes

of an entity node correspond to the parameters of the

associated basic model. Descriptive nodes describe the

relations among at least two entities and are divided into

aspect, multi-aspect and specialization nodes. An as-

pect node represents the composition of an entity. The

multi-aspect node is a special aspect node and describes

the decomposition of an entity into several entities of

the same type. The specialization node describes the

taxonomy of an entity. Descriptive nodes can specify

variation points using specific rules.

Specifying a composition of entities, which de-

scribes the composition of models in a modular-

hierarchical manner, requires a specification of cou-
pling relations. Couplings can be specified as proper-

ties of descriptive nodes of the type aspect or multi-

aspect and consist of pairs of entity names and port

names, such as (source entity, source port, sink entity,
sink port).

In order to derive a specific system configuration

all variation points are resolved by evaluating the rules

at the descriptive nodes of the SES. This procedure is

called pruning. If more than one aspect or multi-aspect

node appear on the same tree level – so called siblings

–, they form a variation point with an xor-selection. A

second kind of variation point for an xor-selection is de-

fined by specialization nodes. When selecting one child

entity of the specialization, the name and the properties

of the selected child entity are merged with the name

and properties of the father entity of the specialization.

This procedure is formalized by the SES inheritance ax-

iom. The resulting Pruned Entity Structure (PES) repre-

sents exactly one system configuration. In conjunction

with an MB, a fully configured and executable model

can be generated from the PES.

The basic SES/MB framework introduced in [5] was

extended in [6] and [7] by new modeling features, meth-

ods and components, such as an Experiment Control
(EC) and an Execution Unit (EU) as shown in Figure 1.

In this eSES/MB infrastructure, the EC uses an inter-

face to the SES and its methods to derive goal-driven

system configurations and to generate models, which

are executed by the EU. The results returned by the

EU are collected and analyzed by the EC. Thus, the

derivation and generation of subsequent system config-

urations can be controlled reactively based on experi-

ments already carried out.

Figure 1: The eSES/MB infrastructure.

A set of variables with global scope establish the in-

terface to the SES. They are called SES variables (SES-

var). Semantic conditions can be used to specify permit-

ted value ranges and dependencies between SESvars.

SES functions (SESfcn) are introduced for the speci-

fication of procedural knowledge. Complex variabil-

ity can often be described more easily with SESfcns.

Typical examples include the definition of varying cou-

pling relations or the definition of variable parameter

configurations in attributes. For automatic pruning, se-
lection rules at descriptive nodes need to be defined,

such as aspectrules for aspect and multi-aspect siblings

or specrules at specialization nodes. A special manda-

tory attribute of multi-aspects is the attribute number of
replications (numRep). The numRep attribute specifies

the number of entities to create at a multi-aspect node

during pruning. The mb-attribute of leaf entity nodes

connects the entity node to a basic model in the MB.

Attribute values and selection rules can be specified us-

ing SESvars or SESfcns.
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Figure 2: Python-based eSES/MB infrastructure for multiple EUs.

1.2 Software Tools

The eSES/MB framework as presented in the lower left

part of Figure 1 was implemented in a prototype soft-

ware tool in MATLAB [8]. The focus of this tool is the

modeling and generation of MATLAB/Simulink mod-

els. In contrast to the MATLAB prototype, the objec-

tive of the new prototype discussed in this paper is to

support the generation and execution of models for dif-

ferent simulation environments. The infrastructure in

Figure 1 is implemented as a Python framework as pre-

sented in Figure 2. The tools are called SESToPy, SES-
MoPy, and SESEuPy [9].

SESToPy (System Entity Structure Tools Python)

implements a graphical editor and all SES related meth-

ods. In the editor an SES tree can be specified interac-

tively in a file browser view and attributes and rules can

be defined for every node. In addition to the pruning

method already mentioned, SESToPy supports some

more methods such as merging different SES and flat-
tening for removing the hierarchy information. Apply-

ing the flattening method, a Flattened Pruned Entity
Structure (FPES) is derived. The pruning and flatten-

ing methods can be used interactively or as API meth-

ods. SESToPy supports to save SES, PES, and FPES as

JSON or XML files.

For generating executable models, SESMoPy

(System Entity Structure Model builder Python) was

developed. SESMoPy is a model builder, which im-

plements the build method in two different ways and

supports several simulation environments. For both ap-

proaches, all corresponding basic models must be or-

ganized in an MB, as shown in Figure 2. The first

approach, called native model generation, is the gen-

eration of executables for a specific EU. Currently na-

tive models for MATLAB/Simulink, Dymola, OpenMod-
elica, the PDEVS for MATLAB toolbox and the Python-

based environment DEVSimPy [10] can be generated.

Currently for MATLAB/Simulink, Dymola, and Open-

Modelica SESMoPy only supports the build method for

the generation of signal-flow oriented models. Support

for the generation of physical models is under devel-

opment. The second approach is the model generation
based on the Functional Mock-up Interface (FMI). The

FMI standard is defined for several uses, one of which

is FMI for Model Exchange. The generalized interface

FMI is supported by a number of established simulators

[11]. Using this approach, SESMoPy builds a Func-

tional Mock-up Unit (FMU) model that implements an

FMI [12]. This approach is under development. De-

pending on the way of model generation, the processing

in the corresponding EU is different.
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SESMoPy’s build method generates executable sim-

ulation models (SM) using the information in the FPES

and basic models from a target specific MB. Informa-

tion about the way the model is created can be provided

in the EC calling SESMoPy or at the SES level accord-

ing to the SES enhancements in [7].

The Python software tool SESEuPy (System Entity

Structure Execution unit Python) acts as a general EU.

It implements a kind of wrapper for the integration of

different simulation environments into the framework.

The modular structure and well-defined interfaces al-

low to integrate even components of non-simulation-

specific environments into the framework.

In the next section, the components and function-

ality of the Python framework are explained using the

example of an engineering application.

2 Engineering Application

A feedback control system can be modeled using trans-

fer functions describing the behavior of the components

in frequency domain. Controlled variables in a feed-

back control system are usually influenced by distur-

bances. A common approach for minimizing the in-

fluence of predictable disturbances is adding a feedfor-

ward control. The system can be mapped to a signal-

flow oriented model. In the following paragraphs it is

described how the eSES/MB infrastructure can be used

to design and test such a system using the introduced

tools and native model generation for OpenModelica.

2.1 Problem Description

A process unit with a PT1 behavior shall be controlled

using a PID controller. A disturbance with a PT1 be-

havior affects the output of the process unit. Different

configurations of the PID controller shall be tested. If a

defined regulatory goal is met, the current configuration

of the PID controller is taken. Otherwise the structure

is varied by adding a feedforward control to the system

and different configurations of the PID controller are

analyzed again. Figure 3 depicts a schematic represen-

tation of the application.

The system’s behavior follows the PT1 transfer

function in Equation 1 and the step-shaped disturbance

affects the output of the process unit with a PT1 behav-

ior according to Equation 2. The optional feedforward

control is realized by subtracting the disturbing signal

calculated by Equation 3 from the manipulated variable.

Figure 3: Structure of the feedback control system with

optional feedforward control.

The control goals are a settling time of less than 15 sec-

onds and a maximum overshoot of less than 5% after a

disturbance.

The system has two structure variants, either with-

out or with the feedforward control part, and a range

of different configurations for the PID controller can be

applied for each structure variant. In the next section,

the two structure variants and their possible configura-

tions are specified as an SES.

GSu(s) =
1

20 · s+1
(1)

GSz(s) =
1

10 · s+1
(2)

GSt(s) =
GSz(s)
GSu(s)

=
20 · s+1

10 · s+1
(3)

2.2 Variant Modeling with SESToPy

The specification of the SES describing the feedback

control system is done with the tool SESToPy. The tree

and all attributes are defined via a graphical user inter-

face. During modeling the SES with SESToPy, checks

on the SES and plausibility tests are executed indicating

model errors. The SES is saved as a JSON structure.

Figure 4 depicts the SES and its representation in

SESToPy. The SES uses some extensions introduced

in [13]. In addition to the different system configura-

tions, essential parts for the configuration of simulation

experiments are defined.

The root node exp of the SES and its subsequent as-

pect node expDEC describe a set of simulation based

parameter studies for different system structures. The

subtree of the entity node simModel-ctrlSys specifies

the two system structures, i.e. a variant with and a

variant without feedforward controller. The other two

entity nodes specify experiment related information:

The entity node simMethod specifies a target simulation
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Figure 4: Left: SES specifying the feedback control system study; Right: Part of the SES representation in SESToPy.

environment for performing simulation runs using the

SESvar mysim. Other simulation execution parameters,

such as the simulation period, are not specified and are

set by the EC later. The entity node expMethod speci-

fies the permitted value ranges of two parameters for the

PID controller. Besides the different system structures,

they are the subject under study.

The aspect simModel-ctrlSysDEC describes that

each system variant consists of the following enti-

ties: sourceSys, feedbackSys, ctrlPIDSys, procUnitSys,

sourceDist, tfDist and addDist. They are mandatory

system elements. The optional feedforward control is

specified by the subtree of entity feedforwardCtrl. The

coupling relations of both structure variants are defined

in the attribute cplg1 of aspect simModel-ctrlSysDEC,

as discussed later.

According to [14], optional parts in an SES are ex-

pressed by a specialization node where one of its chil-

dren is a NONE element. A NONE element means

that the entity is not included at all. The selection at a

specialization is defined by an attribute called specrule.

The specrule of the specialization feedforwardCtrlSpec
defines that either the entity fc or NONE is selected dur-

ing pruning. The result of evaluating the specrule at

node feedforwardCtrlSPEC depends on the value of the

SESvar feedforward. The SESvar codes the two possi-

ble structure variants as values 1 or 0. Therefore, the

semantic condition f eed f orward ∈ [0,1] applies to the

SESvar. The entity fc and its subsequent aspect fcDEC
specifies the feedforward control structure as a compo-

sition of the two entities tfFeedforward and addFeed-
forward.

Aspects and multi-aspects can define coupling rela-

tions as attribute. These attributes are abbreviated with

cplg in Figure 4. Due to the varying system structures

specified in the SES, the couplings in attribute cplg1 of

aspect node simModel-ctrlSysDEC are defined using an

SESfcn. The following code is an excerpt of the SES-

fcn.

def cplgfcn(feedforward):

cplg = []

#fixed couplings

cplg.append(["sourceSys","y",

"feedbackSys","u1",""])

cplg.append([...

#variable couplings

if feedforward==0:

cplg.append([...

elif feedforward==1:

cplg.append([...

#return

return cplg

SNE 29(4) – 12/2019



212

Folkerts et al. Python-based eSES/MB Framework

The coupling definitions in cplg2 at node fcDEC are

invariable and can therefore be defined without using an

SESfcn.

According to Section 1, each leaf node defines an

mb-attribute referring to a basic model in the MB. The

other attributes of the leaf nodes define properties to

configure the linked basic models. The values for k and

Ti specified at node ctrlPIDSys are only default values,

which will be overwritten because they are parameters

under study.

2.3 Creating Basic Models with OpenModelica

OpenModelica defines a set of basic models for differ-

ent fields of engineering. An OpenModelica package
is created that contains all basic models. Although this

leads to a duplication of some components, this makes

the model base independent of potential future changes

in OpenModelica libraries. The package is filled with

the following basic models whose names correspond to

the names in the mb-attributes of the leaf nodes in the

SES:

• Constant as the setpoint for the controlled variable

• Step for stimulating the disturbance

• Feedback for closing the feedback control loop

• PID is the controller of the feedback control sys-

tem

• TransferFunction for representing the process, the

disturbance’s behavior, and the feedforward

• Add for adding signals

Each basic model can be configured according to the

attributes of the leaf node which they are linked to in

the SES. The package acts as an MB for OpenModelica

basic models.

2.4 Experiment Execution

For executing simulation based experiments the exper-

iment process and its goals need to be defined in a

Python script. This script implements the EC accord-

ing to Figure 2. The Python framework provides some

EC related template scripts. The goals of the experi-

ment were discussed in Section 2.1. The experiment

should start with the study of different PID controller

configurations using the control system structure with-

out feedforward controller. In case that the objectives

are not achieved by just varying the parameters k and Ti
of the PID controller, the study shall be carried out with

the additional feedforward control structure. A snippet

of the EC script with essential steps of the experiment

process is given next.

...

SESfile = ...

if conditions_for_experiment:

#prune, flatten, and build

SESvar = {"mysim": "OpenModelica",

"feedforward": 0}

PESfile = SESToPy("prune",SESvar,

SESfile)

FPESfile = SESToPy("flatten",PESfile)

smHandle = SESMoPy("build",FPESfile)

#execute

sim_param = ...

results = SESEuPy("simulate",smHandle)

...

elif conditions_for_experiment:

#prune, flatten, and build

SESvar = {"mysim": "OpenModelica",

"feedforward": 1}

PESfile = SESToPy("prune",SESvar,

SESfile)

FPESfile = SESToPy("flatten",PESfile)

smHandle = SESMoPy("build",FPESfile)

#execute

sim_param = ...

results = SESEuPy("simulate",smHandle)

...

The EC starts the experiment by setting the SES-

var mysim and f eed f orward. Next, the EC calls SES-

ToPy’s API method for pruning with the current SES-

var values and a reference to the file defining the SES

as JSON structure. The pruning process results in a

PES coded as JSON structure. Afterwards, the EC calls

SESToPy’s API method for flattening the PES. The cre-

ated FPES is similar to the FPES shown in Figure 5,

which represents the more complex FPES for the later

SESvar assignment f eed f orward = 1. A reference to

the file containing the FPES as a JSON structure is re-

turned to the EC. The EC then calls SESMoPy’s API

method for the build method and passes the FPES file

handle. SESMoPy determines the target simulator from

the attribute at the node simMethod and the value ranges

of the PID controller parameters under study from the

attribute at node expMethod in the FPES.
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Figure 5: Left: FPES to study the feedback control system structure with feedforward; Right: FPES representation in SESToPy.

Based on the information in the FPES and the ba-

sic models from the MB, SESMoPy creates multiple

files. For each configuration of the simulation model

of the control system one target simulator specific file

containing the model and its configuration is created.

Simulation models of one structure variant have differ-

ent configurations of the PID controller. Furthermore

a configuration file containing information about the

created models and the target simulator is created. A

handle to all the created files is returned by SESMoPy

to the EC, referred to as smHandle. The EC extends

the configuration file with simulation data, such as the

solver to use, etc. Then, the EC calls the tool SESE-

uPy and passes the smHandle as the link to the model

files and the configuration file. In collaboration with the

target simulation environment OpenModelica, SESE-

uPy creates the fully configured simulation model and

controls its execution. Figure 6 shows the structure

of a fully configured OpenModelica model, but with

feedforward controller, i.e. for the SESvar assignment

f eed f orward = 1. Finally, SESEuPy returns the simu-

lation results to the EC.

In case the results meet the experimental goals, the

overall results are calculated and returned by the EC.

Otherwise a new model configuration and generation

needs to be started. For this purpose, the eli f part in

the code snippet defining the EC defines the experi-

ment steps for the second system structure with the ad-

ditional feedforward controller by the SESvar assign-

ment f eed f orward = 1.

If the experimental goals have been achieved, the

overall results of the experiment are the necessary con-

trol structure and the appropriate PID controller param-

eter settings. Otherwise the failure to achieve the objec-

tives may also be established.

Figure 7 depicts the simulation results of the feed-

back control system resulting from the execution of the

presented EC. In parts (a) and (b) the simulation results

of the system structure without feedforward control and

with different PID controller parameter settings are pre-

sented. The required control goals of a settling time of

less than 15 seconds and a maximum overshoot of less

than 5% after a disturbance as specified in Section 2.1

for the tested PID controller parameter settings could

not be achieved. In part (c) of Figure 7 the simulation

results of the system structure with feedforward control

is presented. The required control goals are reached

and the PID controller parameter settings are returned

as overall results.

3 Conclusion and Future Work

In this paper free software tools for variant model-

ing are presented, beginning with the system speci-

fication with an SES up to automatic variant deriva-

tion, model building and execution. The eSES/MB in-

frastructure has been implemented as prototype Python

tools. They make it possible to model and simulate

engineering problems using different target simulation

environments. Future works will especially cover sup-

port for physical modeling, a deeper integration of FMI

into SESMoPy and test other target simulation environ-

ments.
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Figure 6: OpenModelica SM of the feedback control system with feedforward control.

Figure 7: (a) and (b): Without feedforward control and with different PID controller settings, (c): With feedforward control.
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