
199

S N E B E N C H M A R K N O T E

Solving ARGESIM Benchmark C22 ’Non-standard
Queuing Policies’ with MatlabGPSS

Peter Junglas1*, Thorsten Pawletta2

1Dep. of Engineering “Dr. Jürgen Ulderup”, PHWT Vechta/Diepholz, Schlesierstr. 13a, 49356 Diepholz, Germany; 1
*peter@peter-junglas.de
2Wismar Univ. of Applied Sciences, Fac. of Engineering, Research Group CEA, PF 1210, 23952 Wismar, Germany

SNE 29(4), 2019, 199-205, DOI: 10.11128/sne.29.bn22.10496

Received: November 18, 2019;

Accepted: November 22, 2019

SNE - Simulation Notes Europe, ARGESIM Publisher Vienna,

ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Abstract. The ARGESIM benchmark C22 ’Non-standard
Queuing Policies’ deals with queueing systems, where
entities can leave a queue in a dynamically changed or-
der. It is solved here with MatlabGPSS, a Matlab-based
implementation of the well-known GPSS modeling lan-
guage. Though quite old, it still has its merits, such as
precisely defined and flexible methods to deal with con-
current events and the concept of user chains, which are
more flexible than standard queueing blocks.

Introduction

The ARGESIM benchmark C22 [1] is concerned with

special queueing systems, which use a FIFO discipline

generally, but where some entities can leave the queue

prematurely or in a dynamically changed order. Its im-

plementation can be difficult in modeling environments,

which provide only monolithic queueing blocks that

don’t grant access to the entities waiting in a queue [2].

GPSS [3] is one of the oldest existing modeling lan-

guages. It uses the transaction-based paradigm to model

discrete event systems, and though being somewhat out-

dated, it is still a good example of a simple language

that uses only a few basic constructions to provide very

wide modeling capabilites. Therefore it should be a

good tool to study principal questions such as appro-

priate concepts for modeling of non-standard queues.

Among the few still existing implementations we

chose MatlabGPSS [4], because it is easily available

[5] and combines GPSS statements with general Mat-

lab code. This makes the implementation of com-

plex control structures and the compilation of statisti-

cal and graphical results much easier than relying on

pure GPSS constructs, thereby allowing to concentrate

on the basic questions of queue design.

GPSS is text-based and contains statements

for the generation and destruction of entities

(generate/terminate), the entering and leav-

ing of queues (queue/depart) and the reservation

and freeing of servers (seize/release). The

advance statement delays an entity for a given

time and is used to model service times. Each entity

can store an arbitrary number of parameters P(i),

similar to attributes in other modeling environments.

Additional functions Q(i), F(i) and CH(i) return

the number of entities stored in the i-th queue, server

(facility) or user chain.

Despite its name the queue statement does not im-

plement any queueing discipline, it is only used for ac-

counting purposes, e.g. to count the number of entities

entering a queue. Usually a simple FIFO discipline

within a priority level of entities is defined automati-

cally by the internal scheduling of the GPSS system.

For more complex queueing strategies one can use so

called user chains, which are more flexible than stan-

dard queues. Entities join a user chain with the link
statement, entering at the front or end or according to

a parameter value. The unlink statement allows any

entitiy to free one or more entities from a user chain and

to route them to arbitrary places. The exact possibilities

of unlink depend on the specific GPSS implementa-

tion; in MatlabGPSS entities can only be extracted from

the front or back end of a user chain.

In the following we will implement all tasks of the

C22 benchmark, with a special focus on the advantages

and shortcomings of the queueing mechanisms in Mat-

labGPSS and the available methods to specify the order-

ing of concurrent events. For the exact definition of all

systems and parameters refer to the benchmark defini-

tion [1]. The models and scripts necessary to reproduce

all results presented here are available from [6].

SNE 29(4) – 12/2019



200

Junglas and Pawletta Solving ARGESIM Benchmark C22 with MatlabGPSS

1 Basic Queuing System
1.1 Description of the Basic Model

The basic model can be easily implemented in GPSS

using standard methods. The complete source code –

omitting most variable initialisations and code for sta-

tistical results and plots, and adding line numbers for

easier reference – is given by:

1 init

2 nQ = 4;

3 model

4 generate(tA,0,1,nE,0)

5 [~, nr] = min(Q(1:nQ) + F(1:nQ));

6 P(3, nr);

7 queue(P(3),1)

8 seize(P(3))

9 depart(P(3),1)

10 advance(tS,0)

11 release(P(3))

12 terminate(1)

The only interesting part is in line 5 and 6, where the

number of the shortest queue (including server alloca-

tion) is computed and stored in an entity parameter.

1.2 Results of Deterministic Model

Entity ids are stored in a parameter, the queue lengths

are collected using GPSS function Q and plotted with

standard Matlab methods. The plots of the ids of the

last 20 outgoing entities over their exit time and of the

total queue length are shown in Figure 1.

80

85

90

95

100

id
s

outgoing entities

95 100 105 110 115 0 20 40 60 80 100
0

2

4

6

8

10

12

l qt

total queue length

Figure 1: Outgoing ids and total queue length for the basic

model.

1.3 Results of Stochastic Model

The stochastic model uses MatlabGPSS functions

expod and triangd to create exponentially or trian-

gularly distributed random numbers. For the computa-

tion of waiting times the entry times are stored in an

entity parameter. Table 1 displays statistical results for

the total queue length and entity waiting times.

lqt tq,i

avg max avg max

21.131 45.000 24.075 52.696

Table 1: Total queue lengths and queue waiting times for

the basic model.

1.4 Variants for Handling Simultaneous
Events

If several entities can move at the same time, their

order can be defined in GPSS using the command

priority N, which assigns an integer priority N ≥ 0

to an entity, where entities with larger priorities take

precedence over those with smaller priorities. The con-

currency order of entities with the same priority is not

defined in general, but depends on the GPSS implemen-

tation: While in GPSS/H the order is specified, in GPSS

World it is explicitely randomised [7]. Therefore one

should not rely on any given order, but use priorities to

guarantee the required behaviour.

For the basic model there are two critical situations

to consider:

1. An entity E1 wants to leave a server at the same

time that a queued entity E2 wants to enter a server

or a new entity E3 is generated.

2. A queued entity E2 wants to enter a server at the

same time that a new entity E3 is generated.

To get the required ordering E1 needs a higher pri-

ority than E2, which needs a higher priority than E3.

This can easily be achieved by generating events with

priority 0 and inserting the statements priority 1
between lines 7 and 8 of the source code above and

priority 2 between lines 9 and 10. Using knowl-

edge about the internal scheduling algorithm one could

reduce this to one priority statement.

SNE 29(4) – 12/2019



201

Junglas and Pawletta Solving ARGESIM Benchmark C22 with MatlabGPSS

To implement the alternative order, where a new en-

tity joins a queue, before another one leaves the server,

one generates all entities with priority 1 and lowers the

priority to 0 before an entity releases its server, e. g.

between lines 9 and 10 of the source code above. This

works, since the second critical situation is not possible

here. The result is shown in Figure 2.

80

85

90

95

100

id
s

outgoing entities

95 100 105 110 115 0 20 40 60 80 100
0

2

4

6

8

10

12

l qt

total queue length

Figure 2: Outgoing ids and total queue length for the

concurrency variant.

1.5 Comparison of Standard and Large
Version

The implementation of the large model in MatlabGPSS

is trivial: One only has to change the parameters, es-

pecially nQ = 40, and gets the results shown in Table

2.

lqt tq,i

avg max avg max

241.598 488.000 27.706 62.494

Table 2: Total queue lengths and queue waiting times for

the large model.

2 Jockeying Queues
2.1 Description of the Model

To implement the jockey queue system, one has to move

entities between different places in the model. This

is done with the GPSS statement transfer and la-

belling of statements, similar to a classical go-to. Since

such source code is hard to read, it is represented here

as a flow chart in Figure 3. In a graphical modeling en-

vironment similar models would use routing elements

such as gates and switches.

T

o1

LinkchC

.

.

Unlink chC

UnlinkchC

server
busy ?

o2

o3
o4

LinkchO

jockey?

UnlinkchO

o5

Set idx

Server
idx=dest

cust
prio=0

prio=2

op
prio=1

Figure 3: Flowchart of the jockey queues model.

The left side shows the creation of a single entity op
that acts as an operator: It checks, whether jockeying is

possible and moves the corresponding entity from the

end of its queue to the end of the shorter one. Since

jockeying can only happen when a queue gets shorter

after service completion, the operator entity waits in

a user chain chO, until it is unlinked by a leaving en-

tity. The actual computation of source and destination

queues is done with a simple Matlab function.

The right side describes the life of a normal cus-

tomer entity: After creation it computes the number

idx of the shortest queue available, then it enters the

user chain chC(idx), if the server is busy. It is un-

linked either from the head of the queue by a served

entity to get to the server next or from the end by the

operator to jockey to a different queue.

SNE 29(4) – 12/2019



202

Junglas and Pawletta Solving ARGESIM Benchmark C22 with MatlabGPSS

To make sure that jockeying happens before the gen-

eration of a new entity, the operator is generated with

priority 1, while the customer entities start with prior-

ity 0. Their priority is raised to 2 before they enter a

chain or a server, so that servicing and moving up have

precedence over jockeying.

2.2 Results of Deterministic Model

80

85

90

95

100

id
s

outgoing entities

95 100 105 110 115 0 20 40 60 80 100
0

2

4

6

8

10

12

l qt

total queue length

Figure 4: Outgoing ids and total queue length for the

jockeying model.

The requested plots are shown in Figure 4 and the

first five and last five jockeying events in Table 3.

t id src dest

6.5 6 1 2

7.5 7 1 3

8.5 8 1 4

11.0 10 1 2

12.0 11 1 3

.. .. .. ..

89.5 89 2 4

93.0 92 2 3

94.0 93 2 4

98.5 98 3 4

103.0 100 1 4

Table 3: First and last five jockeying events.

2.3 Results of Stochastic Model

To compute total queue waiting times for jockeying en-

tities, the single queue waiting times are accumulated in

entity parameters. The statistical results are displayed

in Table 4. The number of jockeying events in the cor-

responding run was 131.

lqt tq,i

avg max avg max

20.842 45.000 23.618 51.408

Table 4: Total queue lengths and queue waiting times for

the jockey model.

3 Reneging Queues

3.1 Description of the Model

Queue q1

.

.

Seize s1

Release s1

T

Split

not seen?

Set seen

Depart q1

Advance tS

Advance tR

not seen?

Set seen

Depart q1

T

o1

o2

o3

Set idx

wait for srv free

cust
prio=0

prio=2

prio=1

Figure 5: Flowchart of the renege queues model.

SNE 29(4) – 12/2019



203

Junglas and Pawletta Solving ARGESIM Benchmark C22 with MatlabGPSS

The chosen implementation of the reneging queue is

similar to the clone queue presented in [2]. It uses the

GPSS statements split to create a copy of an entity

and gate_fnu(), which halts an entity until a given

server is free. The basic idea is shown in Figure 5: After

entering a queue an entity is cloned, one copy waits for

the total reneging time tR, the other one tries to get the

server. A bookkeeping variable seen is set, whenever

one of the pair is ready, and checked before the action

of the other one. A clone that comes late, is simply

terminated.

To obtain the required order of concurrent events,

entities are generated with priority 0. The priority is

raised to 1 for the clones that are going to renege, and

to 2 for those that wait for the server.

3.2 Results of Deterministic Model

80

85

90

95

100

id
s

outgoing entities

90 95 100 105 110 0 20 40 60 80 100
0

2

4

6

8

10

l qt

total queue length

Figure 6: Outgoing ids and total queue length for the

reneging model.

Figure 6 shows the plots of the ids of the last outgoing

entities including reneging entities and the total queue

length. The reneging events are listed in Table 5.

t id

77.0 68

86.0 77

95.0 86

104.0 95

Table 5: Reneging events.

3.3 Results of Stochastic Model

The statistical results are displayed in Table 6. The

number of reneging events in the corresponding run was

53.

lqt tq,i

avg max avg max

4.615 15.000 4.882 9.000

Table 6: Total queue lengths and queue waiting times for

the renege model.

4 Classing Queues

4.1 Description of the Model

The implementation of the classing queue uses a sin-

gle entity for the operator and two user chains for each

classing queue: c1 for incoming entities and c2 for the

entities, whose class is currently being served (cf. Fig-

ure 7). New GPSS constructs used here are logical vari-

ables that work like gates in graphical environments,

together with the functions logic_s()/logic_r()
to set/reset a variable and gate_ls() to wait until a

variable is set.

After an initial waiting time tC the operator entity

checks whether there are any entities to be called, if nec-

essary it waits until entities arrive. Then it computes the

next active class and unlinks all customer entities from

the chain c1. After the customer entities of the current

class have been served, the operator loops to call the

next class.

New customer entities first enter the c1 chain,

choosing the shortest queue as always. When the op-

erator calls for a new class, the matching entities pro-

ceed to their c2 chain and wait to be served, the other

ones reenter c1. This behaviour is similar to the shuf-

fle queue pattern in [2]. Before leaving the system after

service, a customer entity checks, whether there are still

entities of its class being served, and wakes up the op-

erator, if not.

Due to the complex “jockeying” structure of the

class queue one needs a bit of fine-tuning to obtain the

requested order of concurrent events: The operator is

created with priority 0, the customer entities with pri-

ority 1. This guarantees that the operator call always

comes last among concurrent events.

When an entity enters the queue, its priority is risen

to 3, so that entering and leaving of the server will pre-

ceed the arrival of a new entity. After the entity has left

the server and freed the next entity from its chain, its

priority is lowered to 2 so that its successor can enter

the server, before the server state is checked.

SNE 29(4) – 12/2019



204

Junglas and Pawletta Solving ARGESIM Benchmark C22 with MatlabGPSS

T

server
busy ?

class ok?

server
busy ?

.

.

Link cO

Linkc1

o1

o2

o3

server
busy ?

o4

Set next class

Unlink
 (all)

c1

Set idx, class

Server

UnlinkcO

Unlinkc2

Linkc2

Advance tC

open gate

all c1 empty
 close gate

op
prio=0

cust
prio=1

prio=2

prio=3

bu er

Figure 7: Flowchart of the class queues model.

After the operator has unlinked all entities in the c1
chains, it has to wait, until any of the freed entities have

claimed a server, before checking. This is done with

the GPSS buffer statement that gives up immediate

control and moves the calling entity to the end of the

chain of concurrent events.

4.2 Results of Deterministic Model

60

65

70

75

80

85

90

95

100

id
s

outgoing entities

180 190 200 210 0 50 100 150 200
0

10

20

30

40

50

60

l qt

total queue length

Figure 8: Outgoing ids and total queue length for the

classing model.

The plots of the ids of the last outgoing entities and

the total queue length are shown in Figure 8, average

and maximal queue waiting times per class in Table 7.

class 1 2 3 4 5

avg 66.80 60.85 41.85 50.98 60.77

max 121.50 104.00 77.00 120.00 125.50

Table 7: Queue waiting times per class (deterministic

model).

4.3 Results of Stochastic Model

The usual statistical results are displayed in Table 8, av-

erage and maximal queue waiting times per class in Ta-

ble 9.

lqt tq,i

avg max avg max

82.615 152.000 122.286 279.325

Table 8: Total queue lengths and queue waiting times for

the class model.

SNE 29(4) – 12/2019



205

Junglas and Pawletta Solving ARGESIM Benchmark C22 with MatlabGPSS

class 1 2 3 4 5

avg 130.99 118.26 109.18 124.43 126.93

max 279.32 255.62 240.06 273.24 272.97

Table 9: Queue waiting times per class (stochastic model).

5 Conclusions

The combination of basic, but flexible GPSS statements

with the versatility of the Matlab environment has made

possible a straightforward implementation of all bench-

mark tasks. Matlab has been especially useful for the

overall control structure of the programs, for computa-

tions like the determination of source and destination

in the jockeying case and for calculating and plotting

results.

The immediate advantages of a textual modeling

language as compared to a graphical environment have

been shown by the trivial implementation of a system

with 40 queues. Another bonus is the handling of con-

current events: The behaviour can be flexibly adapted

using priorities and the buffer statement.

However, the central point of this investigation,

namely the flexibility of queue modeling constructs, has

shown mixed results: On the one hand the separation

of queue storage (link) and queue control (unlink)

with different entities simplified the control structure of

the models, and the possibility to extract entities from

the front and the back end of a queue allowed for a sim-

ple implementation of the jockey queue. On the other

hand, for the renege and class queues we had to use

clumsy constructs like the clone and shuffle queues, be-

cause MatlabGPSS provides no direct access to enti-

ties within a queue. Here other GPSS implementations

had more options, e. g. the extraction of entities using

boolean expressions containing entity parameters [3].

In view of the age of MatlabGPSS an appropriate

extension seems to be pointless. Nevertheless the flex-

ibility and preciseness of GPSS are still outstanding

features. Whether modern graphical environments can

compete, will hopefully be seen by future implementa-

tions of the C22 benchmark.

Acknowledgement

The first author (P. J.) likes to thank the team of the

CEA research group in Wismar for the warm hospitality

extended to him and many helpful discussions.

References
[1] Junglas P, Pawletta Th. Non-standard Queuing

Policies: Definition of ARGESIM Benchmark C22.

Simulation Notes Europe SNE. 2019; 29(3): 111-115.

doi: 10.11128/sne.29.bn22.10481

[2] Austermann L, Junglas P, Schmidt J, Tiekmann C.

Conceptional problems of transaction-based modeling

and its implementation in SimEvents 4.4. Simulation
Notes Europe SNE. 2017; 27(3): 137–142. doi:

10.11128/sne.27.tn.10383

[3] Schriber Th J. An introduction to simulation using
GPSS/H. New York: John Wiley & Sons, Inc.; 1991.

437 p.

[4] Pawletta Th, Drewelow W, Pawletta S. Discrete Event

Simulation in Interactive Scientific and Technical

Computing Environments. In: Proc. 12th European
Simulation Multiconference on Simulation; 1998 Jun;

Manchester. 529-533. ISBN 1-56555-148-6.

[5] Pawletta Th., et al. The MATLAB GPSS Toolbox.

Online:

http://www.cea-wismar.de/tbx/mgpss/
(called 2019-11-14).

[6] Junglas P. Argesim C22 models and scripts. Online:

http://www.peter-junglas.de/fh/
simulation/argesimc22.html (called

2019-11-14).

[7] Minuteman Software. GPSS World Reference Manual.
Online: http://minutemansoftware.com/
reference/reference_manual.htm (called

2019-11-14).

SNE 29(4) – 12/2019


