
ARGESIM Benchmark C11 ’SCARA Robot’:
Comparison of Basic Implementations in EXCEL

and MATLAB
Olga Rekova1,2, Nicole Pelzmann1,2, Philipp Mandl1,2, Maximilian Hoffmann1,2,

Horst Ecker2*, Andreas Körner1, Martin Bicher1,3, Felix Breitenecker1

1Mathematical Modelling and Simulation Group, Inst. of Analysis and Scientific Computing
2Inst. of Mechanics and Mechatronics, 3Inst. of Information System Engineering
1 TU Wien, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria; *horst.ecker@tuwien.ac.at

SNE 29(3), 2019, 149 - 158, DOI: 10.11128/sne.29.bne11.10488

Received: November 10, 2018; Revised: March 13, 2019;

Revised: July 25, 2019; Accepted:July 30, 2019

SNE - Simulation Notes Europe, ARGESIM Publisher Vienna

ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Abstract.

Introduction
ARGESIM Benchmark C11 ’SCARA Robot’ is based
on a mechanical model for a three-axis SCARA robot
(Selective Compliance Assembly Robot Arm).

The three degrees of freedom are constituted by two

vertical revolute joints (angles q1, q2) and one vertical

prismatic joint (distance q3) as shown in Figure 1.

Such a system can be fully described by an implicit

second-order system of differential equations:

M�̈q =�b (1)

Here �̈q = (q̈1, q̈2, q̈3)
T represents the second derivative

of the joint vector, and M is the mass matrix, which

has a block-diagonal form and can be inverted symbol-

ically:

Figure 1: Three-axis SCARA robot, three degrees of freedom

q1 (rotational), q2 (rotational), q3 (translational). [1].

149

M =

⎡
⎣

ma11 ma12 0

ma21 ma22 0

0 0 ma33

⎤
⎦ (2)

The components of the mass matrix are given in the

definition of the benchmark [1], but can also easily be

derived using Lagrangian mechanics (neglecting the ro-

tational kinetic energy of the load m3L and of the motor

for the vertical axis):

ma11 = Θ1 +2Θ2cos(q2)+Θ3

ma12 = Θ2cos(q2)+Θ3

ma21 = ma12

ma22 = Θ3

ma33 = m3L +Θ3motu2
3

Here Θi are the moments of inertia. These moments are

calculated based on the assumption that the two physi-

cal links are two rods of mass m1 and m2 with homoge-

neous mass distribution along their length L1 and L2.

The right-hand side�b = (b1,b2,b3)
T is made up of

the following equations, whereby T1 and T2 are the joint

torques and T3 is the joint force - inputs for the uncon-

trolled systems:

b1 = T1 +Θ2(2q̇1q̇2 + q̇2
2)sin(q2)

b2 = T2 −Θ2q̇1
2sin(q2)

b3 = T3 −m3Lg

For operation, servo motors for each axis drive the robot

following a specific control scheme (joint torques and

joint force are proportional to the current of the respec-

tive motor). The electrical relationship of the armature

of a robot servo motor is given by a first order differ-

ential equation for the current Ii of the servo motors,

whereby the current Ii must be limited to Iai:

İi = gI,i =
Uai − kTi ui q̇i −RaiIai

Lai
, i = 1,2,3

Iai = [−Imax
i ≤ I1 ≤ Imax

i], i = 1,2,3 (3)

Here kTi , ui, Rai, and Lai are parameters, the control

voltages Ui and Uai resp. result from PD control for

point-to-point movement with target joint position vec-

tor �̂q = (q̂1, q̂2, q̂3)
T :

Ui = Pi(q̂1 −qi)−Diq̇1], i = 1,2,3

Uai = [−Umax
i ≤U1 ≤Umax

i], i = 1,2,3 (4)

1 Explicit State Space Model

Challenge of this SCARA robot benchmark report was

a proper implementation in the spreadsheet tool EX-

CEL and the comparison with a (basic) MATLAB im-

plementation. EXCEL is no simulator, it does not pro-

vide ODE solvers or other simulation tools. But simple

ODE solvers can be easily implemented by means of

recursive cell update in columns. Consequently, solver

choice was explicit Euler ODE solver and explicit Heun

ODE solver, for an explicit state space

�̇x = �f (�x) (5)

given on a grid t0, t1, ..., tn,�xi =�x(ti) with constant step-

size h = ti+1 − ti by

�x E
i+1 = �xi +h ·�f (�xi) (6)

�xH
i+1 = �xi +

h
2
· (�f (�xi)+�f (�xi +h ·�f (�xi)))

= �xi +
h
2
· (�f (�xi)+�f (�x E

i+1)) (7)

To formulate the robot with servo motors and control in

explicit state space form (5), first the second derivatives

in (1) were replaced by three additional states, and the

currents for the servo motors in (3) were also integrated

in the state space, resulting in a 9 by 9 implicit system:

A(�x) ·�̇x =�g(�x) (8)

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ma11 ma12 0 0 0 0 0 0 0

ma21 ma22 0 0 0 0 0 0 0

0 0 ma33 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�̇x = (q̈1, q̈2, q̈3, q̇1, q̇2, q̇3, İ1, İ2, İ3)
T

�x = (q̇1, q̇2, q̇3,q1,q2,q3, I1, I2, I3)
T

�g(�x) = (b1,b2,b3, q̇1, q̇2, q̇3,gI,1,gI,2,gI,3)
T

As the mass matrix (2) can be inverted symbolically,

also the matrix A(�x) in (8) can be inverted symbolically,

so that the so-called semi-linear implicit state space de-

150

et al. BNE

scription (8) can be made explicit:

�̇x = A(�x)−1 ·�g(�x) = �f (�x) ()

The explicit state space description (9) can now directly

be inserted in the algorithm for the Euler solver (6) or

Heun solver (7), if the limitations for the servo motor

currents due to (3) are not necessary (otherwise for the

limitations a special implementation must be used). The

simple Euler solver (6) is of approximation order 1 and

has a limited area of stability, so that an appropriate

small step size must be used. The Heun solver (7) –

which starts with an Euler step and improves the result

by the trapezoidal rule – is of approximation order 2 and

has also a limited area of stability, but allowing slightly

bigger step sizes than Euler solver.

As conclusion, Task A – Implicit Model Handling is

performed by transformation into an explicit state space

description for proper use with explicit ODE solvers.

2 Implementation of
Point-to-point Motion

The second task Task b - Point-to-Point Movement re-

quires a proper implementation and simulation in the

time domain for a point-to-point movement of the robot

arm. This benchmark study compares an EXCEL im-

plementation and a MATLAB implementation based on

explicit Euler solver and explicit Heun solver using the

explicit state space description (9), with modifications

for the limitations of the currents. For better compar-

ison, the algorithmic formulations in EXCEL and in

MATLAB are as ’near’ as possible, and no EXCEL

macro features and no MATLAB modules are used.

2.1 Euler implementation – EXCEL

EXCEL is no simulator, it does not provide ODE

solvers or other simulation tools. But simple ODE

solvers can be easily implemented by means of recur-

sive cell update in columns.

Figure 9 (see last section) shows parts of the

spreadsheet implementation. There, the first row de-

notes time and states t q1dot q2dot q3dot q1
q2 q3 I1 I2 I3 in columns P Q R S T U V
Z AA AB, and the second row contains the initial val-

ues – all zero.

The following rows are recursive updates for time

ti+1 = ti + h in column P, and due to (6) Euler integra-

tion xi+1 = xi +h · f (xi) in columns P Q R S T U V
Z AA AB for the states q̇1, q̇2, q̇3,q1,q2,q3, I1, I2, I3, in

EXCEL notation for instance given

for time t
P3: = P2 + h
P4: = P3 + h
P5: = P4 + h
... ...

for state q̇1

Q3: =Q2+h*f1(Q2 R2 S2 T2 U2...)
Q4: =Q3+h*f1(Q3 R3 S3 T3 U3...)
Q5: =Q4+h*f1(Q4 R4 S4 T4 U4...)
... ...

for state q1

T3: =T2+h*f4(Q2 R2 S2 ...)=T2+h*Q2
T4: =T3+h*f4(Q3 R3 S3 ...)=T3+h*Q3
T5: =T4+h*f4(Q4 R4 S4 ...)=T4+h*Q4
... ...

Here the formula functions f1,f2,...,f9 cor-

respond to the derivative vector (f1, f2, ..., f9)
T .

f1,f2,f3 are relatively complicated, as they result

from symbolic inversion of the mass matrix (2) – they

need auxiliary variables for simplification (see Figure

10, last section); f4,f5,f6 are trivial, as they are only

integrating the velocities (see above); and f7,f8,f9
are complicated because of the state limitations due

to (3) and (4) – the classical problem of space vari-

ables which must be limited. The following code snip-

pet shows the EXCEL formula for the Euler update of

x1 = q̇1:

q1dot,i = q1dot,i-1+h*
(-ma22/(ma12,i*ma21,i-ma11,i*ma22)*
(u_1*3^0,5/2*kt_1*Ia1,i-1+Th_2*
(2*q1dot,i-1*q2dot,i-1+q2dot,i-1^2)*
SIN(q2,i-1))+ma12,i/

(ma12,i*ma21,i-ma11,i*ma22)

*(u_2*3^0,5/2*kt_2*Ia2,i-1-Th_2*
q1dot,i-1^2*SIN(q2,i-1)))

The index i hereby implies the time step, the values

for these variables have to be calculated for each time

step in the EXCEL sheet – in the EXCEL formulas all

variables with a time index are replaced with the respec-

tive cell name. Variables without an index are constant

and are named cells.

In order to implement the case distinction for the

current of the motors an interim result for the current

is calculated, based on the ODE and the limitations for

current and voltage due to (3) and (4). These interim

151

 et al. B

 N E

for the MATLAB Euler integration it is needed to make

use of IF-statements with logic queries to implement

the equations of the current and the voltage of the mo-

tors in MATLAB. These IF-statements are embedded

within the ode solver’s FOR-loop.

First results for the point-to-point motion of the tool

tip in 3D space using the Euler solver with a step size

of 0.0004 show a reliable behaviour (see Figure 2). The

kinematic restrictions result in a bend of the path toward

the end and the target position for q1 and q2 is reached

before that of q3.

Figure 2: Point-to-point motion of the tool tip in 3D space

(Euler solver, MATLAB, step size 0.0004).

2.3 Heun Implementation –

The Heun solver requires two evaluations of the deriva-

tive function vector �f (�x), the first �f (�xi) for the Euler

approximation (6) by �xi
E
+1 =�xi + h · �f (�xi), and the sec-

ond �f (�xi
E
+1) for the Heun correction due to (7).

For both slope vectors, in the EXCEL implementa-

tion now auxiliary variables (new columns) are used:

K1_1,...,K1_9 for �f (�xi), and K2_1,...,K2_9
for �f (�xi

E
+1) (see Figure 10, last section). Using these

auxiliary variables, which also double the auxiliary

variables for components of the inverted mass matrix,

the Heun step for the first state q1_dot (being x1(ti+1))

becomes:

K1,1,i = q1ddot,i-1 = -ma22/

(ma12,i-1*ma21,i-1-ma11,i-1*ma22)*
(u_1*3^0,5/2*kt_1*Ia1,i-1+Th_2*

calculations allow to limit the integration on the deriva-

tive, instead on the output: Since these interim results

could result in values above the given threshold for

these quantities an IF-statement is used to check if they

are above their maximal or below their minimal values.

If the interim results are outside the allowed region the

given boundary values are used for the calculations, and

if they are within the allowed region the interim values

are used – see following code snippet:

U1,i = P_1*(q1_t-q1,i)-D_1*q1dot,i

U1a,i = IF(ABS(U1,i)>U_1maxreg;
U_1maxreg*SIGN(U1,i);U1,i)
I1,i = I1,i-1+h*((U1a,i-1-kt_1*
u_1*q1dot,i-1-R_a1*Ia1,i-1)/L_a1)

I1a,i = IF(ABS(I1,i)>I_1max;I_1max*

SIGN(I1,i);I1,i)

2.2 Euler Implementation – MATLAB

MATLAB is a powerful numerical programming en-

vironment for any tasks, also for ’manual’ program-

ming of dynamic simulations. SIMULINK is a MAT-

LAB extension for graphical modelling and simulation

of dynamic systems based on input/output relations,

equipped with a powerful so-called ODE suite with

many different ODE solvers – from explicit Euler solver

to implicit stiff system solver with state event detection.

In MATLAB only a subset of this ODE suite is avail-

able, which does not include Euler solver and Heun

solver – but both solvers – named ODE1 and ODE2 –

can be downloaded from MathWorks as m-file [2]. As

basic ODE1 solver and basic ODE2 solver only termi-

nate on time conditions and do not provide state event

termination, for the tasks of this benchmark both solvers

had to be modified – for Task b - Point-to-Point Move-
ment using a simple IF-statement for terminating the

integration loop (state update loop) as soon as a certain

state is reached. For Task c - Collision Avoidance more

complex IF-statements are necessary to distinguish and

terminate the different simulation phases.

Generally, ODE solver libraries require precise for-

mulation of the derivative function �f (�x) and perform
the integration steps (the state updates) unconditionally

- so also MATLAB’s ODE suite does. That means that

derivatives can be limited in the formulation of the func-

tion, but states cannot be limited directly.

In case of the SCARA robot, the state variables for the

current must be limited in advance, which requires a

modification of the integration step. Consequently, also

152

et al. BNE

(2*q1dot,i-1*q2dot,i-1+q2dot,i-1^2)*
SIN(q2,i-1))+ma12,i-1/

(ma12,i-1*ma21,i-1-ma11,i-1*ma22)*
(u_2*3^0,5/2*kt_2*Ia2,i-1-Th_2*
q1dot,i-1^2*SIN(q2,i-1))

K2,1,i = q1ddot,pred,i-1 = -ma22/

(ma12,i-1*ma21,i-1-ma11,i-1*ma22)*
(u_1*3^0,5/2*kt_1*Ia1,pred+Th_2*
(2*(q1dot,i-1+h*K1,1,i-1)*
(q2dot,i-1+h*K1,2,i-1)+

(q2dot,i-1+h*K1,1,i-1)^2)*
SIN(q2,i-1+h*q2dot,i-1))+

ma12,i-1/

(ma12,i-1*ma21,i-1-ma11,i-1*ma22)*
(u_2*3^0,5/2*kt_2*Ia2,pred,i-1-Th_2*
(q1dot,i-1+h*K1,1,i-1)^2*
SIN(q2,i-1+h*q2dot,i-1))

q1dot,i = q1dot,i-1+(h/2)*
(K1,1,i-1+K2,1,i-1)

In the above EXCEL formula, the last two lines rep-

resent the Heun update due to (7).

Predicted values for limited variables as currents and

voltages are calculated separately within their bound-

aries, so in above formula no conditional statements are

necessary (but again the number of auxiliary variables

represented in new columns increase):

U1pred,i = P_1*
(q1_t-(q1,i+h*K1,1,i))-

D_1*(q1dot,i+h*K1,1,i)

U1a,pred,i = IF(ABS(U1,pred,i)>

U_1maxreg;U_1maxreg*
SIGN(U1,pred,i);U1,pred,i)

I1a,pred,i = IF(ABS(I1,i+h*K1,1,i)>

I_1max;I_1max*SIGN(I1a,i+h*K1,1,i);

I1a,i+h*K1,1,i)

Despite the mathematical simplicity of the Heun

method the necessity of many auxiliary variables the

complexity of the calculations in EXCEL increases. A

better, but advanced EXCEL technique would be the

use of EXCEL macros for the derivative functions.

2.4 Heun Implementation – MATLAB

The implementation of the Heun method in MATLAB

directly follows the Euler implementation, but using

two evaluations of the derivative function with follow-

ing use of trapezoidal rule due to (7) in the state update

loop. Again the provided Heun solver has to be modi-

fied with respect to the state limitations for the currents

– with formula very similar to the above sketched EX-

CEL formula.

3 Obstacle Avoidance

The third task Task c - Collision Avoidance requires ex-

tension of the model description for handling a collision

avoidance manoeuvre. The obstacle, a box, is situated

at a certain x-position xobs, and has a certain height hobs.

If the tool tip of the robot gets too near to the obstacle in

the xy-plane (nearer than a critical distance dcrit), mo-

tion in xy-plane must stop, and the robot can move only

upwards in z-direction (q3-direction) as fast as possible,

until the height of the obstacle is reached. This collision

avoidance manoeuvre is given by condition formula

(d = xtip − xobs)� dcrit ∧ q3 < hobs)

3.1 Euler and Heun Implementation – EXCEL

For EXCEL implementation, same the principles as in

Task b - Point-to-Point Movement are used, but with

more complicated control actions depending on condi-

tions. Consequently, several IF-statements as well as

new auxiliary variables are added to implement the col-

lision avoidance manoeuvre, including Cartesian coor-

dinates for the positions.

During each step the distance d in x-direction be-

tween the tool tip and the obstacle due to (10) is calcu-

lated. As soon as this distance is smaller than the crit-

ical distance and the tool tip is not above the obstacle

height target x-position and target y-position are set to

the current x-position and current y-position, as well as

the boundaries for voltages of the motors are changed

to the emergency maximum. This new target position

as well as voltage maxima are kept until the tool tip has

risen above the obstacle height.

To realize the switch of the target position to the cur-

rent position an auxiliary variable d_mod is calculated

which is equal to the actual distance to the obstacle as

long as it is bigger than the critical distance, but frozen

after the distance falls below the critical value and the

tool tip is below the obstacle height. By referencing

to this d_mod and to the current z-position of the tool

tip, the variable boundaries can be changed comfort-

ably to their emergency maximums after the distance

falls below the critical distance, and all other calcula-

153

 et al. B

 N E

tions are taken from formulas used in the implementa-

tion for Task b - Point-to-Point Movement. The EXCEL

formulas for this controlling d_mod are:

dmod,i = IF(AND(dmod,i-1<

d_crit;q3,i-1-h_obs<0);

d_mod,i-1;d,i)

q1_t,i = IF(AND(q3,i-h_obs<0;

d_mod,i<d_crit);q1,i-1;q1_t,i-1)

U1a,i = IF(AND(q3,i-h_obs<0;

d_mod,i<d_crit);IF(ABS(U1,i)>

U_1max;U_1max*SIGN(U1,i);U1,i);

IF(ABS(U1,i)>U_1maxreg;U_1maxreg*
SIGN(U1,i);U1,i))

The method of freezing d_mod is chosen to avoid

switching back to the original target position before the

tool tip has reached a height above the obstacle and

thereby oscillating around the critical distance.

The Heun implementation in EXCEL follows the

Euler implementation, but using for state update the

Heun solver with additional variables as given in Task b
- Point-to-Point Movement.

3.2 Euler and Heun Implementation –
MATLAB

The MATLAB implementation chooses a separation of

the dynamics in three phases: PD-controlled move-

ment to target position until obstacle detection, obsta-

cle avoidance movement until non-critical heights, and

PD-controlled movement to target position. For the first

phase, the ODE1 solver from Task b - Point-to-Point
Movement is used, extended by movement stop at obsta-

cle detection due to (10); the second phase is governed

by an modified ODE1 solver which uses the (simpler)

collisions avoidance control, until a non-critical height

is reached, and the third phase can make use of the

ODE1 solver from Task b - Point-to-Point Movement.
In MATLAB all results are concatenated:

y1 = ode1_1(@(t,y) reach_target(t,y),

tspan,y0);

y2 = ode1_2(@(t,y) avoid_obs(t,y),

tspan,y1(length(y1),:));

y3 = ode1_3(@(t,y) reach_target(t,y),

tspan,y2(length(y2),:));

integration loop of ODE1_1 if the tool tip drops be-

low the security threshold due to (10). The second IF-

statements stops the integration loop of ODE1_2, if the

tool tip has exceeded the obstacle heights, and the inte-

gration loop of ODE1_3 stops when the tool tip reaches

the target position:

if 1 - (abs(L1*cos(Y(4,i+1)) +

L2*cos(Y(4,i+1)+Y(5,i+1)) - xobs)

<=dcrit && (Y(6,i+1)<hobs)) == 0

if (1 - ((Y(6,i+1) - hobs)>hsafe)) == 0

if (abs(Y(4,i+1) - 2) < 0.001

& abs(Y(5,i+1) - 2) < 0.001

& abs(Y(6,i+1) - 0.3) < 0.001) - 1 == 0

To detect the obstacle, the tool tip position is cal-

culated and an IF-statement checks whether the posi-

tion exceeds any restriction. Afterwards when the event

is detected the position of the tool tip is locked in x-

direction and y-direction, and the second ode solver

started.

To detect the end of the obstacle, another IF-statement

compares the current tool tip height with the obsta-

cle height and stops the solver as soon as the tool tip

exceeds the obstacle height. Thereafter the last ODE

solver takes over and lets the robot move freely until

the tool tip arrives at the designated position.

The Heun implementation simply replaces the mod-

ified Euler ODE1 solver by the modified Heun ODE2

solver for construction the three different Heun solvers

ODE2_1, ODE2_2, and ODE2_3 for the three phases.

4 Results – Comparison –
Discussion

In order to compare the different solutions between

MATLAB and EXCEL on the one side, and between

Euler solver and Heun solver, all simulations are per-

formed with the same step size h. Results from EX-

CEL simulations are imported into MATLAB and plot-

ted with MATLAB plot features.

The choice of a proper step size is a critical task. Eu-

ler solver and Heun solver are explicit solvers, so they

have limited stability regions, and so the step size is

also limited – on the other hand side small step sizes

result in a very big number of rows in the EXCEL im-

plementations - a minimum of 3000 in the calculated

simulations.

In the implemented ODE solvers IF-statements

(given below) stop the integration loop on occurence

of a specific event. The first IF-statements stops the

154

et al. BNE

4.1 Results point-to-point motion

The reliable results in Figure 2 for the point-to-point

motion of the tool tip in 3D are calculated with a step

size of h = 0.0004. This step size requires about 7000

rows in EXCEL.

0 0.5 1 1.5

Time [s]

-0.5

0

0.5

1

1.5

2

2.5

Jo
in

t P
os

iti
on

Task B: Euler 0.001

q1 (Matlab)
q2 (Matlab)
q3 (Matlab)
q1 (Excel)
q2 (Excel)
q3 (Excel)

Figure 3: States q1, q2 and q3 over time for Task b -
Point-to-Point Movement, Euler solver with step size
0.001. EXCEL solutions (dotted lines) and MATLAB
solutions (solid lines) show negligible differences.

0 0.5 1 1.5

Time [s]

-0.5

0

0.5

1

1.5

2

2.5

Jo
in

t P
os

iti
on

Task B: Euler 0.002

q1 (Matlab)
q2 (Matlab)
q3 (Matlab)
q1 (Excel)
q2 (Excel)
q3 (Excel)

Figure 4: States q1, q2 and q3 over time for Task b -
Point-to-Point Movement, Euler solver with step size
0.002. EXCEL solutions (dotted lines) and MATLAB
solutions (solid lines) differ significantly.

Time domain results for the joint coordinates with

same step size h= 0.0004 and step size up to to step size

of h = 0.001 (only 3000 rows necessary) coincide for

EXCEL and for MATLAB implementation – ’classical’

correct results for this benchmark, as given in Figure 3.

Experiments with the step size in Task b - Point-to-
Point Movement indicate, that the step size h = 0.001 is

a ’critical’ maximal allowable step size. Figure 3 com-

pares the MATLAB results and the EXCEL results for

this step size h = 0.001 and shows graphically a good

coincidence; also a numerical comparison results in a

minor expected deviation.

But for a step size of h = 0.002 and bigger the so-

lutions differ more significantly, as documented in Fig-

ure 4 graphically, and as checks of the numerical dif-

ferences proof. Interestingly, the differences of the

EXCEL solutions with h = 0.001 and h = 0.002 are

bigger than the differences of the MATLAB solutions

with h = 0.001 and h = 0.002. A possible reason is a

more sensitive behaviour of EXCEL due to accumulat-

ing round-off errors – a topic for further investigation

and better error parameter tuning in EXCEL.

Usually the use of a higher order ODE solver lets

expect more accurate results with the same step size, or

results with same accuracy using a bigger step size. Un-

fortunately this expectation does not hold for the Heun

solver in case of the investigates model, although he has

order 2. The stability region of the Heun solver extends

only in the imaginary direction for the eigenvalues. This

would allow bigger step sizes for oscillating behaviour,

being not the case in the investigated model. Conse-

quently also for the Heun solver the step size h = 0.001

is the critical maximal possible step size. A bigger step

h= 0.002 results in differences similar to that of the Eu-

ler solver with step size h = 0.002, and additionally the

EXCEL solutions are more stronger affected by round-

off errors, so that EXCEL results with Heun and step

size h = 0.002 are worse than EXCEL results with Eu-

ler and step size h = 0.002, especially EXCEL results

for state q2 seem to be definitely wrong.

4.2 Results collision avoidance

Generally, the results for Task c - Collision Avoidance
are reliable for the MATLAB implementation and for

the EXCEL implementation, if the step size is chosen

properly.

Figure 5 displays the results for the tool tip posi-

tion xtip and for q3 − hobs, the distance to the obsta-

cle in z-direction over time for Euler solver with step

155

 et al. B

 N E

size h = 0.001: the tool tip is approaching the obsta-

cle, after detection stopping movement in x-direction

(also moving ’back’ a little), and continuing x-direction

movement after reaching the security height. The solid

lines for the MATLAB solutions overlap the dotted

lines for the EXCEL solutions, as the results are almost

the same. These results are similar to other benchmark

solutions already published, with slight differences at

begin of the collision avoidance manoeuvre because of

differences in implementing the manoeuvre.

Again the step size h = 0.001 turns out to be the

maximal allowable one. Euler solver with step size

h = 0.002 results in differences between MATLAB im-

plementation and EXCEL implementation for the tool

tip position xtip already in the first phase (approach-

ing the obstacle), increasing in the phase of collision

avoidance manoeuvre, and couriously overshooting in

the third phase (Figure 6). The use of the Heun solver

does not improve the accuracy, in contrary: the devia-

tions between MATLAB implementation and EXCEL

implementation for step size h = 0.002 are worsening.

For completeness, Figure 7 shows the motion of the

tool tip in 3D space. There, due to the momentum of

the system the tool tip overshoots the critical distance

at first and then returns to the newly set target position

in the xy-plane resulting in a slight bend of the motion

next to the obstacle,

0 0.5 1 1.5

Time [s]

-0.4

-0.2

0

0.2

0.4

0.6

0.8

[m
]

Task C: Euler 0.001

(q3-hobs) (Matlab)
xtip (Matlab)
(q3-hobs) (Excel)
xtip (Excel)
xobs

Figure 5: Tool tip position in x-direction xtip and distance to
the obstacle in z-direction q3 −hobs for Task c -
Collision Avoidance, calculated with Euler solver
and step size h = 0.001.MATLAB and EXCEL
solutions are almost congruent.

0 0.5 1 1.5

Time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

[m
]

Task C: Euler 0.002

(q3-hobs) (Matlab)
xtip (Matlab)
(q3-hobs) (Excel)
xtip (Excel)
xobs

Figure 6: Tool tip position in x-direction xtip and distance to
the obstacle in z-direction q3 −hobs for Task c -
Collision Avoidance, calculated with Euler solver
and step size h = 0.002. MATLAB solutions and
EXCEL solutions differ, the EXCEL solution shows a
slight overshoot.

1

Task C: Euler 0.001

Y-Axis [m]

0.50

0.05

0.1

0.15

Z
-A

xi
s

[m
]

0.2

-0.5

0.25

X-Axis [m]

0 0.5 01

Matlab
Excel

Figure 7:Motion of the tool tip in 3D space for Task c -
Collision Avoidance using Euler solver with a step
size h = 0.001. Due to the momentum of the
system the tool tip overshoots the critical distance
at first and then returns to the newly set target
position in the xy-plane resulting in a slight bend of
the motion next to the obstacle.

156

et al. BNE

4.3 Comparison MATLAB - EXCEL

MATLAB is a powerful numerical programming en-

vironment for any tasks, also for ’manual’ program-

ming of dynamic simulations. SIMULINK is a MAT-

LAB extension for graphical modelling and simulation

of dynamic systems based on input/output relations,

equipped with a powerful so-called ODE suite with

many different ODE solvers – from explicit Euler solver

to implicit stiff system solver with state event detection.

In MATLAB only a subset of this ODE suite is avail-

able, not including Euler solver and Heun solver, and

not offering features for event detection and limited in-

tegration. So in any case the limitations, event detec-

tion, and event actions must be programmed ’manually’

- with IF-THEN-ELSE-constructs – similar to the im-

plementation in EXCEL. So basic MATLAB is not the

best tool for the tasks of ARGESIM Benchmark C11
’SCARA Robot’.

A spreadsheet tool as EXCEL is definitely not a

simulator – modelling features for ODEs, processes,

events, etc. are missing. But spreadsheet programs

are an excellent experiment environment with statistical

analysis, optimisation, what-if analysis, dat handling,

etc. Of course, macros and external programming could

be used, but to some extent the standard features allow

to implement explicit ODE solvers as recursive formu-

las.

Basic implementations are faced with the problem

of equidistant small step sizes, which are necessary in

case of technical dynamic systems; here the round-off

errors cause problems, and the number of rows in the

spreadsheet may increase drastically.

It is to be noted, that also variable step size control

could be implemented: in case of using solvers with

different order (as here with Euler and Heun) the differ-

ence of the solvers in the integration step estimates the

error, so that in case of a too big error the step size can

be decreased – and increased in case of very small error.

Especially the second case - step size increase - could

prevent from the EXCEL-genuine round-off error.

But a general disadvantage is the lack of accuracy

in the EXCEL standard configuration – possible but

laborious to improve. On the other hand, a spread-

sheet tool is a very suitable tool for education, so that

this C11 benchmark study is mainly intended for ed-

ucational use. On the other side, the use of advanced

EXCEL features as macros, programmed modules, and

EXCEL add-ons would allow much more comfortable

implementation and also more accuracy.

References
[1] Horst Ecker Comparison 11: SCARA Robot.

EUROSIM-Simulation News Europe, Number 22;

March 1998. 30-32

[2] MathWorks Support Team Is there a fixed-step
Ordinary Differential Equation (ODE) solver in
MATLAB 8.0 (R2012b); https://de.mathworks.com/

matlabcentral/answers/98293; Oct. 2012

5 Appendix
EXCEL is no simulator, it does not provide ODE

solvers or other simulation tools, and it does not have

a structure for implementing dynamic models. On the

other hand, EXCEL allows calculation and documen-

tation of any kind and in any structure. So also ODE

solvers - being state updates - can be implemented by

recursive formula in consecutive rows (and cells).

The implementation developed in this benchmark

study provides different worksheets for tasks and ODE

solvers, but with same structure, see Figure 8. The up-

per left region of all worksheets (columns A,B,..M)

is reserved for definition and documentation of the sys-

tem: model sketch, summary of equations, definition of

parameters (named cells), etc. Furthermore, right above

the simulation parameters can be put in and changed:

initial and target position, and step size for the ODE

solver. At bottom, time diagrams are provided.

The calculation area star s with column P. Figure 9

sketches the first five rows of the recursive implemen-

tation of the Euler solver in columns P, Q, ..,AB.

There, the first row denotes time and states, the sec-ond

sets the initial values, and the following rows calcu-late

recursively updates for time ti+1 = ti +h and states xi+1

= xi +h · f (xi) due to (6) Euler integration - details see

Section 2.1. Depending on step size and on distance to

target, a usually big number of rows have to be used for

the full time course.

For calculating the derivative functions, the follow-

ing columns AC,...,AN provide auxiliary and con-

trol variables. The Heun solver must calculate a sec-

ond evaluation of the derivative functions, so further

columns from column AR on are foreseen (details in

Section 2.3, sketch in Figure 10). The cell content win-

dow in Figure 9 and Figure 10 show the formula for

calculation the control voltage: from a relatively simple

formula in Figure 9 for Task b - Point-to-Point Move-
ment to a more complex one for Task c - Collision
Avoidance in Figure 10.

157

 et al. B

 N E

Figure 8: EXCEL implementation – definition and documentation area.

Figure 9: EXCEL implementation – calculations for Task b - Point-to-Point Movement.

Figure 10: EXCEL implementation – calculations for Task c - Collision Avoidance.

158

et al. BNE

