SNE TECHNICAL NOTE

Agent-based Simulation of Job Shop Production

Tao Zhang®, Shufang Xie, Oliver Rose

Fakultat fur Informatik, Universitat der Bundeswehr Miinchen,
Werner-Heisenberg Weg 39, D-85577 Neubiberg, Germany; *tao.zhang@unibw.de

SNE 29(3), 2019, 141 - 148, DOI: 10.11128/sne.29.tn.10487
Received: June 15, 2019 (Selected ASIM SST Hamburg 2018
Postconf. Publ.), Accepted: July 22, 2019

SNE - Simulation Notes Europe, ARGESIM Publisher Vienna,
ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Abstract. The most important design principles of Indus-
try 4.0 are decentralization and intelligence. The entities,
like resources and materials, can make decisions on their
own by means of cyber-physical systems. For research
purposes, we unify cyber entities and physical entities
and build an agent-based simulation model. The agents
learn knowledges offline during simulation runs and
become smarter and smarter. The model will finally
connect to the physical systems and carry out online
decision-making. The study is the first stage of the whole
project. A framework for the agent-based simulation is
developed and an agent-based model of the job shop
production including release agents, machine group
agents, and job agents are built.

Introduction

Industry 4.0 [1] is currently one of the most frequently
discussed topics among practitioners and academics.
Taking advantages of cyber-physical systems [2], the
internet of things [3] and the internet of services, it
enables faster, more flexible, and more efficient process-
es to produce higher-quality goods at reduced costs in an
environmental-friendly and resource-conserving way.
This in turn will increase manufacturing productivity,
shift economics, foster industrial growth, and modify
the profile of the workforce — as ultimately change the
competitiveness of companies and regions. Most of
studies and industry cases about Industry 4.0 still stay at
a very basic level, such as studies and cases about sen-
sors, communications, and automations. These are cer-
tainly foundations of Industry 4.0. However, once these
foundation works are done, there will be a very urgent
requirement for more effective decision-making meth-
ods on the platform of Industry 4.0.

As we all know, the most important design princi-
ples of Industry 4.0 are decentralization and intelligence
[4]. The cyber-physical systems can make decisions on
their own. To make the cyber-physical systems intelli-
gent, the systems must have abilities to learn
knowledge. Online learning and offline learning are two
common learning techniques. For the research purposes,
the online learning is unpractical. In the study, we will
create an agent-based simulation model (cyber system)
and the agents (cyber entities) will learn to make deci-
sions from the simulation. At last, the model will connect
to the physical systems and form the cyber-physical
systems.

The study is an extension of our previous works [5,
6] in which we realized that the agent-based simulation
(ABS) is less efficient when being used into a non-real-
time system even though it can be speeded up by giving a
timescale. So, to speed up the ABS, we introduced a
process-interaction worldview (PIW) originated in the
discrete event simulation to the ABS.

In this study, we are going to design a framework for
the ABS with the PIW and build a model of the job shop
production based on the framework. In the model, each
agent is related to one physical entity. The agents can
make decisions by either some decision rules or their
knowledge learnt from some other independent simula-
tion-based approaches that we have proposed [7-9].

1 Agent-based Simulation with PIW

The ABS&PIW approach [5, 6] was proposed on the
basis of the agent-based model(ABM). We provided a

four-tuple IM = (I , TM , ABM , O) with elements
inputs (1), time manager (TM), ABM, and outputs (O) to
describe the approach strictly. The procedure of the
approach is presented mathematically in which the sim-
ulation clock advances in a sequence of activation points
and all concurrent activations are activated at a time,
and associated agents respond in parallel.

To reuse the code and make the development of the
ABS with the PIW easy, in this section we will give a
general idea that how to develop a framework for the

Zhang et al.

Agent-based Simulation of Job Shop Production

ABS&PIW. We will design individual agent and time
manager, and draw a static structure of the framework.
1.1 Individual Agent

The structure of the agent is shown in Figure 1. The agent
is composed of attributes, an initialization method, a
behavior controller, and a message handler.

——% Agent initialization ’—b/

Behavior controller

Agent Attributes ‘

Message handler

Passive behaviors

|

|

|

|

! |
| Message |
| queue |
! |
! |
|

Figure 1: Structure of individual agent.

Agent Initialization

Agent initialization, which is applied to set the values of
attributes when an agent is created, is the only possibil-
ity to change the state of an agent directly by the exter-
nal environment and enables the simulation to start in
any state of the agent. There are also many other com-
mon methods (e.g., reset, start, and stop) for controlling
agents, but they are not visible to the environment and
called only by agents themselves.

Behavior Controller

The behavior controller decides which behavior to be exe-
cuted when receiving a message. The decision is made
depending on the relationships RS. Here we just summa-
rize them in three types of relationships: RS (M, B) is the
relationship between messages (in) and behaviors; RS (B,
F) maps attributes to behaviors; RS (B, A, M) denotes the
relationship between behaviors and messages (out). The
behavior controller can also control behaviors, such as
adding behavior, removing behavior, and changing behav-
ior’s state according to the environment.

Message Handler

Through the message handler, the agent communicates with
other agents. A message handler includes one message
queue and two methods: “send” and “receive.” Messages
from other agents will be stored in the message queue and
received by “receive” method. Similarly, the agent can send
the messages to other agents by using the method “send.”
These two methods are behaviors of the agent.

1.2 Time Manager

In order to keep consistent with the agent-based model,
the time manager is also developed as an agent to be in
charge of advancing time, activating agents, and manag-
ing activation points. The time manager extends the class
of agents, and Figure 2 shows its structure.

Time Manager

— Initialization f---------—- h
”””” FAL

Sim State

start/stop

pause/continue

User Interface

4——»‘ Message Handler ’47—{ activate Agent }4—

Figure 2: Structure of the time manager.

Behavior of the Time Manager

There are three main behavior types: advance simulation
clock, receive activation point and activate agent. A user
interface is provided to control the simulation. Before the
simulation runs, at least one activation point needs to be
given in advance. Activation points are conveyed in the
form of messages between the time manager and other
agents. After the activation, the time manager is blocked
until a new activation point is received or the ABM
notifies it to advance the simulation clock when the
model state is ready.

Activation Point Lists in the Time Manager

Three activation point lists are created in the time man-
ager: conditional activation list (CoAL), future activation
list (FAL) and current activation list (CuAL).

The time manager puts new received activation
points into the appropriate list. The earliest activation
points are moved from the future list to the current list
every time the simulation clock advances. After activa-
tion, the current list is cleared. Conditional activation
points are tried again and again and removed from the
list when the conditions are met.

1.3 Agent-based Model

The agent-based model includes the agent environment,
the agent manager, and a set of agents (shown in Figure 3).

Zhang et al.

Agent-based Simulation of Job Shop Production

The agent environment is a medium for communica-
tion among the agents. The time manager and the agents
send or receive activation points in the environment too.
The agent manager is in charge of all agents and provides
the model state to the time manager when the simulation
is running. A new agent needs to register with the man-
ager. The agents report their physical states and updated
flags when they become blocked. The time manageralso
needs to register. In the model, each agent has a unique
name which is used to specify the target agent in the
communication.

’ Agent Environment

Internal, & A & 4 5
external
messages
activations y

[Y v
register
Agents Agent
Manager
Internal, external |

activations Model |
state
|
|

Physical state
Updated flag

External
messages

Time Manager |¢----

Figure 3: Structure of the Agent-based Model.

2 Agents in Job Shop Production

Agent-based modeling enables us to model the jobshops
more realistically and systematically comparing to other
modeling methods, like discrete event simulation model-
ing, Petri nets, and so on. We know that an agent-based
model is composed of agents and their relationships.
Thus, we should determine who the agents are in the job
shop production first. Obviously, material plays a leading
role in the job shops. However, materials are usually
transformed to other types of materials in shops, and their
lifecycle is very short. Paying attention to them makes no
sense.

We usually focus on jobs which organize all materi-
als that one product needs in a serial of sequential op-
erations. Besides, machines and transporters also make
up a large proportion of the job shops. Because we as-
sume that the transportation capacity is finite, the trans-
porters are out of scope. The transportation in our study
is treated as a delay. We only consider the machines here.
As a type of flow, the material flow must have one or
more sources and let jobs derive from it. The sources
are usually job pools. Each type of job, i.e., product, is
connected to a job pool.

There is also a valve controlling the flow from each
pool. In the job shops, this valve is a job release proce-
dure. The release procedure is what we will concentrate
rather than the job pools. To date on the basis of analysis
above, we list three entities concerned in the job shops:
job, machine group, and release procedure. We will
model these three entities as agents in the agentbased
model: release agent, job agent, and machine agent. In
this section, we will describe how to create them on the
basis of the framework, including their attribute and
behavior definitions, communication and cooperation
design, and simulation-related delay and activation
design.

2.1 Release Agent

In a release agent, there are one piece of product data,
multiple release policies, and one buffer. The release
agent creates the job agents who are given in the product
data based on a release policy. The buffer is located
behind the release agent (see Figure 4). If the correspond-
ing buffer is full in the first operations, the released job
cannot start the operations. It will be blocked and stays in
the release buffer until the buffer of the first operations
has free space. If the buffer of the release agent is full,
the release agent stops releasing until the buffer is not

fully occupied.
i Release
Policies

v Buffer

Product
Data Release Agent —»:I:I:II;

Figure 4: The release agent with one buffer.

Product Data in the Release Agent

At the beginning of the simulation, the simulator reads
product and process data from files and generates each
product a release agent.

Each product has a unique name and five data ele-
ments: a production probability, process, priority, the
release interarrival time, and the target work-in-process
(WIP) level. The process element is the name of the
process flow which is defined in the process file. Once
the job agents are created, they will obtain their process
flows from the product. The priority specifies the urgen-
cy of products. The value of the priority is from 0 to 1
and is used by some dispatch rules. The elements of
interarrival time and WIP level are used by the release
policies.

Zhang et al.

Agent-based Simulation of Job Shop Production

Release Policies of the Release Agent

The release policy is the criterion which decides whento
release jobs. The release policies are a very common way
to solve the job release problem. For now, the release
agent has three very common types of release policies:
constant interarrival time (CONINT), constant WIP level
(CONWIP), and avoiding starvation (AS). CONINT
releases the job in the same interval. To the policy of
CONWIP, one interval time is still needed to be desig-
nated before reaching the target WIP. After reaching the
target WIP, the policy of CONWIP takes effect. If the
WIP level is less than the target WIP level, a new job is
released. In the AS policy, a target buffer size is set for
a bottleneck machine group. When the buffer size of the
bottleneck is more than the target value, the releasing
stops. When the buffer size is less than the target, new
jobs are released. The quantity of the released jobs is the
difference between the buffer size and the target value.

Communication with the Time Manager and
Other Agents

If the release policy is CONINT, “releasing job” is an
activation point which will be sent to the time manager
and put in the activation list. When reaching the activa-
tion time, the time manager will send an activation
message to the release agent. Receiving the activation
message from the time manager, the release agent will be
activated and start to release jobs. In the case of CON-
WIP, the finished job will send a message to the related
release agent which will release a job immediately after
receiving the message. For the AS policy, the machine
agent of the bottleneck will request the release agent to
stop releasing or ask the release agent to release jobs. If
a released job is refused by the machine agent in the first
operation due to the fullness of its buffer, the job sends
blocked message to the release agent, and the release
agent puts it into the buffer. When accepted, the job
sends unblocked message to the release agent. The job
will be removed from the buffer and moved to the first
operation.

2.2 Job Agent

The job agent is a temporary entity. After released, it will
be processed on many machines in the order of its process
flow which depends on the target product, and after
finished it will be destroyed. The job agent has a unique
name in the model and four logical states: transporting,
waiting, processing, and blocking.

Behaviors and Life cycle of the Job Agent

A job agent has five behaviors: to request resources, to
be transported, to enter the buffer, to wait, to be pro-
cessed, and to be blocked. The lifecycle of a job agent is
shown in Figure 5. After release, the job requests the next
operations. If accepted, it begins transporting and then
enters the buffer to wait. If refused, it is blocked on the
current machine. After receiving the start message from
the machine group, the job starts. The job finishes when
receiving the end message from the machine group and
then requests the next operation. If it is the last operation,
the job completes.

2.3 Delays and Activations in the Job Agent

There are four types of delays related to the logical state:
transporting, blocking, waiting and processing. Blocking
delay means that a finished job cannot move to the next
operation due to the fullness of the related buffer and will
continue to stay on the current machine. This is a condi-
tional delay, and it will be activated by the time manager
every time the simulation time advances. When a job
begins to be transported or is blocked, associated activa-
tion points (transporting end, blocking end) will be sent
to the time manager. After that, the job agent will wait
for activations from the time manager and the delay will
end when it receives the activation messages. The wait-
ing delay and the processing delay end when the job
receives the related message from a machine.

Request the
Next Process

If the job is just
released, it will be

blocked in the buffer

of the release agent
when it is refused

‘Activation }<>{ ‘Block()‘ ‘ § Request
A i
7y '
4{ Refuse é 77777

y
I —]
‘Acﬁvaﬁm M \Transpono‘ ‘ ”””
i I— |

4

‘ }—b{ Enter Buffer /\»7$

T waw

I
vy Machine

|
‘ ‘ Process() ‘ H Process Start &——— Groug

Finished

Figure 5: Lifecycle of a job agent.

Zhang et al.

Agent-based Simulation of Job Shop Production

Job
a —>

Machine3

Figure 6: Structure of the machine group.

2.4 Machine Group Agent

The machine group agent is a permanent and active enti-
ty. It includes one buffer and several machines (see
Figure 6). The machines have the same function and
share the buffer.

There are five logical states of the machines: idle,
busy, setup, breakdown, and maintenance. The ma-
chines may be single processing machines or batch
processing machines. When a job arrives, and cannot be
processed at once, the job joins the buffer. The buffer
has a finite capacity, and it dispatches the waiting job to
the idle machine according to a dispatch rule. There is
no buffer behind the machine group. When a job finish-
es, the ther be transported to the next machine group or
be blocked on the current machine.

Behaviors of Machine Group Agent

The machine group agent has two behaviors: to respond
to the request from the job agent and to select the best
machine to process the job. The buffer has two behaviors:
to store the job and to dispatch the stored jobs to the
machines in a certain batch and the order of the given
priority. The machines have five behaviors: to request the
jobs from the buffer, to setup, to process, to interrupt,
and to recover.

When a job enters a buffer or a machine just finishes one
job, the machine group will decide on the start of a new
process. If the buffer is not empty (in case of batch pro-
cessing, a batch must be ready) while the machine group
has an idle machine, the idle machine will start pro-
cessing and inform related job agents. If there is more
than one idle machine, one machine will be selected
according to an allocation rule. If the setup is needed, the
machines will start the process after the setup. Figure 7
shows the behavior flow of the machine group agents.

Dispatch and Allocation Rules in Machine Group
Agent

A dispatch rule is a criterion for determining the jobs’
process priority in the buffer. An allocation rule is for
selecting one machine from the idle machines. The dis-
patch and allocation rules are very common ways to
solve the sequencing and routing problems.

‘ ‘ Buffer.getSize() ‘ }4—{ Request

e

Job e

getJobFromBuffer()

Setup or not?
Process Start

getSetupTime()

‘ACQIVEUOI’]}(>1 ‘Setup()‘ ‘ i

=

§ ‘Activation }<>{ ‘Process()‘ ‘

v

‘ Process End

Figure 7: Behavior flow of a machine group agent.

A buffer may include a set of dispatch rules. When a job
joins in the buffer, all messages associated with dispatch
rules are sent to the buffer. Based on these messages
and under a given dispatch rule, the buffer determines
the priority of each job and queues them in that se-
quence. Once a job joins the buffer, the priority is up-
dated. Currently, 17 types of common dispatch rules,
such as FIFO (First In First Out), EDD (Earliest Due
Date), CR (Critical Ratio), etc., have been preset in the
buffer. The allocation rules are used by the group agent.

Once a job comes out from the buffer, the group
agent will collect information of all machines and select
one to process the job.

Delays and Activations in Machine Group Agent

There are four types of delays related to the logical state
in the machine group agents: setup, processing, break-
down and preventive maintenance. When the setup delay
occurs, the machine group agent sends an activation
message (setup end) to the time manager and informs
related jobs. The jobs will wait and cannot be processed
by other machines. When the setup delay ends, the ma-
chine group agent sends an activation (process end) mes-
sage to the time manager. Meanwhile, it informs the jobs
and starts processing. Activated by the time manager, the
machine finishes processing and informs the jobs.

2.5 Communication among the Agents

We summarize the communication in Figure 8. It in-
cludes the delays and activations conveying between the
time manager and the agents as well as the communica-
tion among the agents.

Zhang et al.

Agent-based Simulation of Job Shop Production

| Time Manager |

A
Delay(send activation point to the simulation controller)

|
| Activation(send activation message to the agents)

|

1 1 1
| T | |
' | |
Transport Activation BI !

T T T T
T : | &) |
Interruption Activation :

|
Setup Activation |
1

Release job Activation lock pata acquisition _— Recovery
Actilvation Activ:tion I Process A'ctlvatlon : Acti\{ation
vl ! \: v/ v v/
[€— The next reworking — Job requests process —P|
. . Tool Grou, Request the data
R:;eeans;e — Put into production —| Job Refuse/accept Agent P of other tool groups ™ |
[€— The job is complete — Agent Job enters the buffer —| Tool data, |
[¢— Blocked/Unblocked — Process starts/ends —— buffer data
'y I | 'y
Job Data v
L—p
- 1 ¢—— Tool data, buffer data
Request Data Data Collector
Release Data > Request Data

Figure 8: Communications among the agents and the time manager.

3 Agent-based Simulation of the
Job Shop Production

3.1 Overview of the Simulation

The agent-based simulation of the job shop production
consists of a simulator, production data, and performance
measures (see Figure 9). The production data are inputs,
and the performance measures are outputs.

Production Data

We classify the production data into three parts: machine
group data, product data, and process data, and then adopt
XML to store the data. Thus, three XML files are created
to store the data. The machine group file includes data
about all machine groups, e.g., the number of machines,
buffer size, dispatching rule, etc. The process file consists
of the process flows of all products. Each processing
flows has many operations. The product file consists of
buffer size, waiting time (by machine group), blocking
data about all products which will be produced. Each
product has a name of the process flow which is defined
in the process file. The process file links the product file
and the machine group file together.

Simulator for the Job Shop Production

The agent-based model (including release agents, ma-
chine group agents, and job agents), data collector and
time manager make up the simulator for the job shop
production. The time manager creates the release agents
and the machine group agents according to the machine
group data at the beginning of the simulation, and it is
responsible for advancing the simulation time and han-
dling the simulation control (e.g., start, stop, pause,
etc.).

Thedata collector is responsible for collecting simulation
data and computing the performance measures. It can
collect all simulation data in detail, as well as part of
sample data.

Performance Measures

The performance measures include WIP level, cycle
time, time (by machine group), and machine utilization
information (e.g., idle time, processing time, breakdown
time and setup time). All data can be shown in graphs
and tables. These measures can be used to improve the
job shop production and can be provided for the optimi-
zation or control algorithms to achieve the goal of the
optimization and control.

3.2 Static Structure of the Simulator

The static structure of the simulator (see Figure 10)

has three layers: framework layer, agent layer, and pro-
duction characteristics layer.
The framework layer provides the agent base class and the
time manager. The agent layer contains the agents which
are abstracted from the job shops, and these agents extend
the base class of the agent in the framework. A machine
group agent has multiple machines and one buffer. Each
release agent can release one kind of product.

The data collector, which is also an agent and in
charge of data collection from machines, buffers, jobs,
and release agents, is contained in the agent layer. In the
production characteristics layer, many characteristics
are considered, such as reentrant flows, rework, setups,
batch processing, breakdowns, and preventive mainte-
nance. Dispatch rules and release policies are part of
this layer.

Zhang et al.

Agent-based Simulation of Job Shop Production

——
A(setup or process) Tool and Buffer Data
ToolGroup
Data Igfr;:rs:sucnon © | | Performance Measures
S (Data and Chart)
(&)
A(collect data) | @
ToolGroup.xmi TimeManager i : | DataCollector |L WIP Level
%\ % o Cycle Time
§ &) [Buffer Size
3]
% A(transport or block), Wait Time
< oo Blocked Time
ob Da
Create Tool Utilization
Release Data Job Gantt

Figure 9: Agent-based simulation of the job shop production.

i'; l Agent }<]—{ TimeManager
s T
§ . | Message
\
l ToolGrou } { Job l { Release } -
) , , i 1 1 L
£ :
' [[(Ta] U Butter | [Product |
1 B ‘ 1 Tool Data
- ; J L. =
—.{ Batch] lDispa!ch Rule] l Proce1ss] i
|
|
|

-Production Charactenstic-

S .
Iﬂ;nmrmpﬁon] l Rework] l Job Data

l ."l lr‘ 'vl l i l l l lReleasePolicy]

Figure 10: Static structure of simulator.

4 Applications

We create a simulation model of an example job shop.
The job shop contains five machines and produces two
products (Pa and Pb) with two process flows and two dif-
ferent throughputs. The throughputs of product Pa and Pb
are 110 and 197 units per week. There are no batch pro-
cessing machines. The machines need sequence-dependent
setups. The interval between two breakdowns on the ma-
chines is subject to the exponential distribution and the
repairing time follows an exponential distribution too.

The simulator is used to solve real-time sequencing
problems in the job shop in which we should decide
which job should be processed first once a machine
becomes available. The objective is to minimize the
cycle time. The sequencing problems are sequential
decision-making problems. The decision-making is the
selection of the best job from possible jobs. In other
words, it is a priority calculation problem. For each job,
a priority value is computed. The job with the highest
priority is selected.

We proposed three simulation-based approaches to
calculate the priority values of jobs, including the simu-
lation try-then-decide method (STTD) [8], the intelli-
gent method based on the simulation try-then-decide
method (INT1) [7], and the intelligent method based on
Markov decision process (INT2) [9].

The STTD method is a pure simulation approach. It
uses the alternative simulations to predict the future after
a job is taken and select jobs according to the future
information from the simulation. The most important
innovation is the usage of the base-rule in the alternative
simulations. The base-rule avoids the exponential ex-
plosion of the number of the alternative simulations. To
evaluate the STTD method, we replace the system with
an environment simulation. The decisions we made are
executed in the environment simulation. The results
from the environment simulation can be used to evaluate
the STTD method.

The INT1 method combines the experiences & data
approach with the simulation approach. A data-driven
model is introduced to calculate the priority values for
jobs. It is built on the data from the simulation with the
STTD method. So, it manages to learn the knowledge of
the STTD method. Two types of factor influence the
priority value of the job: global factors and local factors.
The state of the job shops is divided into several patterns
by clustering the global data. In each pattern, the priority
value is only up to the local factors. The relationship
between the priority and the local factors is mapped in the
neural networks. For each pattern, one neural network is
created. In the decision maker, the centroids of the pat-
terns make up a pattern pool, and the neural networks
make up a network pool. While making the decision, the
decision maker determines the pattern of the current state
according to the pattern pool and selects one correspond-
ing neural network from the network pool.

Zhang et al.

Agent-based Simulation of Job Shop Production

The neural network will calculate the priority for
each job according to the local factors.

The INT2 method combines the experiences & data
approach, mathematical approach, and simulation ap-
proach. It models the sequencing as Markov decision
process with multiple decision makers. We defined the
five-tuple for the problems, including decision points,
state space, action sets, transition procedure, and a re-
ward function.

The data-driven model is still used to map the value
of the action to the state-action pair. The simulation-
based batch-mode Q-learning algorithm explores the
state space by the simulation. Each simulation run is one
iteration. The data-driven model is updated and im-
proved gradually after each iteration.

The three methods compare with each other as well
as other two decision rules, First In First Out (FIFO)
and Shortest Processing Time (SPT). The experiment
results are shown in Table 1. The results show that the
STTD and INT1 methods always outperform the rules.
The STTD method performs best but consumes much
time. Contrarily, the INT1 method takes less time while
the performance is just a little bit worse than the STTD.
Thus, the STTD is more suitable for offline applica-
tions, and the INT1 can be used in the real-time control.
Unfortunately, the INT2 method performs unsteadily. It
will be further studied in the future.

5 Conclusions

On the basis of the previous works, a framework for the
ABS is designed and an agent-based model of the job
shop production including release agents, machine group
agents, and job agents are built. The behaviors and in-
teractions among the agents are explicit defined. A large
variety of decision rules are preset in the model as well.
The agents can make decisions simply according to the
rules. The agent-based model, the data collector, and
the time manager make up the simulator for the job
shop production. Applying the simulator to an example
job shop, we solved the real-time sequencing problem
by three simulation-based approaches we have pro-
posed. The application and experiment results indicate
that the overall idea of simulation-based learning and
decision-making isfeasible in the job shops.

References

[1] Lasi, H., et al., Industry 4.0. Business & Information
Systems Engineering, 2014. 6(4): p. 239-242.

[2] Jazdi, N. Cyber physical systemsin the context of Indus-
try 4.0. in 2014 |EEE International Conference on Au-
tomation, Quality and Testing, Robotics. 2014.

[3] Wortmann, F. and K. Fliichter, Internet of Things. Busi-
ness & Information Systems Engineering, 2015. 57(3): p.
221-224.

[4] Hermann, M., T. Pentek, and B. Otto. Design Principles
for Industrie 4.0 Scenarios. in 2016 49th Hawaii Inter-
national Conference on System Sciences (HICSS). 2016.

[5] Xie, S., T. Zhang, and O. Rose, Agent-based Smulation
with Process-interaction Worldview, in ASM 2018 24.
Symposium Smulationstechnik. 2018: Hamburg.

[6] Zhang, T. and O. Rose, A framework for agent-oriented
parallel simulation of discrete event systems, in Proceed-
ings of the Winter Smulation Conference. 2012, Winter
Simulation Conference: Berlin, Germany. p. 1-2.

[7] Zhang, T. and O. Rose. Intelligent dispatching in dynamic
stochastic job shops. in 2013 Winter Smulations Con-
ference (WSC). 2013.

[8] Zhang, T. and O. Rose, Smulation-based Dispatching in
Job Shops, in ASM 2014 22. Symposium Simula-
tionstechnik. 2014: Berlin.

[9] Zhang, T., S. Xie, and O. Rose. Real-time job shop
scheduling based on simulation and Markov decision
processes. in 2017 Winter Smulation Conference
(WSC). 2017.

