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Abstract. The System Entity Structure (SES) is a high
level approach for variability modeling, particularly in
simulation engineering, which is under continuous de-
velopment. In this context, an enhanced framework is
introduced that supports dynamic variability evolution
using the SES approach. However, the main focus is to
start a discussion about a set of design patterns, which
were developed to analyze the tree design and compu-
ting aspects of System Entity Structures. As development
of our MATLAB-based SES toolbox for construction and
pruning of SES trees proceeded, the necessity to have
some generalized examples for testing and verification
came more and more into awareness. We propose a set
of design patterns that, if completely representable and
computable by a certain tool, support all aspects of SES
theory. In addition, the patterns give users substantial
support for developing SES models for other applica-
tions.

Introduction

This paper is a modified version of [1]. It details the
specification of basic design patterns and introduces
more advanced combined patterns.

Generally, variability modeling can be seen as an
approach to describe more than one system configura-
tion. According to Capilla, Bosch, and Kang [2], a soft-
ware variability model has to describe the commonality
and variability of a system at all stages of the software
lifecycle. In software engineering, variability modeling
is often closely associated with product lines. For soft-
ware product lines the variability is described explicitly.
Variation points are defined where different solutions
can be derived.

Such variability mechanisms can be specified at dif-
ferent levels of abstraction, ranging from requirements
specification to source code implementation. A popular
high level approach is feature modeling by means of
feature models, which were introduced as part of Fea-
ture-Oriented Domain Analysis by Kang et al. [3] and
subsequently extended and used in various ways. An
important further development of variability modeling
has been the notion of variability in time, known as
binding time in product line engineering [4]. That
means that variability can be realized from design time
to runtime.

In simulation engineering, the problem of variability
modeling is well known from the eighties. One of the
first high level approaches for variability modeling in
the design phase was introduced with the System Entity
Structure (SES) by Zeigler [5]. The objective was to
describe a set of system configurations for a family of
systems. An SES is represented by a tree structure,
which describes a set of modular, hierarchical system
structures, defines references to basic models in a model
base (MB) and specifies various parameter settings for
the referenced basic models. In addition, the approach
defines several abstract transformation methods for
deriving a particular system configuration and for gen-
erating an executable simulation model [6]. The entire
approach was continuously further developed by Zeigler
and many other researchers, such as in [7], [8], and [9].

As another approach for describing system struc-
tures and their configurations, various XML based com-
position schemes, which distinguish between interfaces
and the concrete implementations of the models were
proposed, such as by Roéhl and Uhrmacher [10] or by
Wang and Wainer [11]. Although that research does not
explicitly address model families as the SES/MB ap-
proach does, some of the basic ideas are similar. More-
over, the ideas in [10, 11] are important for the design
of reusable model components and their organization in
an MB. In this paper, the reusability of components in
an MB is not discussed.
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It focuses on modeling system variability using the
SES and the necessary software framework.

The problem of variability at runtime is known as
variable or dynamic structure system modeling and
simulation. Analogous to the approaches in software
engineering, such a dynamic variability can be de-
scribed on the level of a specific model, such as intro-
duced by Barros in [12], or separated using a higher
level model abstraction in conjunction with an appropri-
ate software framework. Regarding this, a first theoreti-
cal approach for dynamic variability modeling using the
SES/MB method was published in 1990 [13].

Based on this early idea, a prototype of a full
SES/MB based modeling and simulation infrastructure
has been developed and implemented within
MATLAB/Simulink by the authors [14, 15], and a Py-
thon implementation is in progress. In addition, the SES
theory has been enhanced. In this context, the necessity
to have some generalized SES patterns came more and
more into awareness. On the one hand patterns are help-
ful during software development and on the other hand
the patterns are expected to give users substantial sup-
port for developing SES models for their applications.

After a short overview to the enhanced SES ontolo-
gy and the enhanced SES/MB based infrastructure,
basic design patterns for variability modeling are intro-
duced. The description is related to the modeling capa-
bilities provided by feature models. Then, some com-
bined patterns are discussed exemplary to give an im-
pression for advanced variability modeling possibilities
using the SES and its extensions. Finally, the main re-
sults are summarized and an outlook to future work is
given.

1 Background

According to Zeigler and Hammonds, the SES is an
ontology, a language with syntax and semantics to rep-
resent declarative knowledge [8]. It is particularly suita-
ble for describing system configurations for different
application domains. An SES is represented by a di-
rected tree structure. Objects are represented by nodes
which are connected by edges. There are four node
types with different properties describing the objects
and their relations. Furthermore, there are axioms for
defining the SES correctly. Since an SES describes a
number of system configurations, the SES tree needs to
be pruned to get one particular configuration, which is
called Pruned Entity Structure (PES).

The classic SES theory was extended by several re-
searchers over the last decades. In [14] and [16] the SES
theory was extended with a procedural knowledge rep-
resentation. Some of these extensions are used in this
paper. A comprehensive example on how the pruning
patterns proposed in this paper can be used, is demon-
strated in [17].

1.1 Node Types

Among the four node types, there are two groups, the
entity nodes and the descriptive nodes. Entity nodes
describe objects of the real or the imaginary world. The
root and the leaves of an SES tree are always entity
nodes. Relations between the entity nodes are specified
by descriptive nodes.

Descriptive nodes are the genus for aspect nodes,
specialization nodes and multi-aspect nodes. Aspect
nodes (name suffix DEC) describe how entity nodes can
be decomposed in partial entities whereas the taxonomy
of an entity is described by specialization nodes (name
suffix SPEC). Multi-aspect nodes (name suffix MASP)
are a special case of an aspect node with all children
being of the same kind.

Each node or edge can have attached variables, also
called attributes. For entity nodes, the variables repre-
sent properties of the respective object whereas the
variables at descriptive nodes specify relations between
their parent node and children nodes or decisions for the
pruning process. With the extended procedural
knowledge representation, values of attached variables
can be assigned dynamically.

1.2 Axioms

The semantics of the SES are defined by axioms. The
types of the nodes have to follow the axiom alternating
mode. Every entity node has to be followed by a de-
scriptive node, and vice versa. A strict hierarchy is
needed. In every path of the tree, a name of a node may
occur only once. If nodes in different paths have the
same name, they need to have the same variables and
isomorphic partial trees. This is called uniformity.
Nodes on the same level of hierarchy and having the
same father, called sibling nodes, have to be valid
brothers, meaning that sibling nodes must not have the
same name. The axiom of attached variables implies
that a node must not have variables of the same name.
The axiom of inheritance implies, that during pruning,
the parent and the child of a specialization combine
their attributes.
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If parent and child have the same attributes, the par-
ent’s attributes are overwritten with the child’s attrib-
utes and their values.

1.3 Extended SES/MB Infrastructure

The SES describing a set of system designs has been
associated with the idea of model generation of modu-
lar, hierarchical systems from the very beginning [6]
which led to the SES/MB approach. Each system design
is defined by its system structure and parameter config-
uration in the SES. The core assets of all system vari-
ants are specified as a set of configurable basic models,
which are organized in a Model Base (MB). The classic
SES/MB framework defines a set of transformation
methods for generating executable simulation models,
but automated model generation is not provided. To
allow automated generation and execution of models,
the SES/MB approach has been extended ([14], [15],
[16]). These extensions make the SES/MB approach
more pragmatic for implementation and to be used in a
simulation infrastructure.

Figure 1 depicts the extended SES/MB infrastructure
consisting of the SES/MB framework, an Execution
Unit, and an Experiment Control. Although the
SES/MB approach and its extensions are usually con-
sidered in connection with the generation of simulation
models, they are generally applicable to modular-
hierarchical structured software systems.
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Figure 1: Extended SES/MB-based infrastructure.

Operations. On the SES, a merge operation is de-
fined allowing two or more SES to be combined. This
allows the quick reuse of a once defined SES. The es-
sential operation on the SES is the pruning method. To
extract one particular system structure and configura-
tion, the SES needs to be trimmed to a PES. During the
pruning process, decisions have to be taken at descrip-
tive nodes.

Therefore, rules need to be defined at aspect, multi-
aspect and specialization nodes. The specialization rule
(specrule) associated with a specialization node deter-
mines which child entity shall be selected. Aspect rules
(aspectrule) associated with aspect or multi-aspect
nodes on the same hierarchy level determine which of
the siblings is to be chosen. Furthermore, cross-tree
relations can be expressed by selection constraints.
Selection constraints can be used to select a certain
entity based on decisions taken anywhere else in the
SES tree. Next to the pruning method, another transfor-
mation method is the build method. With the help of the
build method, an executable model can be built from a
PES and basic models organized in an MB. The basic
models are specific for a certain simulation software.
Therefore, the build method needs to match to the simu-
lator used.

Execution Unit and Experiment Control. For
automated and reactive processing of SES models, an
execution unit and an overall experiment control unit
are added to the framework, as depicted in Figure 1. For
automatic generation of different PES, leading to differ-
ent simulation models, an interface to the SES is need-
ed. This interface can be established by global variables
of the SES, called SES Variables (SESvar), which can
affect the decisions taken in descriptive nodes during
pruning. Thus, a particular system configuration derived
from an SES depends on the current settings of the SES
variables. The value range of SES variables can be
limited by defining semantic conditions, which are
checked before pruning to exclude certain system con-
figurations. By assigning values to the SES variables,
the experiment control determines the order and system
configurations of executable simulation models (SM) to
generate from the SES with the pruning and build op-
erations. Thereby different variants of the executable
simulation models are generated. The experiment con-
trol then transmits the SM to the execution unit. The
execution unit links the generated simulation model to
the simulator, executes a simulation run and, finally,
sends the results back to the experiment control. The
results, in turn, can influence the decision of the exper-
iment control on how to assign the SES variables next.

Special Attributes. Combining basic models from
the MB leads to the creation of coupled models. In order
to describe the structure of the executable model, some
nodes need to define couplings. Couplings are proper-
ties of descriptive nodes of the type aspect and multi-
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aspect and consist of pairs of entity names and port
names. Figure 2 gives an impression of what a defini-
tion of couplings may look like. Furthermore, for a
multi-aspect node, a special variable, numRep, has to be
defined representing the number of children to generate
when pruning this node. To specify the basic model
from the MB an entity node refers to, the mb-attribute is
introduced. This special attribute is permitted just for
leaf nodes. Finally, for some cases, it is necessary to
define priorities for supporting decisions among de-
scriptive nodes on the same level of hierarchy in the
priority attribute. All values of attributes can be defined
by constants or set via SES variables or SES Functions.

SES Functions. The concept of SES Functions
(SESfcn) has been introduced to specify complex varia-
bility within node attributes with minimal effort and to
keep a lean SES tree. Typical examples include the
definition of varying coupling relations, varying port
numbers of systems or the definition of variable pa-
rameter configurations in attributes. During pruning,
SES functions are evaluated, often with SES variables
as input parameters. For effective coding of SES func-
tions, the implicit attributes parent and children are
introduced for each SES node. They encode the parent
and children node names, respectively.

1.4 Software Tools for the Extended SES/MB
Infrastructure

In the Research Group CEA, a prototype tool for the
SES/MB infrastructure was developed, The SES
Toolbox for Matlab/Smulink [15]. Currently, SES trees
can be defined via a graphical user interface and a con-
crete variant can be extracted by pruning. The toolbox
supports the modeler with plausibility test during SES
construction, graphical representation of the SES, auto-
matic generation of HTML documentation, and other
features. The pruning process can be started from the
graphical user interface and, in addition, is implemented
to function automatically. Automatic pruning is neces-
sary when using an SES constructed with the toolbox
together with the experiment control. Furthermore, there
is a prototype Matlab function implementing a build
method for the simulation software Simulink, including
SimEvents and Simscape, the MatlabDEVS toolbox
[18], and for Modelica models. The SES is linked to the
appropriate MB with the special mb-attribute of the leaf
entity nodes.

Another software tool based on Python3/PyQt5 is
under development. The aim is to be more independent
from a computing environment and to support a greater
number of simulators for building executable simulation
models.

2 Basic Design Patterns

A few elementary design patterns that are required for
design, implementation, and test of a pruning algorithm
for an SES are presented in the following subsections.
The proposed patterns for modeling of system structures
are necessary, particularly if one aims to use the SES
tool for automated model generation in the context of
the extended SES/MB approach. In analogy to the se-
mantics of feature models ([2], [3]) and mathematical
logical expressions, we try to classify the first patterns
according to their purpose.

In the context of feature modeling, four kinds of fea-
tures are used: (i) mandatory features (logical AND),
(i1) alternative features (logical XOR), (iii) optional
features and, (iv) OR-features (logical OR). At first
sight, it seems to be obvious and simple to decide which
SES constructs can be used to define tree sections satis-
fying the feature categories above, but there is often
more than one way to express the logical relations
among tree sections, components or entities. However,
the simplest patterns consist of just one descriptive node
with its parent and children.

Besides patterns fitting into the classification ac-
cording to feature modeling, we identified some patterns
useful to illustrate and test SES tools dealing with issues
like inheritance, the special attributes, such as couplings
and priorities, and evaluation order.

2.1 Mandatory Tree Sections

Mandatory are those sections which need to be existent
in each system belonging to a family of systems. For an
SES describing a family of systems, this means that all
possible PES representing a certain system variant will
also include those parts. The corresponding logical
expression is the AND and we can call the linkage a
‘has-a’ relationship. Design patterns of this type are the
aspect node itself, a multi-aspect node or specialization
siblings.

Design Pattern #1 - Aspect Node. Figure 2 de-
picts the simplest case of a design pattern for mandatory
sections, the aspect node itself.
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Figure 2: First design pattern for mandatory sections.

Each coupled system a consists of an entity b and an
entity C. For model generation, aspect nodes need to
define the special attribute for couplings, while the leaf
nodes have the mb-attribute attached. Note that the
derived PES is identical to the SES. The resulting ab-
stract, simulator independent model on the right side is
given to illustrate what kind of model structure would
result from the PES. The following examples will not
include detailed coupling definitions and models since
couplings can be formulated analogously and concrete
models depend on the chosen simulation environment.

Design Pattern #2 — Multi-Aspect Node. In
Figure 3, a similar case to design pattern #1 is given.
With this pattern we introduce the usage of SES varia-
bles, SES functions and the possibility to define multi-
sets for setting values of attributes. Since the system as
consists of a certain number of children of type b, multi-
aspect nodes need to define two special attributes, the
attributes numRep and couplings. When pruning a mul-
ti-aspect node, the numRep attribute is evaluated and an
aspect node with children of the same type is created. In
this example, the numRep attribute is defined by the
current value of the SESvar VAR which is restricted to
two or three by the semantic condition, but the value
could also be hardcoded. Based on the number of chil-
dren the couplings may vary, too. For an effective cod-
ing and to keep a lean SES tree, couplings are set via an
SESfcn here. Based on the value of the SESvar VAR
either cpll or cpl2 is chosen. The structure of cpll and
cpl2 needs to be defined as it is presented for static
couplings in Figure 2.

SESvar={VAR|
SemanticCondition={ VAR in [2,3]}
‘ﬁ;" numBep=VAR
aMASP couplings=SESfcn(VAR)
|" nanltup {switch VAR
b couplings case 1: couplings=cpl1
case 2: couplings=cpl2
(mb="MB/R"; 2 phings=cpic)
p=f{l.'a",200}}
¢ pruning
(VAR =12) (VAR == 3)
as as
| |
aDEC aDEC
cpll | epl2
’_k_‘ f T 1
bl b2 bl b2 3
{mb='MB/B"; {mb="MB/B"; {mb="MB/B"; {mb=""MB/B"; {mb="MB/B";
p=1} p'a') p=1} p='a'} =200}

Figure 3: Design pattern for mandatory sections with a
multi-aspect node.

The attribute p is set by dint of a multi-set variable.
Although after pruning all children of as are of the same
type b and are referencing the same basic model B in
the MB, their parametrization can be different. Chil-
dren’s names are generated by appending a number to
the entity name b to ensure that the resulting siblings
fulfill the axiom of valid brothers.

Design Pattern #3 - Specialization Siblings. If
two or more specialization nodes are on the same hier-
archy level, they will all be evaluated. For the pattern
depicted in Figure 4, this means that a will specialize
into one of b or ¢ AND into one of d or & Which child
of the specialization is taken depends on the values of
the SES variables and the specialization rules.

S E S SESvar={VARI, VAR2}
SemanticCondition={VARI in ['l",'27;
VARZ in ['I', 2}
a specrulel={VARI="1"=b;
- . " VARI==12"»c}
alSPEC a2SPEC

specrule2={VAR2=="]"-»d;

specrulel |specrule2 VAR2—2">¢)
d

c e
{mb="MB/B', [mb='MBIC", lmb=/MB/D'] [mb='MB/E]
paral=[1,2]}  para2=[34]}
¢ pruning
(VAR =="I', VAR2 ="1') (VAR =1, VAR2 =2
dba, . amo, e bag v,
paral=[1,2]} paral=[1,2]}
(VARI == 2", VAR2 =="1') (VARI == *2', VAR2 == '2')
deagomm, € _C Anb-"MB/E,
para2=[3 4]} para2=[34]}

Figure 4: Design pattern for specialization siblings.
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If, for example, VARI is set to 1 and VAR2 is set to
2, at specialization alSPEC the left child b is selected
and, at specialization a2SPEC, the right child e is se-
lected. During pruning, it depends on the pruning algo-
rithm which of the two specializations is evaluated first.
For this example, we assume that the left specialization
node alSPEC is evaluated first. The evaluation order
influences what is the resulting value of the mb-attribute
since, according to the inheritance axiom, attributes
with the same name are overwritten in the parent node.

With this example, we also demonstrate the use of
SES variables for defining specialization rules.

2.2 Alternative Tree Sections

Alternative are those sections from which exactly one
part needs to be existent in each system belonging to a
family of systems. A system described by a PES is of
the type which is selected in a specialization or consists
of the children of aspects chosen at aspect siblings. The
corresponding logical expression is the XOR and we
can call the linkage an ‘is-@’ relationship. Design pat-
terns of this type are the specialization node itself, as-
pect siblings, multi-aspect siblings or siblings contain-
ing an aspect node and a multi-aspect node.

Design Pattern #4 - Specialization Node. The
simplest pattern to specify alternatives is the specializa-
tion node shown in Figure 5. Based on the specialization
rule, exactly one child needs to be selected to construct
a valid variant. The specialization rule evaluates the
SESvar VAR to allow a selection. After pruning, the
resulting system can either be of type b OR of type C.
Valid names are constructed by preceding the fathers
name a with either b or ¢ and attributes are inherited as
defined by the SES axioms.

Design Pattern #5 - Aspect Siblings. If two or
more aspect nodes are on the same hierarchy level,
exactly one of them has to be selected by evaluating the
aspect rules of the aspect brothers.

SES PESI PES2
(VAR ) (VAR 2
al
aSPEC pruning b s .
|| specrule . ;ml:— L_‘:mb—
"MB/B"} MBI/}
{mb C:mb
MB/B}  YMB/C)
SESvar={VAR}

SemanticCondition={VAR in ['1", "2']}
specrule={ VAR="1"-»b;
VAR=="2'-»c}

Figure 5: A simple specialization node.

This is presented in Figure 6. The system a consists
either of b and ¢ or of d and e. The aspect rules one and
two define which branch is selected during pruning.

Design Pattern #6 — Multi-Aspect Siblings. In
the pattern shown in Figure 7, two multi-aspect nodes
are on the same layer. In the first pruning step, the mul-
ti-aspect nodes are resolved leading to two aspect nodes.
After this step, the resulting intermediate PES can be
finally resolved using pattern #5 for aspect siblings, as
previously described. The system a consists either of b1,
b2, and b3 or of c1 and c2 depending on which child is
selected based on the aspect rules.

SESvar={VAR}
a SemanticCondition={ VAR in ['1%, '2']}
E_I—| uspcc!_rulcl ={VAR=="1"}
alDEC i a2DEC . couplingsl={...}
aspectrulel, aspectrule2, AT S
couplings! |couplings2 ™ #spectrulel={VAR==21
[ M ! vt
mb cl mh= dilnb t‘! mb=
MB/BY 'MBICY MBD'Y 'MBE')
¢ pruning
(VAR =="'1") (VAR="7)
“ ?
alDEC aZDEC
couplings| couplings
{mb= t:m\! imb= C: mb
MB/BY YMBICY MBI TMBET

Figure 6: Aspect siblings result in an alternative
selection.

Design Pattern #7 - Aspect and Multi-Aspect
Siblings. If there are more than one aspect nodes and
multi-aspect nodes on the same hierarchy level, the

behavior is like aspect siblings after the multi-aspect
node is resolved (see Figures 6 and 7).

numRepl=3
SE‘S numRep2=2

aspectrulel={...}
a aspectrule2=1...}
|
] ]
alMASP a2MASP
| mumRepl, I numRep2,
|l aspectrulel, || a~pcc!rulc.-.
couplings! Il couplings2
b c
{mb= {mb-
IMB UMBICY)
¢ pruning
i i
alDEC a2DEC
| couplings! couplings2
P .
bl b2 b3 cl c2
fmb= {mb= {mb= fmb {mib=

YMRB/B'} 'MB/B'} YMB/B'} MBIC' TMBAC')
Figure 7: Multi-aspect siblings behave like

aspect siblings.
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2.3 Optional Tree Sections - Design
Pattern #8

Optional sections can be contained in the resulting sys-
tem structure, but they do not have to be. This can be
done using an extension of the SES, the NONE element.
A NONE element for a leaf entity node means that, if
the NONE branch is selected, the entity is not included
at all. In the pattern shown in Figure 8, the specializa-
tion has a child which is a NONE element. Hence, this
SES can evaluate to NONE during pruning based on the
specialization rule. The system a can either be of type b
or not existent at all.

SES PESI  PES2
aSFl'IEC .
| specrule Pmﬂlllg) b_{lI , NONE

b NONE MB/B'}

Figure 8: Optional sections expressed by specialization
nodes with the NONE element.

2.4 OR Tree Sections - Design Pattern #9

Logical OR means that one or more entities or tree
sections need to be included to get a valid variant. This
can be expressed by an aspect node whose children are
followed by specializations. Each specialization con-
tains a NONE element as one child. The corresponding
design pattern is shown in Figure 9. At least one spe-
cialization has to evaluate to a node not being NONE.
By defining the specialization rules reasonably, the user
has to ensure, that this is guaranteed. This pattern is
composed by pattern #1 describing mandatory tree sec-
tions in combination with pattern #8 for optional ele-
ments. After pruning, the system a consists of b and c.
System b, in turn, is of type bs or not existent while ¢ is
of type CS or not existent.

Couplings have to be adjusted when the tree changes
by evaluating nodes. Since the couplings are defined at
the aspect node aDEC, it is obvious, that there is a need
for the possibility to define variable couplings. Variable
couplings can be defined via SES Functions as intro-
duced with design pattern #2.

3 Combined Design Patterns

In the previous section, the elementary design patterns
were discussed in particular. During tool development,
the necessity of testing combinations of basic patterns
(combined patterns) was recognized.

SES
FII
aDEC
| couplings
| |
b ¢
bSPEC cSPEC
specrule | specrule
 — | —
bs  NONE cs  NONE
b fmb:
IMB/B') IMBICY
#pmnhg
2 t
aDEC aDEC
couplings | couplings
bs b NONE NONE cs ¢
{mb= fmb—
YMB/B'} MBACT
PES3 PES4
EII a
aDEC aDEC
couplings couplings
.
bs b cs ¢ NONE NONE
~ fmby {mby .
IMB/B' MBIC) Invalid!

Figure 9: OR expressed by aspect nodes followed by
specializations with NONE elements.

Issues addressed with these patterns are inheritance,
evaluation order and priorities. In the next sections, a
few combined patterns are introduced.

3.1 Design Pattern #10 - Two Specialization
Nodes in One Path

S S SESvar={VAR1, VAR2}
a SemanticCondition={ VAR in ['1','2",'3'];
| VARZ in ['1", "2}
aSPEC specrulel={VARI="1'-»b;
| specrulel VARI==2'»c;,
f T ] VAR1=="3"-»NONE}
o E le2={VAR2="1"»d;
?ml‘*"-\“'i*ﬁ'! i NN IVAR2='2'_-:?:I
c¢SPEC
| specrule2
d:mh—"'MB oy SmbMB/EY
¢ pruning
(VARI =='I', VAR2 =="I'|'Z) (VARI="2, VAR ="1")
b a . dca
imb="MB/B'} fmb="MB/D'}
(VAR 2, VAR2 ) (VARI ‘¥, VAR2 112

o

cca - NONE
{mb="MB/E"}

Figure 10: Inheritance of attributes at two
specialization nodes in one path.
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SES SESvar={VAR}
SemanticCondition={ VAR in ['1',"2']}

4 specrule={VAR="1"->h;

i VAR="2"»c}
aSPEC
!l specrule
v
t;‘ € imb=MBIC
bDEC
couplings
—_—

d >
(mb="MBD'} " Imb=/MB/E'}

&pmn ing

PESI PES2
(VAR =="1") e

b_lzl 35
bDEC imb=MBIC")

d:mh—‘ MBI} Clmh—' MB/E"}
Figure 11: A specialization with a succeeding aspect.

Specialization nodes inherit the attributes of the selected
child and append them to the father’s attributes, as pre-
viously described. In Figure 10, there are two speciali-
zation nodes in one path. Additionally, the NONE ele-
ment is used. Thus, this can be classified as an optional
feature and shall clarify the axiom for attribute inher-
itance. During pruning, firstly aSPEC is evaluated. In
case the child c is selected, another decision for child d
or child eis taken. In that case, the attributes of the child
node of CSPEC are inherited to the first node.

3.2 Design Pattern #11 — Specialization with
Succeeding Aspect

Figure 11 depicts a specialization node with a succeed-
ing aspect node. This pattern is a combination of a spe-
cialization node followed by a single aspect node.
Therefore, it is a combination of alternative and manda-
tory tree sections. The system a can be of type b or c,
the b can be decomposed in d and e.

3.3 Design Pattern #12 - Specialization and
Aspect Siblings

When aspect nodes and specialization nodes are broth-
ers, the specialization node has to be resolved first dur-
ing pruning. If, additionally, an aspect node is below the
specialization node, during pruning two aspect nodes
will become siblings. Since, in this case, the occurrence
of aspect siblings is not known until the first pruning
step, aspect rules could not be formulated beforehand.
In order to tackle this, the priority attribute for aspect
and multiaspect nodes was introduced. Throughout the
whole SES, these nodes get a unique number. If, during
pruning, aspect nodes become brothers, a decision about
which to choose can be made.

SES

e —

aDEC aSPEC
couplings, specrule
priority

- [ I ipara= I
imi fmb 12]F -
MBI MBI {1211 eDEC

couplings,
priority
{mb= g:mh—
MBI UMBIGH
l pruning (1st step)
PES1 interm. PES
d_i‘l [para ca
L2n ——
aDEC aDEC eDEC
couplings couplings, couplings,
1 |priority priofity
Imh- C. b
IMBEY TMINC B Cimo- Ftmb- St

TMBA IMBIC) TMBF) TMBIG)

lpruning (2nd step)

ea ea
aDEC eDEC
couplings, | couplings,
priority | priority
b .
{mbr L;mb f:n g:m.
TMB/BY YMBACTY YMBF) TMBAGT

Figure 12: Aspects can become siblings by resolving a
specialization.

In Figure 12, an example is given. The system a consists
of b and c, if it is of type d. If it is of type €, it can con-
sist of b and ¢ or of f and g. In case the system is of type
e, a decision as to which decomposition to take is made
by interpreting the priority attribute.

3.4 Design Pattern # 13 - Several Multi-
Aspects in a Path

If a multi-aspect node is followed by a second or even
more multi-aspects, complexity of resulting structures
grows considerably. During pruning compliance with
the SES axioms has to be ensured and therefor some
renaming operations are necessary.

Figure 13 depicts two successive multi-aspects
where the numRep variable of bBMASP defines a multi-
set. Renaming of b to bl and b2, as necessary for chil-
dren of multi-aspects and explained in pattern #2, re-
sults in renaming of bBMASP to bIMASP and b2MASP.
Generally, one can say that renaming an entity node
always calls for renaming the following descriptive
node, too. The first pruning step resolves the multi-
aspect aMASP to an aspect aDEC with two child nodes
of type multi-aspect. In a second step the child nodes
are resolved to aspect nodes, too. Since the numRep
variable of bIMASP and h2MASP was set via the multi-
set, variable couplings are necessary.
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Figure 13: Successive multi-aspects with variable num-
ber of replications.
Couplings are set with the help of an SESfcn which
chooses cpll or cpl2 based on the current value of
numRep.

3.5 Design Pattern #14 - Selection
Constraints

A modification of pattern #3 (specialization siblings) is
shown in Figure 14. With this pattern the use of selec-
tion constraints and semantic conditions to limit the
possible valid structures is pointed out. The correspond-
ing constructs in feature models are known as require
and exclude [2].

The dotted line from leaf node ¢ to node d in Figure 14
depicts a selection constraint which means that, if C is
selected at alSPEC, d has to be chosen at a2SPEC. The
resulting PES is PES3. Note, that current value of VAR2
does not matter for the selection, if VARI is set to 2.
Another way to control possible variants are the seman-
tic conditions. The semantic conditions for value com-
binations of VAR1 and VAR?2 interdict the selection of
d, if b is already selected.

SES

1l L
alSPEC a2SPEC
||spccru|c2

specrulel
|

f ]
b:mb_':w;.-'n'. € rmb=MBIC", S:mh=‘-"MB.-‘D‘:c,‘mh—'.-"MB.-‘!{': f:mh "MB/F'}

1

]

]

paral=[1.2]} | para2=[3.4]}

selection constraint
SESvar={VARI, VAR2}
SemanticCondition=
{ VARI in ['1',"2';
VARZ in ['1','2''3'];
~(VARI=="1' A\VAR2=="1")}
specrulel={VAR]=="1"-»b;

VAR1=="2"»c}
specrule2={VAR2=="1"-»d;
VAR2=—="2"-»¢;
VAR2=="3"»f}
¢ pruning
(VARI =="1", VAR2 == '2) (VAR] =="I', VAR2 == "'3')
eba, . npE, o2 e,
paral=[1,2]} paral=[1,2]}
(VAR == "2, VAR2 =="1"|'2'| '3)

d_cagpmpp,
para2=[3.4]}
Figure 14: Variant restriction with selection constraints
and semantic conditions.

4 Conclusion and Future Work

This paper gives an overview of essential patterns need-
ed to describe and test the pruning process of an SES.
With the described patterns, the implementations and
tests of the software tools for the extended SES/MB
infrastructure developed in the Research Group CEA
could be done.

However, while developing and testing the software
tools, more combined patterns were found and tested.
Some pitfalls in the pruning algorithm were discovered.
Therefore, additional attributes, such as the priority
attribute, were introduced.

However, e.g. for specialization siblings, there has to
be found a way to decide which sibling is evaluated
first. Formalized definitions of pruning algorithms are
essential part of future work.
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Future works regarding the SES software tools will
especially cover enhancements of the model builder. For
a full software support of the SES/MB-based infrastruc-
ture, it is necessary to have a fully functional model
builder, which supports the generation of hybrid models
with basic systems that are modeled using different
paradigms. In addition, the Python implementation will
allow to support a set of model builders for different
simulators.
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