
111

S N E B E N C H M A R K N O T E

Non-standard Queuing Policies:
Definition of ARGESIM Benchmark C22

Peter Junglas1*, Thorsten Pawletta2

1Dep. of Engineering “Dr. Jürgen Ulderup”, PHWT Vechta/Diepholz, Schlesierstr. 13a, 49356 Diepholz, Germany;
1 *peter@peter-junglas.de
2Wismar Univ. of Applied Sciences, Fac. of Engineering, Research Group CEA, PF 1210, 23952 Wismar, Germany

SNE 29(3), 2019, 111-115, DOI: 10.11128/sne.29.bn22.10481

Received: March 10, 2019; Revised: June 26, 2019;

Accepted: July 5, 2019

SNE - Simulation Notes Europe, ARGESIM Publisher Vienna,

ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Abstract. The ARGESIM benchmark C22 ’Non-standard
Queuing Policies’ studies three non-standard queues
that provide different ways to access entities inside a
queue like detaching elements or reorder them: The
reneging queue, where entities leave a queue after a
given waiting time, the jockeying queue, where entities
can switch to another shorter queue, and the classing
queue, where at certain times entities with a given at-
tribute ("class") are called to the front of the queue.
A special focus lies on the management of concurrent
events. The benchmark is especially suited for beginners
in the field of discrete event modeling.

Introduction
In many applications of discrete event system simula-

tion the modeling of queueing systems is of paramount

importance. The basic paradigm describes abstract enti-

ties (customers, products, messages) that enter a queue,

wait, until the corresponding server is free, and leave

the queue, when they are selected for processing ac-

cording to the queue discipline. Modifying the proper-

ties of server processes – such as service time distribu-

tion or the possibility of failure – and of the correspond-

ing queues – e.g. their size or discipline – can change

the overall system behaviour drastically. Furthermore

one is often interested in specific statistical properties

of the servers, queues and entities like mean uptime,

queue length or average waiting time.

For this reason many simulation environments pro-

vide ready-to-use components of standard queues and

servers, either as different blocks like in SimEvents [1]

or combined in one Process module as in Arena [2].

Using parameters one can easily define the size of a

queue, choose among a set of predefined disciplines

(e.g. FIFO, LIFO, priority) or change the service time

distribution.

But there are a lot of important examples, where the

behaviour of the queue selection process or of the enti-

ties in the queue is more complex [3]. In this benchmark

we will concentrate on the following three scenarios:

• Jockeying: the last entity in one of a set of FIFO

queues can switch to another shorter queue.

• Reneging: entities wait in the queue only for a

fixed maximal time and leave the queue and the

system, if they are not served before.

• Classing: entities have a class attribute, similar to

a priority, and advance to the front of the queue,

when an external operator calls for their class num-

ber.

In a standard FIFO queue, an entity can only leave when

it reaches the front of the queue. In contrast the three

examples introduce additional ways to access entities

inside a queue: detach the last element (jockeying),

detach any element (reneging) or reorder all elements

(classing). Frequently the standard queue components

defined in simulation environments do not offer such

access. This can make the implementation of a non-

standard queue rather complicated, introducing a lot of

additional internal events [4].

SNE 29(3) – 9/2019



112

Junglas and Pawletta Non-standard Queuing Policies: Definition of ARGESIM Benchmark C22

All three examples are variations of a simple basic

queueing system containing four standard FIFO queues

and servers. Its implementation should be straightfor-

ward, but it can be useful nevertheless, in order to scru-

tinize the exact system behaviour in the case of concur-

rent events. In the context of mainly stochastical pro-

cesses this seems to be an unlikely case, but it is impor-

tant e. g. to control the exact order of event cascades

[5].

Therefore the models in this benchmark have to be

implemented in two versions: A smaller deterministic

model allows for exact comparisons and outputs plots of

its dynamic behaviour, while a larger stochastic model

produces statistical data of some relevant system vari-

ables.

1 Basic Queuing System
The simple queueing system shown in Figure 1 forms

the basis of all examples. Its main purpose is to define

all the details that are identical for the following special

cases, but it also allows for some interesting variations

that will be studied in the benchmark.

G

1

2

3

4

Figure 1: Basic queueing system with four queues.

The system contains a generator that creates a given

number nE of entities with fixed or stochastic interar-

rival times tA, the first one starting always at t = 1. The

entities have id attributes 1 . . .nE that are given in order

of creation. They enter the system of nQ = 4 numbered

queues and servers, choosing the shortest line, includ-

ing the server allocation. In case of several queues with

minimal length the one with the smallest number is cho-

sen. The queues have a FIFO (“First In First Out”) dis-

cipline and a potentially infinite capacity. Each server

has a capacity of one and a fixed or stochastic service

time tS.

After being served the entities leave the system, e.

g. they are terminated. The simulation stops, when all

nE entities have been terminated.

The deterministic version has nE = 100 entities,

constant interarrival time tA = 1 and constant service

time tS = 4.5. Its simulation should produce two plots,

one showing ids(t), i.e. the ids of the last 20 outgoing

entities over their termination time, preferably as stem

or bar plot, the other the total queue length lqt(t) (i.e.

the sum of the four queue lengths, without the server

allocation) over the complete simulation time.

The stochastic version uses nE = 500 entities, the

interarrival times are exponentially distributed with a

mean value of tA = 1. The service times are computed

using a symmetric triangular distribution with the most

likely value tS = 4.5 and a half-width ΔtS = 2, i. e. the

possible values range from tS,min = 2.5 to tS,max = 6.5.

The simulation should output the maximal and the av-

erage value of the total queue length lqt(t) (again de-

fined as the sum of the four queue lengths, without the

server allocation), where the average is defined as time

average over the complete simulation time. Additional

results are the maximum and average of the queue wait-

ing times tq,i of entity i, where the service time is not

included and the average is taken over all entities.

These two base models are pretty much standard,

their implementation should present no difficulties. The

two versions should be basically identical, especially

no optimisations are allowed that depend on the special

parameters of the deterministic input or server process.

The above description is not complete, insofar as

the concrete order of concurrent events is not specified.

This is an important issue at least for the deterministic

version, where the results actually depend on such fine

details. Therefore the concurrency order is generally

specified in the following way:

1. an entity leaves a server,

2. a queued entity enters a server,

3. a new entity enters the system and chooses a queue.

For the variants described in the following sections ad-

ditional event types may occur and the concrete order

will be fixed accordingly. To study the methods, how

the order of concurrent events can be fixed in a sim-

ulation environment, this benchmark includes another,

optional model, namely a variant of the deterministic

basic model with another concurrency order:

SNE 29(3) – 9/2019



113

Junglas and Pawletta Non-standard Queuing Policies: Definition of ARGESIM Benchmark C22

1. a new entity enters the system and chooses a queue,

2. an entity leaves a server,

3. a queued entity enters a server.

Another interesting problem is, how a simulation pro-

gram deals with large systems. Especially for standard

graphical environments the creation of a lot of queues

and servers with copy and paste is a nuisance, there

should be better ways to cope with the size. Therefore

the benchmark includes another optional model, a vari-

ant of the stochastic version with 40 queues and servers.

All parameters are as before except for the following:

nQ = 40, tA = 0.1, nE = 5000.

2 Jockeying Queues

In a system with several queues jockeying means the

process that an entity moves from one queue to another,

usually shorter queue [3]. In the context of this bench-

mark it is specified in detail as follows:

• Jockeying happens immediately, when a queue

(incl. server) is at least shorter than another

one.

• In this case the last entity of the longer (source)

queue leaves its queue and becomes the last entity

of the shorter (destination) queue.

• If there are several destination queues, the one with

the smallest queue number is chosen.

• In case of several possible source queues, the one

is chosen that is nearest to the destination queue,

e. where the absolute value of the difference of

their queue numbers is minimal. If there are two

such source queues (one on each side of the desti-

nation queue), the one with the smallest number is

selected.

To complete the specification the order of concurrent

events is given as:

1. an entity leaves a server,

2. a queued entity enters a server,

3. a jockeying entity changes its queue,

4. a new entity enters the system and chooses a queue.

Both variants of the basic model have to be aug-

mented with the described jockeying behaviour. All pa-

rameters remain the same, as well as the standard output

graphs and statistical values. For a jockeying entity the

queue waiting time is defined as the sum of its waiting

times in all queues it has visited (possibly many). Ad-

ditionally the stochastic model should output the total

number of jockeying events, while the output of the de-

terministic version should include a table showing the

time of each jockeying event, the id of the jockeying

entity and the numbers of the source and the destination

queue. For conciseness, only the first five and the last

five rows of the table have to be included in a bench-

mark report.

3 Reneging Queues
In this model entities that have entered a queue can

leave it, before they are being served. This behaviour is

called reneging [3]. There are many possible strategies,

when entities renege, but in the benchmark example it

is simply done, when the maximal waiting time tR = 9

is reached. The order of concurrent events is as in the

standard case, with the additional requirement that en-

tering a server takes precedence over reneging, i. e. the

order is:

1. an entity leaves a server,

2. a queued entity enters a server,

3. a queued entity reneges,

4. a new entity enters the system and chooses a queue.

Again both versions of the basic queueing system have

to be extended to include the reneging of entities, using

identical parameters and output graphs resp. values. For

the computation of the average queue waiting time the

time of the reneging entities – being tR of course – is in-

cluded. In addition the deterministic model should out-

put a table of time and id of all reneging entities, while

the stochastic model simply shows their total number.

4 Classing Queues
The last example system, called classing queues, is the

most complex. It is inspired by a typical situation dur-

ing the boarding of a plane: An operator calls “all pas-

sengers with seat numbers 15 – 30” to the front of the

queue.

SNE 29(3) – 9/2019



114

Junglas and Pawletta Non-standard Queuing Policies: Definition of ARGESIM Benchmark C22

class = op. call

6 35 4 1 27

6 137 25 4

Figure 2: Result of an operator call (class ∧
= color).

To mimic this each entity i is supplied with a fixed in-

teger class ci, where 1 ≤ ci ≤ nC, with the number of

classes given as nC = 5. At certain times an operator

calls for a class number, whereupon all entities with this

class procede to the front of their queues. The relative

order of the entities within this class remains intact, as

does the order of the other entities among themselves

(cf. Figure 2). Such a behaviour is similar to the stan-

dard priority queue, with the essential difference, that

the meaning of “high priority” changes at runtime.

As before the classing behaviour has to be included

in both variants of the basic queueing system. The way

entities are assigned their class is different for the vari-

ant models: In the deterministic case the classes ci are

dealt in a round robin way in ascending order, starting

with 1. In the stochastic version they are chosen ran-

domly with equal probability 1/nc for each class. An

entity can only proceed to the server, if its class is the

currently called class.

Unlike the boarding example, which ends after the

boarding process is completed, the here defined “class-

ing queue” should possibly run forever. Therefore the

exact behaviour of the operator is defined as follows:

• Initially it waits for a fixed time tC = 10, during

which all incoming entities remain in the queue.

• After that it calls the classes in descending round-

robin order, starting with the highest one (nC = 5).

This defines the current class identically for all

queues, i.e. there is only one operator for the whole

system.

• After a call it waits, until all entities of the cur-

rent class have been served, before it calls the next

class.

• If there are no entities in the system, the operator

is stalled, until a new entity arrives.

The call of the operator has lowest priority among

concurrent events, apart from that the order is as in the

standard case:

1. An entity leaves a server,

2. a queued entity enters a server,

3. a new entity enters the system and chooses a queue,

4. the operator calls a new class and the queue is re-

ordered accordingly.

The standard output graphs resp. statistical values have

to be supplied, together with a table of the average and

maximal values of the queue waiting times tq,i for each

class, in both variants.

5 Specification of all
Benchmark Tasks

All benchmark models have been described above with

their exact parameters, together with the requested out-

puts of corresponding simulation runs. For easier ref-

erence, this section summarizes all items that a bench-

mark report should contain.

Basic Queuing System

1.1 A short description of the relevant parts of the ba-

sic model, using plots of the component structure,

code snippets or whatever may be appropriate to

understand the basic idea of the implementation.

1.2 plots of ids(t) and lqt(t) (deterministic model),

1.3 results for max. and avg. of lqt(t) and tq,i (stochas-

tic model),

1.4 (optional) a comparison of the implementations of

the two concurrency variants together with a plot

of ids(t) for the variant model,

1.5 (optional) a comparison of the implementations of

the standard and large stochastic models together

with max. and avg. of lqt(t) and tq,i for the large

model.

SNE 29(3) – 9/2019



115

Junglas and Pawletta Non-standard Queuing Policies: Definition of ARGESIM Benchmark C22

Jockeying Queues

2.1 A short description of the implementation of the

jockeying queues,

2.2 plots of ids(t) and lqt(t) and a table displaying the

first five and the last five jockey events (determin-

istic model),

2.3 results for max. and avg. of lqt(t) and tq,i and the

number of jockey events (stochastic model).

Reneging Queues

3.1 A short description of the implementation of the

reneging queues,

3.2 plots of ids(t) and lqt(t) and a table displaying the

reneging events (deterministic model),

3.3 results for max. and avg. of lqt(t) and tq,i and the

number of reneging entities (stochastic model).

Classing Queues

4.1 A short description of the implementation of the

classing queues,

4.2 plots of ids(t) and lqt(t) and a table displaying

class statistics (deterministic model),

4.3 results for max. and avg. of lqt(t) and tq,i and a

table displaying class statistics (stochastic model).

Solutions should be accompanied by the complete

source code of all models to make them accessible on

the ARGESIM Benchmark server.

6 Conclusion
Depending on the simulation environment used, some

of the tasks can be very easy or may require tricky mod-

eling and implementation ideas. Probably a special dif-

ficulty will be to guarantee the specified order of con-

current events. The production of plots and statistical

results tests the corresponding capabilities of the sim-

ulation environment, but can of course be done using

data export and external programs.

Since all system examples are rather small and don’t

need a special mathematical or modeling background,

the benchmark is suited for beginners in the field of

modeling and simulation.

Acknowledgement

The first author (P. J.) likes to thank the team of the

CEA research group in Wismar for the warm hospitality

extended to him and many helpful discussions.

References
[1] Li W, Mani R, Mosterman P. Extensible discrete-event

simulation framework in SimEvents. Proc. 2016
Winter Simulation Conference; 2016 Dec; Arlington.

New Jersey: IEEE. 943-954.

[2] Kelton W, Sadowski R, Zupick N. Simulation with
Arena. 6th ed. New York: McGraw-Hill; 2015. 656 p.

[3] Hassin R, Haviv M. To queue or not to queue:
Equilibrium behavior in queueing systems. Boston:

Kluwer Academic Publishers; 2003. 191 p.

[4] Austermann L, Junglas P, Schmidt J, Tiekmann C.

Conceptional problems of transaction-based modeling

and its implementation in SimEvents 4.4. Simulation
Notes Europe SNE. 2017; 27(3): 137–142. doi:

10.11128/sne.27.tn.10383

[5] Junglas P. Pitfalls using discrete event blocks in

Simulink and Modelica. In: Proc. of ASIM-Workshop
STS/GMMS; 2016 Mar; Lippstadt. 90-97. ISBN

978-3-901608-48-3.

SNE 29(3) – 9/2019


