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Editorial 
Dear  Readers – This issue SNE 29(2) continues the publication strategy of SNE Simulation Notes Europe: quick publication of 
submitted papers on trends in modelling and simulation as well as overview papers, postconference publications for conferences of 
EUROSIM societies, and publication of benchmark reports. 
The issue starts with an Overview Note on parallel discrete simulation – also suited for use in lectures on this subject, followed by  
a Technical Note on integrated behaviour modelling and simulation within model-based electric/electronic-architecture (EEA)  
descriptions. The following two Technical Notes deal with the RPDEVS (Revised Parallel DEVS) modelling formalism which  
enhances the Parallel Discrete Event System Specification (PDEVS) – underlining the power of DEVS and the progress in DEVS 
implementations. The next Technical Note presents a simulation-based synthesis and optimization of complex thermal systems for 
supermarkets – showing benefits of simulation for consumer comfortability and energy saving. The following Short Note checks  
features of specific physical modelling system for analysis of a knee joint. The issue closes with a Benchmark Note of type Bench-
mark Report for ARGESIM Benchmark C7 ‘Constrained Pendulum’ – comparing direct implementations in MATLAB and EXCEL.  
The title page of this issue underlines the presented broad variety of theory, methods and applications on modelling and simulation 
by a word cloud consisting of terms of the titles of all contributions. 
   I would like to thank all authors for their contributions to SNE 29(2) showing the broad variety of simulation. And thanks to the 
editorial board members for review and support, and to the organizers of the EUROSIM conferences for co-operation in post-
conference contributions. And last but not least thanks to the SNE Editorial Office for layout, typesetting, preparations for printing, 
electronic publishing, and much more. 

Felix Breitenecker, SNE Editor-in-Chief, eic@sne-journal.org; felix.breitenecker@tuwien.ac.at 
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Abstract. Some discrete simulation models are too
large to be executed on a single processor; in other
cases, results might be required faster than a sequential
execution can provide them. Suchmodels are candidates
for parallelization. Here, models are distributed among
several processors, and are then executed with careful
synchronization.
This paper provides an introduction to the fundamen-
tals and methods of the parallel execution of simulation
models, with a focus onmodel-based parallelization. The
paper describes the two main classes of parallel simu-
lation methods, conservative and optimistic simulation,
their respective advantages and shortcomings. A sec-
ond focus is put on static and dynamic load balancing,
with a dynamic load balancing method first developed to
accelerate the simulation of transportation systems be-
ing introduced in some detail. In addition, the paper de-
scribes some typical applications of model-based paral-
lelization.

Introduction

Many discrete simulation models contain a certain de-

gree of inherent concurrency. For example, in the sim-

ulation of a light rail network the braking manoeuvres

of one vehicle in one region of the network would not

directly influence the passenger exchange of a different

vehicle in another region. The two vehicles can thus be

simulated independently of each other in the majority

of cases.

The goal of model-based parallelization is to exploit

that existing concurrency through parallel execution of

events that take place in different regions of the model

on a number of participating processors or processor

cores. The basic assumption is that these events can

often be executed independently of each other without

inducing communication between partial models. Dur-

ing the course of the execution, synchronization issues

may arise between these partial models. For example,

if a vehicle entity leaves the partial model of one pro-

cessor it has to be sent to another processor and there

has to be integrated with the partial model already be-

ing executed.

This paper presents an introduction to background,

approaches, and techniques for the parallel execution of

simulation models, with a focus on model-based par-

allelization. It introduces a dynamic load balancing

method first developed for the efficient execution of

multimodal transportation models. The paper is espe-

cially addressed to students of the craft, and to prac-

titioners who might want to look beyond the GUI of

their usual modeling tools. While in many cases par-

allelization methods are hidden in the execution engine

of a simulation tool, some applications call for a more

hands-on approach. The fundamentals of parallel sim-

ulation are easily understood, and its methods are also

very powerful. Researchers, students, or practitioners

can utilize well-researched parallelization methods to

create fast simulation applications executing large mod-

els.

The paper continues by sharing some background

on the concepts and general approaches to parallel sim-

ulation (see Section 1), and then goes on to describe the

two main classes of model-based parallelization tech-

niques: conservative and optimistic methods (see Sec-

tion 2). Subsequently, static and dynamic load balanc-

ing approaches are described (see Section 3), followed

by an examination of some typical applications (see

Section 4). The paper closes with a summary of the

lessons learned and recommendations for further read-

ing (see Section 5).
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1 Background
Discrete simulation models consist of a set of entities

that represent physical or logical components of the ex-

amined system, including their behavior and relation-

ships to each other and their state changes over time.

In discrete simulation, a model changes its state at

discrete points in simulation time. Here, simulation

time – or model time – is the time that elapses from the

point of view of the simulated entities (see [1]). Simu-

lation time has to be distinguished from wallclock time,

the time elapsing in the real world while the simula-

tion run is executed. In many cases simulation models

are executed as fast as possible. In certain applications,

however, it is desirable to tie model execution to wall-

clock time, for example if a human has to react to the

changes in the model. This is referred to as real-time

execution or scaled real-time execution.

Simulation time can progress in fixed or variable in-

crements. In models with fixed time increments, the

model is executed by starting out from simulation time

tstart , iterating through steps i with a fixed model time

increment Δt – the model state can change at any of

these points tstart + i∗Δt in simulation time. The entities

communicate with each other via messages that might

be scheduled with a timestamp in the (model time) fu-

ture.

With models with a variable time step, simulation

time is incremented while processing simulation events.

These methods are often called event-based simulation

(see [1] or [25]). Each of these events has a timestamp

that marks the scheduled time of its occurrence, and of-

ten also an attribute that describes the type of the event

and various other fields such as a list of the intended re-

ceivers and the identity of the sending entity. The events

are managed in a Future Event List (FEL), a priority

queue that keeps all scheduled events sorted in ascend-

ing order of their timestamp. To execute the model,

the event with the least timestamp is pulled from the

FEL, the simulation time is advanced to its timestamp,

and the event is processed – which usually changes the

model state. New events can be scheduled during pro-

cessing; they are then inserted into the FEL.

In order to accelerate model execution, computation

can be distributed over parallel processes, for example

on several processors or, more and more often, several

cores of the same processor. Here, usual goals are to

execute the model as fast as possible or in (scaled) real

time. An execution that is too fast for a desired real-

time binding can be slowed down to the desired speed

without any problems.

A central condition for such a parallel execution is

that a simulation run in parallel has to deliver identi-

cal results as a sequential execution of the same model;

the simulation technique must not influence the model

behavior (see [6] or [19]).

The central measure for the efficiency of a paral-

lelization method is the speedup. That value determines

the ratio of the runtime of the sequential execution of a

model to the time needed for parallel execution. The

aim of parallel execution is to achieve the highest pos-

sible speedup with a given number of processors, or,

more precise, given computational resources.

A number of vastly different approaches to paral-

lel simulation exist. For an in-depth discussion of the

methods described below – and more – see [6]. Model-
based parallelization methods, also called space-based

parallelization, aim to exploit the parallelism inherent in

the model. For this purpose, the model is decomposed

into partial models, which are then distributed on the

available processors for execution. The different partial

models communicate via messages encapsulating simu-

lation events or serialized entities that are sent over the

shared cache or the connecting network. The proces-

sors p1 to pk from the set of processors P each execute

a specific partial model – they can be seen as the nodes

of a graph, with the messages sent between processors

inducing edges.

Any model-based parallelization method has to keep

the execution of partial models carefully synchronized.

Here, the local causality constraint prescribes that each

model entity has to process simulation events in a non-

descending order regarding their timestamps. If the lo-

cal causality constraint is not met, the simulation results

might be invalidated by causality errors. For example,

lets assume that in a light rail simulation a processor p1

has processed an operational day up until a simulation

time of 12:30, while a processor p2 has only arrived at

12:05. Now a vehicle entity leaves the partial model of

p2. That processor sends a message to p1 and trans-

fers the vehicle data for further simulation from 12:06.

From the point of view of p1 that message comes from

24 simulation minutes in the past. During these 24 sim-

ulated minutes p1 might have already allocated the re-

sources “rightfully” occupied by the vehicle to other en-

tities. The transferred message can not be processed

sensibly; the simulation has to terminate with an error

message.
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A central concept is the lookahead (see [5] or [13]):

If an entity or a partial model is currently processing

events at a simulation time t, then a lookahead of L
guarantees that no additional simulation events will be

generated with a timestamp lesser than t +L (see [6]).

For models with a fixed time increment the lookahead

corresponds of that increment and is therefore always

greater than zero. For event-based models the looka-

head usually changes in the course of the simulation;

under certain circumstances a lookahead value of zero

is possible (see Section 2.1).

2 Model-based Parallelization
Model-based parallelization methods can be catego-

rized based on the way the causality constraint is kept:

With conservative methods, causality is guaranteed at

all times by only processing simulation events that are

explicitly considered safe. With optimistic methods,

each entity indiscriminately executes events as quickly

as possible. In case a processor receives an event with

a timestamp that lies in the past from its local point of

view, it rejects corresponding parts of the already exe-

cuted simulation and restores causality by recalculating

them from the timestamp of that event on.

In the following, a selection of important conser-

vative and optimistic parallelization methods are de-

scribed.

2.1 Conservative Parallelization Methods

Two of the most important conservative parallelization

methods are synchronization with null messages and

synchronous execution. Both methods – and more –

are described in great detail in [6].

Synchronizationwith nullmessages. Synchro-

nization with null messages was independently devel-

oped as the first conservative parallelization method for

event-based simulations by Bryant (see [2]) and Chandy

and Misra (see [3]) and explained in detail by Fujimoto

(see [6]). Here, the processors p1 to pk are regarded as

nodes of a graph. In that graph, if a processor pi sends

messages to a processor p j in the course of the simula-

tion run, a directed edge exists between these nodes.

The method assumes that a processor pi sends mes-

sages to a processor p j in order of non-decreasing

timestamps. A processor stores incoming messages in

a series of FIFO queues, each assigned to an incoming

edge of the processor graph. It follows that messages

are present in each of these queues in non-decreasing

order. In a model with variable time progress, messages

or events that stay local on one processor are managed

in a separate priority queue.

A message with timestamp t is declared secure if

there is at least one message with a timestamp not lower

than t at the head of each inbound queue. The pres-

ence of these messages means that no processor can

send messages that lie before t in simulation time. Now

the processor selects the message Nmin with the low-

est timestamp from all incoming queues and, if applica-

ble, the local event list. Since no message with a lower

timestamp can subsequently occur, the causality condi-

tion is maintained when Nmin is processed.

During event processing, further events with the

same or a greater timestamp are sent to neighboring

processors if necessary. At that point deadlocks can oc-

cur: If for every participating processor not all queues

at the incoming edges are filled with at least one mes-

sage, each processor waits for messages from the other

processors to arrive (see Figure 1). Therefore, no events

can be declared safe – the simulation is blocked.

To solve this problem, Bryant (see [2]) and Chandy

and Misra (see [3]) suggest that each processor, after

processing a message, sends so-called null messages to

all neighboring processors. These messages are times-

tamped with the current simulation time plus the looka-

head value L of the processor.

The handling of null messages by the receiving pro-

cessor is the same as that of regular messages. However,

when processing a null message, no change is made

to the model state apart from advancing the simulation

time to its timestamp. Sending null messages during

each event processing ensures that messages are always

available in the FIFO queues – the development of a

deadlock is thus precluded.

The efficiency of the method largely depends on the

lookahead value: A small lookahead means that many

null messages have to be sent and processed. In addi-

tion, the model cannot contain any circles in the graph

with a lookahead of L = 0, otherwise deadlock situa-

tions become possible. Here, the processors involved

process only null messages and send (because of L = 0)

further null messages with the same timestamp to each

other. The simulation time never advances, the applica-

tion is caught in an endless loop.
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Figure 1: A deadlock occurs when each processor is waiting
for its neighbors to send messages; sending null
messages can solve this issue.

Synchronous execution. In synchronous execu-

tion (see [6]), each processor executes the events or sim-

ulation steps of a simulation time interval recognized as

safe and then enters a synchronization barrier. Here,

each processor waits for all other processors to com-

plete calculation. Then the next interval, now declared

safe, is processed. Thus, there is a defined point in wall-

clock time when all processors have finished calculat-

ing a certain simulation time interval and before any of

them starts calculating the next time interval.

To determine what events are safe to be executed,

the lookahead L(i) for a step i is used. While t(i)
is defined as the simulation time of the next unpro-

cessed message at processor p, L(i) is its local looka-

head value. The global lookahead tL is the minimum

value of t(i)+L(i) for all processors. All messages with

timestamps of up to tL are then declared safe.

The synchronization barrier can be implemented in

different ways. When synchronizing with tree barriers,

the processors are regarded as a balanced span tree, with

one processor being designated as a controller. A leaf

processor that has completed the calculation step and

now wants to enter the barrier sends a barrier message

to its parent node in the tree and then waits for a re-

sponse. An inner node that wants to enter the barrier

waits for messages from its daughter nodes. If these

are complete, it sends a barrier message to its parent

node and then waits for the response. When the con-

troller has finished calculating the interval and has re-

ceived barrier messages from all daughters, all the pro-

cessors have reached the barrier phase. To then leave

the barrier and initiate the next calculation phase, the

controller sends release messages to its daughters, who

in turn send them on to their daughters.

A special case of tree barriers is the so-called central

barrier. Here all processors are synchronized directly by

a controller. The disadvantage of the otherwise very ef-

ficient central barrier is the linear growth of the number

of messages that have to be processed by the controller,

leading to a bottleneck when a large number of proces-

sors is involved.

The synchronization messages can be utilized for

sending piggybacked data values, such as local looka-

head values. The method calls for no other prerequisites

than the presence of a positive lookahead for determin-

ing the size of the simulation time increments. In par-

ticular, there are no requirements for the connections

between the individual partial models, since the pres-

ence or fill level of FIFO queues need not be taken into

account.

2.2 Optimistic Parallelization Methods

The optimistic method Time Warp was first proposed

by Jefferson (see [11]) and is described in detail by Fu-

jimoto (see [6]). During the 1990s the method matured

with modifications that improve memory consumption

(see [22]) as well as reduce costly rollbacks (see [4] and

[23]). In Time Warp the parallelization tasks are divided

into a local and a global control mechanism. The work

carried out by the local mechanism takes place locally

on each processor – the processors can work largely in-

dependently of each other. The global mechanism per-

forms activities such as input, output, and garbage col-

lection, and requires coordination between the proces-

sors.

Local control mechanism. As with other event-

based methods, processors execute events from the lo-

cal Future Event List (FEL), and the state variables

of the model are changed if necessary. However, the

events are not simply discarded after processing, but

stored in another list, the Processed Event List (PEL).

If a message arrives from another processor whose

timestamp is greater than or equal to the current simu-

lation time of the local partial model, it is inserted into

the FEL and processed normally. If a straggler message

N arrives with a timestamp t lesser than the local simu-

lation time, the model has to be rolled back to its state at

time t – all state changes from this point on have to be

undone. Furthermore, the already processed events with

a timestamp greater than t have to be retrieved from the

PEL and inserted back into the FEL for reprocessing.

Message N is also inserted in the FEL.
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There are two general ways to perform this rollback:

In copy state saving, the values of all state variables are

saved before each event processing. If a straggler ar-

rives, the saved state with the corresponding timestamp

is copied back to the state variables – later changes are

discarded. With incremental state saving, a log entry

notes each change of a state variable. That log entry is

then put on a stack keeping a record of all changes.

It may not be enough to reset the local model state:

If invalidated messages were sent to other processors,

these messages have to be retrieved – or “unsent” – and

their effects have to be undone by the receiving proces-

sor. Time Warp uses so-called anti-messages for this

purpose. Each anti-message NA corresponds to exactly

one regular message N. When an anti-message arrives

at a processor, the corresponding regular message is au-

tomatically deleted from the corresponding data struc-

ture (FEL or PEL). The anti-message is also destroyed.

That mechanism elegantly undoes all invalidated

changes and restores causality, but also might lead to

a cascade of rollbacks and anti-messages.

Rollbacks do not affect the model state at a time less

than or equal to t, i.e. simulation results up to the simu-

lation time of the straggler are retained. It follows that

at least the processing of the event with the system-wide

least timestamp will not be cancelled. There is there-

fore a minimum simulation time that might be affected

by potential rollbacks – the state of the model before

that simulation time will never be invalidated.

Global control mechanism. The Global Virtual

Time GV Tt at a time t denotes the minimum times-

tamp of all unprocessed or partially processed events

across all processors involved at a time t. As already

described, no rollbacks can take place to times times

lesser than GV Tt .

When calculating GV Tt , messages must be taken

into account that have already been sent but not yet re-

ceived by the recipient. Since these transient messages

can potentially trigger a rollback and thus reduce the

local simulation time, the minimum of local simulation

times cannot simply be determined. As a remedy, a sim-

ple protocol can be used in which each recipient of a

message N confirms the reception to the sender. Until

this acknowledgement is received, the sender is respon-

sible for the message N and has to include it in the cal-

culation of the local minimum – afterwards N becomes

the responsibility of its receiver. This guarantees that at

any point in time the simulation time of N is included

in the calculation of GV Tt .

The value of GV Tt is used for a number of adminis-

trative tasks, for example the collection of fossil states:

backup copies older than it can safely be deleted. As in-

put/output operations generally cannot be undone, sim-

ulation events can only order outputs when the current

GV Tt has advanced to at least the simulation time of

the event. A special case is the processing of program

and calculation errors: These can occur due to causality

errors, for example a negative number of trains in a de-

pot. The program cannot simply be terminated, as such

errors may be reversed by rollbacks.

2.3 Comparison

The best method for the parallel execution of an indi-

vidual model is largely dependent on its specific prop-

erties; no single method is optimal for all applications

(as analyzed in detail in [6]).

Generally, conservative methods tend to be less

complex in structure (see [9] and [15]). They work with

only a single set of state variables, without the need to

manage backups. Since conservative methods only ex-

ecute events or time increments that are explicitly de-

clared safe – they are based on worst-case scenarios –,

they do not fully exploit the parallelization potential of

a model. Conservative methods can therefore be exces-

sively pessimistic. In general, the greater the lookahead

value, the more events can be processed in parallel, so

that a higher degree of model-inherent parallelism can

be exploited.

An advantage of optimistic methods is that even

models with a lookahead of zero can be efficiently ex-

ecuted without further restrictions. Parallel execution

is not hindered by all potential dependencies between

partial models, as is the case with conservative meth-

ods, but only by dependencies that actually occur in the

course of a run.

If these dependencies are high, or if the computa-

tional loads shift over time, for example resulting from

dynamically changing activities in the model, these

methods might behave too optimistically, so that a cas-

cade of miscalculations is carried out, that then have

to be taken back by complex rollback operations (see

[14]). To ensure causality, backups of the model state

are necessary for each occuring change. For activities

such as input/output, error handling, or memory man-

agement, for which the usual library functions can be

used in conservative methods, optimistic procedures re-

quire specifically implemented rollback-safe functions.
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In summary, optimistic methods tend to be more

complex than conservative methods. The lower over-

head of conservative methods has a positive effect on

performance, especially when the lookahead is known

– and ideally large in comparison to the event density.

However, if a lookahead value is not known or is very

low compared to the event density, optimistic methods

generally have performance advantages.

3 Load Balancing

Resulting from the typical dependencies in simulation

models, the speed of the execution is generally depen-

dent on the partial model that advances most slowly in

simulation time. It is therefore beneficial to incorpo-

rate a load balancing system into the simulation engine.

Such a system does not exclusively aim at high utiliza-

tion of the processor capacity, but also has to consider a

uniform advance in simulation time.

Load balancing schemes employed by parallel simu-

lation methods can be characterized as dynamic, static,

adaptive, non-adaptive, local, centralized, or hierarchi-

cal (see [16]): A static method estimates the load and

assigns partial models to processors in a preprocess-

ing step before the start of the simulation run, and thus

does not consider dynamic changes in the model activ-

ity. In contrast, a dynamic load balancing method con-

tinuously considers imbalances that develop from shifts

in the computational load and re-assigns partial models

to appropriate processors while executing the simula-

tion run. Adaptive methods consider fluctuations in the

available processor power originating from the demand

of dynamic processes belonging to third parties. In

inhomogeneous computer networks adaptive methods

also consider the dissimilar performance power of the

respective processors. A non-adaptive system ignores

those fluctuations and differences. In local methods, the

processors only exchange data with determined neigh-

borhoods and act on this local information, while cen-
tralized methods utilize a marked controller process to

whom the other processors report. Hierarchical meth-

ods usually organize communication in a tree topology.

A load balancing method used on a PC or laptop

computer should have static and dynamic components,

with the latter being also adaptive, and thus consider

both the changing computational load of the models,

and the changing availability of resources on a non-

exclusively used machine. A centralized method is

usually simpler to implement and quite adequate for a

system with only eight to sixteen processor cores (see

[27]); if a method is targeted at a massive parallel sys-

tem it should avoid a potential bottleneck by utilizing a

hierarchical or local scheme.

3.1 Static Load Balancing

At the start of a simulation run, the model entities

should be assigned to the participating processors in a

way that ensures a balanced load. As a second objec-

tive to optimally using the computational potential of

the processors, the communication load, resulting from

sending and receiving messages from one processor to

another, shall be as low as possible. Without further

knowledge of model specifics, the static load balancing

mechanism uses the number of edges between model

partitions as an indicator for communication load. It

therefore aims to distribute the model in a way that

keeps the number of inter-partition edges at a minu-

mum.

In literature, the decomposition of a graph G(V,E)
with n = |V | nodes into k components of simular size is

known as the GRAPH PARTITION problem. GRAPH

PARTITION is NP complete (see [10]), and can thus –

in case P �=NP holds – not be solved efficiently. For the

parallelization of simulation models an exact solution is

not necessary, especially since a dynamic change of the

load in the course of a simulation run would quickly

destroy any optimum static load balance (see [24]).

Kernighan and Lin (see [12]) describe a simple

heuristic method suitable for static load balancing. The

method starts out from a given partition where all par-

tial models have the same number of nodes (give or take

one) – for many models that may be a simple geograph-

ical breakdown. The method then iteratively improves

the communication load using a hill climbing algorithm

(see [18]).

Kernighan and Lin first describe a method to decom-

pose a graph into two partitions K1 and K2. Starting out

from a given initial partition the method computes for

each pair of nodes (vi,v j) with vi ∈ K1 and v j ∈ K2,

the impact of a potential movement of vi to K2 and v j
to K1 on the number of inter-partition edges. In case

an improvement is possible, the nodes are moved ac-

cordingly. The method iterates as long as additional

improvements are possible, and thus until a local op-

timum is reached. It has a computational complexity of

N(n2).
The described method is then extended to disect a

graph into k > 2 partitions: To that effect each pair Ki
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and Kj out of the k partitions are locally optimized us-

ing the k = 2 method. Usually several iterations are

executed, so that the simple method is run e ∗ (k− 1) ∗
(k− 2) = O(k2) times. That results in a computational

complexity of O(k2 ∗ (n/k)2) = O(n2) for k partitions

with n/k nodes – the method is thus independent of the

number of participating processors. Kernighan and Lin

empirically determine that after two iterations of their

method approx. 95% of the potential gain has been

reached.

3.2 Dynamic Load Balancing

In many models the majority of inter-entity dependen-

cies are regional in nature: most of the time entities

interact with their neighbors, only rarely do they send

messages to far away regions of the model. Based on

that thought dynamic load balancing generally has two

aims:

• ensuring that all participating processors progress

uniformly in simulation time by computing loads

adequate to their respective performance, and

• keeping the communication load between the pro-

cessors as low as possible by exploiting regional

dependencies in the model.

Generally, the processors perform the load balancing in

three steps: load measuring: each processor pi deter-

mines its own load and communicates the results to the

other processors; load evaluation: each processor pi de-

termines whether any model nodes shall be migrated to

adjacent processors and, if so, what nodes shall be mi-

grated to what processor p j; and load migration: the

model nodes are encapsulated as messages and sent to

adjacent processors.

The dynamic load balancing mechanism described

here has been first developed for the parallel simulation

of transit systems as part of a conservative, synchronous

execution engine (see [24] and [27]).

Measuring loads. To be able to employ effective

countermeasures against overload or underload the load

of individual processors has to be measured in regu-

lar intervals. In conservative parallelization that can be

achieved for example as part of the synchronization bar-

rier, in optimistic methods as part of the local control

mechanism. The following describes a comparatively

simple way to measure load as part of the synchroniza-

tion barrier that also integrates the available individual

performance of a processor – including its change over

time, for example through external user or system pro-

cesses (see [27]).

Each processor p ∈ P measures its load lp(i) at time

t(i) when all processors have completed their computa-

tions regarding simulation step i (see Figure 2). By uti-

lizing the timer functions of the operating system each

processor p measures the model-dependent processing

time tm(p, i) it needs to execute the simulation step, and

the duration of synchronization time ts(p, i) that elapses

between the completion of the execution and t(i). The

load lp(i) of the processor at step i is now defined as

lp(i) =
tm(p, i)

tm(p, i)+ ts(p, i)
(1)

The still available capacity that was wasted as idle

time can be determined as

fp(i) =
ts(p, i)

tm(p, i)+ ts(p, i)
(2)

The total time tg(i) used to execute simulation step

i is now composed of the processing time, the synchro-

nization time and the communcation time tc(p, i) used

to load balancing and other administrative work (see

Equation 3). The values of tg(i) are equal for all p ∈ P.

tg(i) = tm(p, i)+ ts(p, i)+ tc(p, i) (3)

Based on local load data alone a value of lp(i) near

1 – and thus a synchronization time ls(p, i) near 0 – can

signal either an optimum load near capacity or a bot-

tleneck caused by overload. To be able to discern, the

load data of the other processors in P has to be included.

That data basically consists of two numbers that can be

exchanged as part of the synchronization process.

The load measurement based on ts(p, i) takes into

account internal and external disturbances, it considers

both the progress of simulation time (which in the de-

scribed, simple case is fixed) and the change of avail-

able computing power over time. Based on that load

measurement method a dynamic and adaptive load eval-

uation can be performed.

Evaluating loads. During the load evaluation step,

each processor p has to decide whether load balancing

has to be performed at all, and if so, how many and

which nodes are to be migrated.

Moving model nodes requires computing time and

network resources. To avoid over-reaction caused by
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Figure 2: Load measurement on a system with two

processors.

only short-term load imbalances, a smoothed value si
of the synchronization time ts(p, i) is considered (see

Equation 4) when deciding whether load balancing

should take place. Nodes are only migrated if si is be-

low a threshold value βi.

si = α ∗ ts(p, i)+(1−α)∗ si−1 (4)

An effective method has to prevent overcompensa-

tion occuring due to long network runtimes or from at-

tempting to balance even very small imbalances. To

avoid thrashing, i.e. nodes being repeatedly sent back

and forth between two processors, the value βi is not

constant, but changes over the course of the simulation

run between limits βmin and βmax: If load movements

have been performed in step i, the threshold value is de-

creased: βi+1 = max(βi/γ;βmin), with γ ≥ 1. Further

movements are therefore only performed if processor p
is heavily overloaded. If no load balancing has been

performed for a while, the threshold value is increased:

βi+1 = min(βi ∗ γ;βmax).

The number δ of to be migrated nodes from the set

of all nodes Vps managed by the sending processor ps is

determined as δ = max(1,�|Vps |∗ϕ�), with ϕ being the

ratio of nodes to be moved. Candidates are those nodes

that have at least one edge to a node v j managed by any

other processor p(v j) �= ps.

The method preferredly (priority 1) selects those

nodes vi for movement to a target processor p f (vi)
where the number of edges (vi,v j) to nodes v j with

p(v j) = p f (vi) is greater than the number of edges to

nodes vk with ps = p(vk). That processor p f (vi) =
p(v j) then is the target of a potential migration. In addi-

tion, any node vi that has at least one edge to a node v j
managed by a processor p(v j) �= ps not currently run-

ning at full capacity can also be moved (priority 2).

Moving a priority 1 node vi to processor p f (vi) re-

duces the number of edges between model partitions.

The load balancing method therefore does not only dis-

tribute the computing load evenly, but also reduces the

expected communication load.

Moving loads. The load movement itself takes

place during a defined time when all processors pause

model computation. For optimistic methods that would

be during the control mechanism, while conservative

methods using barriers typically utilize the synchro-

nization step. At that time changes can be made to the

model graph without having to regard ongoing simula-

tion calculations.

Here, each processor ps(v) encodes each model

node v to be relocated as a message Nv, then sends it

through the common cache or over the network to the

corresponding target processor p f (v) and, if necessary,

informs third processors that contain nodes with edges

to v of its relocation. Each received message Nv is de-

coded and converted to a new node v, which is inte-

grated into the partial model administrated by p f .

4 Applications
Since their inception, a large number of applications of

model-based parallelization and load balancing meth-

ods have been developed. A few typical applications

reported on during the years are presented below.

Simulation of Electronic Circuits. Schlagenhaft

et al. (see [21]) and Schlagenhaft (see [20]) describe

a method to parallelize the simulation of the dynamic

behavior of logical circuits. Their event-based model

is parallelized using the optimistic Time Warp method.

The executing processors are not exclusively available

to the application, but are also used by third-party pro-

cesses. The modeled logical circuits consist of switch-

ing elements between which dependencies in the form

of binary signals exist. In the model, each switching el-

ement is mapped as an entity; these are combined into

clusters by statically partitioning the model at the start

of the simulation run; the clusters are then joined to-

gether to form partitions that are then assigned to the

individual processors. These clusters are managed in-

dividually, with each cluster having its own FEL. Thus,

clusters can be moved during load balancing. A fur-

ther advantage of dividing the partitions into individual

clusters comes into play in case of a rollback: Here, the
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simulation does not have to be wholly discarded and

recalculated for the entire partition, but only for a few

clusters – or even only for a single one.

Schlagenhaft, et al. describe a dynamic and adap-

tive load balancing method to utilize the available re-

sources in the best possible way. The global control

mechanism is extended by a load balancing method that

can move individual clusters between partitions. Load

measurement, load evaluation and load shift are per-

formed as part of the Global Virtual Time GV Tt cal-

culation mechanism. When used on two processors and

with a load from external processes (see [21]), the load

balancing procedure improves the runtime by approx.

24%. Schlagenhaft (see [20]) reports on improvements

of up to 60% when using six processors in networks

with external loads.

Simulation of Social Interactions. Permalla

(see [17]) presents a parallel discrete event model of

the Naming Game, a sociological model of social in-

teractions and consensus building without a central co-

ordinating instance. They utilize the concurrency in-

herent in the model to implement an efficient applica-

tion based on a parallel discrete event simulation frame-

work. Analogous to the work of Schlagenhaft (see [20])

the individual entities are bundled into clusters, depend-

ing on the indidivual structure of the social network.

These clusters are hosted by a processor core each that

also administrates one FEL per cluster.

While the parallelization overhead resulting from

the step from one to two involved processors signifi-

cantly increases the runtime, Permalla reports a speedup

of 3.43 using 16 processor cores on a single machine.

Simulation of Transit Networks. Ullrich et al.

(see [24], [27], and [26]) utilize synchronized execu-

tion to parallelize transit simulation models. Their aim

is to support the decision-making of operator personnel

in the case of major network disturbances. Often the

operators only have a short time window at their dis-

posal, as decisions have to be taken in a matter of min-

utes or even seconds. To be effective, a simulation ap-

plication enabling the online examination of the impact

of potential counter-measures has to run fast, enabling

the quick rejection of strategies unsuitable for specific

situations. As the traffic operator’s desktop computers

that also run third-party user processes are the target

platform of the resulting simulation tool, the method

is specifically aimed at utilizing their small scale par-

allel processing capacity while being able to quickly

shift load to idle processor cores in case external user

processes claim resources. To address these issues, the

method applies a dynamic and adaptive load balancing

scheme analogous to the one described in Section 3.

Ullrich et al. report a speedup of 2.83 for four paral-

lel processor cores with a common cache. Connecting

machines over the network with its longer message de-

lays reduces the speedup to 2.25. While the dynamic

and adaptive load balancing mechanism only improves

run time by a few percent on machines exclusively

available to the transit simulation, it has a significantly

larger impact when used to compensate for ressources

assigned to third-party processes on machines concur-

rently used by other user processes (see [24]). Exper-

iments with artificial loads demonstrate that effect of

load balancing increases with the size of the model.

5 Conclusion

This paper presented an overview of basic concepts and

methods of the parallel execution of discrete simula-

tion models, with a focus on model-based paralleliza-

tion. Following a short description of the background

of parallel simulation, the two main classes of meth-

ods – conservative and optimistic execution – were pre-

sented, complemented by a description of typical static

and dynamic load balancing mechanisms. Finally, some

typical applications of model-based parallelization we

introduced.

Model-based parallelization is a comparatively sim-

ple, easy to understand, but also very powerful ap-

proach. It is especially useful to accelerate the exe-

cution of large models that have to yield results fast.

A wide array of applications has been reported on dur-

ing the last two decades, including communications and

electronics, disaster mitigation, health care, logistics,

supply management, and transportation.

For further, more detailed study a number of sources

authored by Richard Fujimoto, the unrivaled chronicler

of the field, can be recommended: His introductionary

book “Parallel and Distributed Simulation Systems”

(see [6]) covers most concepts described in this article

in great detail; it has aged exceedingly well. More re-

cent developments are shared in his tutorial papers for

the Winter Simulation Conference (see [7]). For stu-

dents of the development of parallel (and distributed)

simulation since the 1970s the historical overview “Par-

allel Discrete Event Simulation: the Making of a Field”

by Fujimoto et al. (see [8]) is warmly commended.
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Abstract.  In this paper, an approach for integrated be-
havior modeling and simulation within model-based elec-
tric/electronic-architecture (EEA) descriptions is pre-
sented. It leverages actor-oriented and UML state chart 
behavior modeling to address complex reactive systems. 
A key contribution is the aggregation of cross-layer behav-
ior specified at the logical function architecture layer and 
at the hardware layer together with further properties of 
the EEA like the current consumption of electronic control 
units (ECUs) and the underlying network topology. The 
EEA and behavior modeling is done in the common indus-
try tool PREEvision. Using these static descriptions, a uni-
fied simulation model is synthesized and executed using 
Ptolemy II, which extends a previously developed ap-
proach. In addition, a concept to feed back the simulation 
data into PREEvision is briefly described e.g., to further 
evaluate the gained results. Finally, a proof-of-concept is 
presented using an Adaptive Cruise Control application. 

Introduction 
Automotive electric/electronic-architectures (EEAs) are 
steadily growing in complexity due to the integration of 
evermore functions [1]. To cope with that complexity at 
system level, model-based architecture description lan-
guages (ADLs) and tools have been established in recent 
years such as the EAST-ADL [2], EEA-ADL [3] (real-
ized in the tool PREEvision [4,1]) and Vehicle Systems 
Architect [5], each of which are compliant to the AU-
TOSAR [6] standard. Each of them offer sophisticated 
static modeling capabilities from several viewpoints such 

as requirements, functional network, hardware/software 
architecture, wiring harness and topology. 

A common process is to start with the realization-in-
dependent and early stage modeling of the logical func-
tion architecture which typically stays stable for years 
and thus is the basis for further refinements in the devel-
opment life cycle [1]. Another trend is the architecture-
centric modeling of behavior integrated within the 
model-based EEA descriptions in order to have a com-
mon formal format for exchange and subsequent simula-
tion analysis. The trend to amend this is underlined e.g., 
by the behavioral annexes of the EAST-ADL [2] and the 
AADL [7] or the integration of UML-compliant state 
charts into the latest PREEvision release v9.0 [4]. There-
fore, recent research is focused on the generation of exe-
cutable behavior from these static descriptions 
[8,9,10,11,12,13]. 

A downside of the behavioral annexes is that they 
only support the association of architectural components 
with simple, flat finite state machines (FSMs) which re-
sult in state and transition explosion with more complex 
systems. The mentioned approaches therefore often del-
egate detailed behavior to external descriptions which re-
sults in the loss of the integrated characteristics. In addi-
tion, it elicits inconsistencies between the architecture 
and behavior models and prevents the consideration of 
lower abstraction layers. 

An approach which faces this challenge is presented 
in [8] by synthesizing and executing a cross-domain sim-
ulation from static EEA descriptions designed in 
PREEvision. In this work we extend that approach to sup-
port both actor-oriented and state chart behavior model-
ing to address complex reactive systems. 

Concerning state charts the UML subset provided by 
PREEvision is leveraged and enhanced to support ex-
tended state machines to further handle complexity.  
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In addition, cross-layer behavior specifications and 

further EEA properties from lower abstraction layers are 
synthesized into a unified Ptolemy II (PtII) simulation 
model. A concept to feed back the simulation data into 
PREEvision is extended and completes the contributions.  

1 Background 
The overall baseline approach as proposed in [8] and the 
extensions addressed in this work are shown in Figure 1. 
Starting point is a data model e.g., as provided by 
PREEvision, which captures all relevant abstraction lay-
ers of an EEA. For modeling executable behavior inte-
grated within the EEA model, a new layer called Behav-
ioral Logical Architecture (BLA) is introduced that re-
fines the static logical blocks with detailed behavior by 
reusing actors [14] from the PtII Actor Library. The li-
brary contains actors of the heterogeneous modeling and 
simulation tool Ptolemy II [15] and is imported as a sep-
arate library of logical block types into PREEvision. 
These block types are used to instantiate actors at the 
BLA layer. In combination with mappings from the LA 
layer to lower layers they provide the connection of the 
behavioral blocks of the BLA to domain-specific infor-
mation at lower layers enabling the cross-domain simu-
lation of the underlying network communication or even 
electric circuits [16] in an aspect-oriented manner. A var-
iant-sensitive synthesis is also implemented supporting 
the analysis of architecture variants [17]. 

2 Concepts 
To amend the baseline actor-oriented modeling with 
state-based behavior we leverage the newly added capa-
bility of PREEvision v9.0 to refine architecture artifacts 
with state charts across several layers including the logi-
cal architecture and components of the hardware layer 
such as ECUs and internal processing units. 

The basic principle is to annotate a state chart as child 
artifact to an architecture artifact. Dependent on the ab-
straction layer, the interfaces to the state chart comprise 
different data providers and consumers. At the logical ar-
chitecture, for instance, communication between func-
tions is done via typed ports, which have attached an in-
terface. The interface specifies the actual data exchanged 
e.g., in terms of data elements. This follows the AU-
TOSAR standard. 

 
Figure 1: Approach for cross-domain simulation  

synthesis of model-based EEAs [8] and new  
extensions to combine cross-layer behavior 
specifications using UML state charts and  
actor-oriented library components.  

 
The specified data elements of each port are then availa-
ble in the state chart of the function to use them in guard 
and action expressions. The modeling is illustrated in 
Figure 2. A similar modeling approach applies for hard-
ware components except that state charts are annotated at 
instance level and data providers differ from data ele-
ments. 

 
Figure 2: Modeling principle to refine logical function 

types with state charts. Communication is 
done via data elements. 

2.1 Extended State Machines 
A downside of the current state chart modeling capability 
is the missing support of extended state machines, which 
can significantly reduce the complexity [15]. Therefore, 
we propose a meta-model extension by extended state 
variables. This is indicated in Figure 2 by the composi-
tion of the state chart with the proposed meta-class MEx-
tendedStateVariable. 
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2.2 Combining Actor-oriented and State 

Chart Behavior Simulation 
In the baseline approach in Figure 1, behavior is specified 
by mapping an atomic logical function instance to a com-
posite building block at the BLA layer. Executable actors 
are instantiated within that building block. Port prototype 
mappings are generated once to ensure the consistency 
between the interfaces of the atomic logical function and 
its refinement building block. 

State charts are simulated using modal models 
[15,18] in PtII. Modal models basically represent a spe-
cialized composite actor containing a hierarchical state 
machine governed by an FSMDirector. Each state can 
contain another state machine refinement or even an ac-
tor-oriented sub-model following a distinct execution se-
mantics i.e., a different model of computation (called Di-
rector in PtII). Modal models are also suitable to deter-
ministically simulate hybrid systems [15]. Data exchange 
between modal models is done via ports. Therefore, a 
building block of type ModalModel is used to identify 
logical functions which contain a state chart description. 

Additional data element sub-mappings are generated 
once in order to respect the interfaces of the logical func-
tions and to connect the simulation model counterparts 
during simulation model synthesis. Each port of a build-
ing block represents a data element. See Figure 3. 

 
Figure 3: Generation of BLA building block stubs and 

mappings. State charts are encapsulated in a 
building block of type ModalModel. 

2.3 Cross-Layer Behavioral Synthesis 
To allow the simulation of cross-layer behavior we lev-
erage the state chart refinements of hardware compo-
nents. However, the link to higher layers i.e., the logical 
layer, is missing.  

 

Therefore, we propose to use AUTOSAR-oriented 
BasisServiceInterfaces on logical ports in order to 
provide additional data elements or operations to com-
municate with state charts of mapped hardware compo-
nents. In addition, we propose to reference ECU attrib-
utes as state chart variables. For instance, this enables the 
modeling and simulation of mode-based cross-layer be-
havior, where functions can request a certain operating 
mode of the ECU and only perform their functional be-
havior if the ECU responds it is ready to run. In order to 
allow spontaneous FSMs [15], which not only react on 
input events, a timeout guard expression (taken from 
PtII) is introduced e.g., to model the startup time of the 
ECU. A cross-layer model is exemplarily shown in Fig-
ure 4.  

Finally, we propose the mapping of current consump-
tion descriptions in terms of PREEvision’s meta-class 
MCurrentDescriptorType on state transitions of hard-
ware states. Together with the timed behavior, a mode-
based current consumption can be simulated. 

In the synthesized PtII model, the function and hard-
ware state charts are encapsulated in distinct modal mod-
els communicating via ports which represent the basis 
service interfaces. An additional output port is generated 
for the current consumption of the ECU. 
Hardware Network.  In [8], network communication 
between functions such as CAN is traced based on their 
mapping to the hardware and is considered in the result-
ing simulation in an aspect-oriented way. Together with 
the state chart refinement of ECUs and processing units, 
it is possible to automatically include additional behavior 
along the communication path, such as gateways, by cas-
caded aspect-oriented simulations. Typically gateways 
have no logical function counterpart, since they are de-
pendent on the mapping. 

2.4 Simulation Data Feedback 
To make use of the simulated results in PREEvision in 
order to perform further analysis and to relate the results 
with the original EEA model artifacts, a feedback ap-
proach is applied. The approach relies on OSGi [19] and 
is further described in [17]. We reuse and extend the ap-
proach by implementing a listener for modal model con-
trollers focusing on the feedback of information about the 
simulated state machines such as timestamps, current 
state, previous state, output and variable actions. 
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Figure 5: Cross-layer behavior specification using basis 

service interfaces on logical ports to  
communicate with the mapped hardware 
component state chart via additional data  
elements or operations. 

2.5 Transformation Rules 
In Table 1 the basic transformation rules between 
PREEvision’s UML state chart subset and modal model 
artifacts in PtII are summarized.  

Note that each generated PtII artifact is suffixed by 
the UUID of the original EEA model artifact in order to 
uniquely relate the artifacts and avoid name conflicts on 
PtII side. 

3 Use Case Results 
In this chapter, the concepts are demonstrated by means 
of an Adaptive Cruise Control (ACC) application pre-
sented in [8] which is enhanced based on Figure 4. The 
logical function architecture is shown in Figure 5. 

UML State Chart Subset Ptolemy II Modal Models 

simple state, choice & 
junction pseudo-state 

state 

initial pseudo-state state with property isInitialState 

final state state with property isFinalState 

composite state state machine refinement state 

orthogonal state default refinement state contain-
ing a discrete-event director and a 
modal model composite for each 
parallel region. Data dependencies 
between regions are analyzed and 
communicated via ports between 
the affected modal models. [18] 

deep history state history transition 

state transition ordinary transition 

guard condition guard expression  

IO/variable action output/set action expression 

Table 1: Basic transformation rules between  
PREEvision’s UML state chart subset and  
PtII modal models. 

The ACC_Testbench generates the stimuli for the vehicle 
speed and radar speed sensor functions as well as for the 
ACC controller in a closed-loop fashion based on the cal-
culated acceleration of the ACC controller. The stimuli 
values are generated with a sample period of 100 . The 
initial speeds and the distance are set to 15 /  and 190  
respectively. Each of the functions offer BasisSer-
viceInterfaces to request or retrieve a certain operat-
ing mode of the state chart of their mapped hardware 
component. The corresponding BLA building block 
stubs and mappings are generated according to Figure 3.  

 
Figure 4: Logical function architecture of the ACC application. Each of the logical functions except for ACC_Testbench is  

refined by a state chart. Their mapping to the hardware layer is illustrated by the annotated text boxes. The  
behavior of the ACC_Testbench is modelled actor-oriented at the BLA layer and is not mapped to the hardware. 
Thus, a combined actor-oriented and state chart modeling is applied. 

ACC_Controller
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3.1 State Charts 
The most important state charts are the one of the ACC 
controller shown in Figure 6 and its corresponding ECU 
state chart realizing an ECU Manager depicted in Fig-
ure 7. The remaining state charts of the sensor and actu-
ator functions and their hardware are modeled simple. 
They only forward/retrieve the speed/acceleration values 
and request the sensors/actuator to run as long as they re-
ceive values. The ACC is calculating the acceleration 
only if the ECU is ready to run. The orthogonal state op-
erate limits the calculated acceleration by the state vari-
ables aMin and aMax. In the freeRoad state the radar de-
tects no vehicle, the own speed reached the desired speed 
and the sleep mode is requested. A wakeup is triggered 
when the radar detects a new vehicle. A shutdown is re-
quested when the vehicle stands still. 

Figure 6: ACC controller state chart. Some transition ac-
tions are omitted for space reasons. 

Figure 7: ACC ECU state chart realizing an ECU Manager 
oriented on the AUTOSAR fixed ECU Manager. 
Transitions to the yellow states have mapped a 
current descriptor type in order to simulate a 
mode-based current consumption. 

The ACC ECU state chart represents the different op-
erating modes which can be requested by the ACC con-
troller state chart and sends back the current status via the 
BasisServiceInterfaces. In addition, the startup- and 
provision time attributes of the ECU (50  and 200 ) are 
referenced as well as a wakeupTime state variable (10 ) 
which are used as timeouts. Provision time is the time a 
component stays active after its shutdown is requested. 

3.2 Simulation Results 
Figure 8 shows the PtII plot of the ACC simulation. Until 250  the vehicle is following the leading vehicle. Then 
the leading vehicle disappears and the ACC accelerates 
to its desired speed at free road. At 300  a new vehicle is 
detected at a distance of 200 . At 350  the vehicle is 
decelerating until it stands still at 380 . At 300  the ac-
celeration is limited to aMin. 

Figure 9 shows the mode-based current consumption 
of the hardware components at the key time-points with 
synthetic values. 

Figure 8: ACC simulation showing the speed of the lead-
ing vehicle (red) and the ego vehicle (green) in /  as well as the acceleration calculated by 
the ACC (blue) in / . 

Figure 9: Current consumption of the mapped ACC 
hardware dependent on the operating mode. 
Created based on the fed back simulation data 
which is written to a CSV file in PREEvision.  
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The sensors are operating until their shutdown. Until 50  the ACC ECU and Actuator are starting up before 

they are ready to run. At 253.6  the vehicle has reached 
its desired speed at free road and the ACC ECU goes to 
sleep mode. At 300  it wakes up for 10 . At 380  the 
vehicle stands still but all hardware components stay ac-
tive for the same provision time before they shutdown at 580 . 
4  Conclusion 
In this paper, we presented a set of concepts and their 
evaluation by an ACC application to model and simulate 
behavior of model-based EEAs in an integrated manner. 
The key contribution is the combination of actor-oriented 
and state chart based behavior across several abstraction 
layers. This enables new possibilities to analyze model-
based EEAs in early development stages dependent on ar-
chitectural decisions and information. 

Future work could include enhanced support of UML 
state charts, the integration and consideration of behavior 
at the AUTOSAR-compliant system software architec-
ture layer and envisioning their code generation. 
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Abstract. The Revised Parallel DEVS (RPDEVS) model-
ing formalism enhances the Parallel Discrete Event Sys-
tem Specification (PDEVS) by the ability to model ’real’
Mealy behavior of components. The term ’real’ Mealy
behavior can be summarized as immediate output re-
sponse to an input event without a state transition in
between. Although this enhancement simplifies model
creation, especially of reusable components, it requires
a more complex simulation algorithm. In this paper, we
present an RPDEVS abstract simulator that describes the
simulation execution of RPDEVS models.

Introduction

The Discrete Event System Specification (DEVS) [1] is

a modular and hierarchical modeling formalism for sys-

tems that process input events, have an internal state,

and may produce output events. Basic components can

be specified as atomic DEVS which can be coupled

with one other in a block diagram manner. The for-

mal definition of an atomic DEVS is similar to a finite

automaton (or sequential machine). In [2], the author

describes an atomic DEVS as DEVS Moore Automa-
ton embedded in additional logic that provides the nec-

essary time events. Automata theory distinguishes be-

tween Moore and Mealy automata. The output events

of Moore automata solely depend on the system’s cur-

rent state, whereas the output of Mealy automata may

also depend on the current input. In theory, these two

types of automata are equivalent in the sense that every

automaton of the one type can be replaced by a corre-

sponding automaton of the other type. However, in av-

erage the Moore model needs about twice the number

of states and transitions than the corresponding Mealy

model to represent the same system [3].

Both, in classic DEVS and in its most popular revi-

sion PDEVS [4], the output function λ solely depends

on the internal state of the system. Thus, these two

formalisms only allow the modeling of Moore behav-

ior. If Mealy behavior is needed, it has to be modeled

with a workaround, using a transitory state (a state with

zero lifetime). However, as discussed in [5], the use

of transitory states leads to a delay of events regarding

processing order, which in turn impedes reusability of

components. Due to the reasons mentioned above and

the experiences we made with applying both, DEVS [6]

and PDEVS [7], we decided to revise PDEVS resulting

in RPDEVS published in [8]. Basically, the changes

include the support of ’true’ mealy behavior and the

merging of the three state transition functions δint , δext ,

and δcon f into one generic state transition function δ .

As mentioned above, a Mealy automaton needs about

half the states compared to the corresponding Moore

automaton. Evaluation of RPDEVS shows that formal-

ization of Mealy models simplifies to a similar extent

compared to PDEVS. Also merging the state transition

functions condenses model definition, since the differ-

ent transition functions often match at least in parts.

However, the price for simplifying modeling is an in-

crease in the complexity of the simulation algorithm.

In this work, we first recap the RPDEVS formal-

ism, before its simulation algorithm is described and

presented as abstract simulator.

1 RPDEVS Formalism

Equally to classic DEVS and PDEVS, RPDEVS dis-

tinguishes between atomic and coupled components

which can be used for modular and hierarchical struc-

turing of complex models (see Figure 1). As shown

in [8], RPDEVS also provides closure under coupling,

which means that for every coupled component an

equivalent atomic component can be designed. This as-

sures that couplings can be used within other couplings

as if they were atomics.
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atomic a

atomic b

atomic c

atomic d

atomic e

coupling N

�

x1,N

x3,e

x2,c

x2,N

x1,N

x1,c

x1,a

x2,a

x3,b

Figure 1:Modular and hierarchical decomposition of a
complex model into atomic and coupled RPDEVS
components.

1.1 Atomic RPDEVS

Formally, an atomic RPDEVS M is defined as

M =< Xb,S,Y b,δ ,λ , ta >,

where the single entities have the following meanings:

Xb . . . set of possible input bags

S . . . set of possible states (=state space)

Y b . . . set of possible output bags

δ : Q×Xb → S . . .state transition function
λ : Q×Xb → Y b . . . output function
ta : S → [0,∞] . . . time advance function
Q = {(s,e)|s ∈ S,e ∈ [0, ta(s)]}
e . . . elapsed time since last event

Theoretically, Xb is a set of multisets with no partic-

ular structure. However, for practical implementation

where it is feasible to define input ports which can be

connected individually to output ports of other compo-

nents, the set of possible input bags may be structured

into sub-bags, one for each input port. Additionally, the

sub-bags can be structured according to the source com-

ponents the corresponding input messages origin from

(see Figure 1). This is especially done in the RPDEVS

simulation algorithm presented in Section 2, which has

to remember the source component of every input mes-

sage.

The differences of an atomic RPDEVS compared to

PDEVS are the input dependency of the output function

λ and the single state transition function δ which re-

places the three separated transition functions δint , δext ,

and δcon f (for details about PDEVS, see [4, 1]). Fur-

thermore, in RPDEVS, λ is called on any kind of event,

external, internal, and confluent. The explicit distinc-

tion between these three event types is dropped and the

behavior of an RPDEVS atomic is the same for each of

them:

1. Call the output function λ .

2. Recalculate λ as long as the input bag changes due

to (re)calculations of lambda at influencing com-

ponents (lambda-iteration).

3. Conduct state transition δ once (delta-step).

4. Call the time advance function ta which returns the

time to the next internal event.

If different treatment is necessary depending on

whether the event was triggered by the arrival of an

input (external event), by the expiration of the current

state’s lifetime (internal event), or by both happening

concurrently (confluent event), this has to be incorpo-

rated into the definitions of δ and λ . External events

can be recognized by a non-empty input bag (xb �= /0),

whereas internal events imply e = ta(s).
The single transition function δ avoids having to de-

fine identical behavior multiple times in cases in which

the three transition functions partly match.

According to [9], it frequently happens that calcula-

tions necessary for the output event in λ are also nec-

essary for the computation of the next state and thus,

have to be repeated in δint . In the classic DEVS simu-

lator DesignDEVS [10], they even merge the two func-

tions λ and δint to prevent unnecessary recalculations.

This is not possible for RPDEVS as λ may have to be

called multiple times before the state transition can be

conducted. Therefore, for practical implementation, we

recommend to split the internal state s of an atomic into

two parts s = (sδ ,sλ ) ∈ S = Sδ × Sλ which allows to

redefine λ and δ as follows:

λ : Sδ × [0,∞)×Xb → Y b ×Sλ , (sδ ,e,xb) 	→ (yb,sλ )
δ : Sδ ×Sλ × [0,∞)×Xb → Sδ , (sδ ,sλ ,e,xb) 	→ sδ

Thus, when λ already needs to calculate a new state

value for generating the output y, it can be buffered into

sλ to be reused in δ .

1.2 Coupled RPDEVS

The formal definition of a coupled RPDEVS is identical

to that of a coupled PDEVS (see [4]):

N =< Xb,Y b,D,{Md}d∈D,{Id}d∈DN ,{Zi,d}i,d∈DN >

with DN = D∪{N} and
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Xb . . . set of possible input bags

Y b . . . set of possible output bags

D . . . index set

Md . . . child component of N for each d ∈ D
Id ⊂ D∪{N} . . . influencer set of d
Zi,d . . . output translation function

The output translation function Zi,d translates the out-

put events of component i into input events for compo-

nent d. Theoretically, Zi,d could also alter output events.

However, in practice it just forwards events. If the des-

tination component is a coupling, the output translation

functions of that coupling further forwards the events to

the destinations within the coupling. This is repeated

until finally the events reach atomics.

As already mentioned in Section 1.1, the multiset of

possible input bags can be structured by input port and

source component. In the following, we will not con-

sider ports, but separate the input bags according to the

influencers the messages originate from. Such a struc-

turing for a component d has the form

Xb
d = ∏

i∈Id

Xb
i,d ,

with Xb
i,d being the multiset of possible input messages

from component i (Zi,d : Y b
i → Xb

i,d). Consequently, ev-

ery input bag xb
d of a component d has the form

xb
d = (xb

i1,d ,x
b
i2,d , . . . ,x

b
il ,d), Id = {i1, i2, . . . , il}.

Thereby, xb
ik,d

is the translated result of the output func-

tion of influencer ik: xb
ik,d

= Zik,d(y
b
ik
), ∀k = 1,2, . . . , l.

2 RPDEVS Abstract Simulator
To complete the introduction of RPDEVS started in [8],

the definition of an abstract simulator is given. Like

in classic DEVS and parallel DEVS, the code con-

sists of a simulator part responsible for executing an

atomic, a coordinator part responsible for executing

a coupling, and a root-coordinator responsible for the

overall model execution. Furthermore, we stick to the

format known from [1], using message passing. There

are five types of messages used:

i-message The initialization message is sent to ev-

ery component at simulation start. It is used to ini-

tialize state variables and gather the times of the

first internal events at the single components.

*-message In PDEVS, this is the internal state tran-
sition message because there the output function λ
is inseparably connected to the internal and con-

fluent state transitions δint and δcon f . However, in

RPDEVS, λ is calculated in an iterative manner

and on every kind of event. Thus, this message is

solely used to trigger the λ iteration.

y-message The y-message is used to transport the

output message calculated in λ to the parent coor-

dinator where it is forwarded to the input bag of

the receiving component.

x-message In RPDEVS, the x-message is used to

trigger the state transition. Whenever a component

receives an x-message, it executes δ and then

calculates the time of its next internal event tn.

done-message This message is used for synchro-

nization. When the coordinator triggers child com-

ponents to do their initialization or to conduct their

state transition, it has to wait until all of them are

done before simulation can proceed.

2.1 Simulator

The simulator of an atomic RPDEVS is nearly identical

to the one of an atomic PDEVS (see [1], p. 285):

RPDEVS-simulator
variables:
parent // parent coordinator
tl // time of last event
tn // time of next event
RPDEVS // assoc. model with total

// state (s,e), time advance
// function, lambda and delta

(s_i,e_i) // initial total state
y // output message bag

when receive i-message(i,t)
(s,e) = (s_i, e_i)
tl = t - e
tn = tl + ta(s)
send done-message(done, tn) to parent

when receive *-message(*,x,t)
e = t - tl
y = lambda(s,e,x)
send y-message(y,t) to parent

when receive x-message(x,t)
s = delta(s,e,x)
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tl = t
tn = tl + ta(s)
send done-message(done, tn) to parent

end RPDEVS-simulator

The most important differences compared to the

PDEVS simulator are the additional parameter x of

the *-message, and the absence of the case dis-

tinction between internal, external, and confluent event

when receiving an x-message. Like in [11], a

done-message is used for synchronization during the

potentially parallel execution to prevent the problems

with Zeigler’s PDEVS algorithm described in [12].

2.2 Coordinator

The more interesting part of the abstract simulator is

the coordinator. We start with the definition of all

necessary variables followed by the i-message and

done-message procedures:

RPDEVS-coordinator
variables:
parent // parent coordinator
tl // time of last event
tn // time of next event
RPDEVS // associated coupled model

// including index set D,
// influencer sets I_d, and
// output transl. fcts. Z_id

event-list // list of elements (d,tn_d),
// sorted ascending by tn_d

IMM // imminent children
y_coupling // output message of coupling
x_dr // sub input bags:

// d... sender, r... receiver
x_r // input bag of component r
y_dN // sub output bag of coupling

// N, d... sender
INF // set of influenced children

// (with changed input bag)
INF’ // INF for next lambda-iter.
DELTA // set of children who need to

// conduct a state transition
CHECK // components with withdrawn

// input messages

when receive i-message(i,t)
DELTA = D
for-each d in D do
send i-message(i,t) to child d

wait until DELTA = {}
sort event-list according to tn_d
tl = max{tl_d : d in D}
tn = min{tn_d : d in D}
send done-message(done, tn) to parent

when receive done-message(done, td) from d
event-list.(d,tn_d) = (d,td);
remove d from DELTA

At simulation start, the coordinator receives an

i-message from its parent coordinator. The parent of

the uppermost coordinator is the root-coordinator (see

Section 2.3). The i-message is forwarded to all child

components d∈D which causes them to calculate their

time of next internal event tn_d. Then, the coordinator

waits until all children have sent their done-message

(i.e. DELTA={}) before the time of the next internal

event tn of the coupling can be determined.

If a component is imminent (i.e. its time of next event

tn=t), it receives a *-message from its parent coordi-

nator. This message initiates the λ iteration in the cou-

pling. The goal of the λ iteration of a coupling is gener-

ating its output message y_coupling.
when receive *-message(*,x,t)
y_coupling = {}
for-each (d,tn_d) in event-list with tn_d=t
add d to IMM, DELTA and INF
remove (d,tn_d) from event-list

for-each r in D with N in I_r
if x_Nr != Z_Nr(x)

x_Nr = Z_Nr(x)
add r to INF and DELTA
if x_Nr={}

add r to CHECK
for-each r in INF
x_r = {x_dr : d in I_r, x_dr != {}}

while CHECK != {}
pick and remove r from CHECK
if x_r={}

if r not in IMM
remove r from INF and DELTA
for-each d in D with r in I_d
x_rd = {}
remove x_rd from x_d
add d to CHECK

if r in I_N
y_rN = {}

INF’={}
for-each r in INF
send *-message(*,x_r,t)

In the *-message of the coordinator first, the immi-

nent children are determined and collected in IMM, INF,

and DELTA. Then, the components’ input bag changes

caused by the couplings input are calculated. All com-

ponents whose input bag changed are added to INF and

scheduled for state transition by adding them to DELTA.

Finally, *-messages are sent to the affected child com-

ponents triggering their λ execution.
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These λ executions result in output messages trans-

ported via y-messages back to the coordinator. In the

coordinator’s y-message procedure, all output mes-

sages of all triggered child components are gathered and

converted using the output translation functions Z_dr.

Depending on the coupling relations, they are converted

either into input messages for other children or into cou-

pling output messages. Thereby, all child components

whose input bag has changed are collected in INF’. Af-

ter the last element in INF has responded to the coordi-

nator with a y-message, the components in INF’ are

shifted into INF. If INF is not empty after that, again a

*-message is sent to every component in INF and their

response, in form of y-messages is awaited. However,

if INF is empty at the end of the y-message proce-

dure, it means no input bag has changed during the last

λ iteration, i.e. they are stable. Thus, the λ iteration

of the coupling has terminated and the coordinator can

send a y-messages to its parent. In [8], it is shown

that for models without algebraic loops, the λ iteration

always terminates after a maximum of n = |D| iterations.

In some cases, algebraic loops can even be solved by the

simulation algorithm (see RS flip-flop in [13]).

During the course of λ iterations, it may happen that

input messages for child components that were produced

in previous iterations may have to be withdrawn from the

respective input bag. Thereby, it may occur that the input

bag becomes completely empty although it was not in the

preceding iteration. These components then need to be

checked separately because they may already have pro-

duced output in reaction to a non-empty input bag (Mealy

behavior) and thereby may have influenced other compo-

nents. This task is handled via the set CHECK.

A coordinator may represent a coupling that is used as

component in a parent coupling. In this parent coupling,

there is also a λ iteration in progress. Thus, the parent

coordinator may send multiple *-messages to its child

coordinators. This is why the *-message procedure of

the coordinator also has to check whether formerly re-

ceived coupling inputs still exist in the new iteration (us-

ing CHECK).

when receiving y-message(y_d,t) from d
remove d from INF
if d in I_N
y_dN = Z_dN(y_d)

for-each r in D with d in I_r
if x_dr != Z_dr(y_d)
x_dr = Z_dr(y_d)
if x_dr={}

add r to CHECK
add r to INF’ and DELTA

if INF = {}
INF = INF’
INF’ = {}
for-each r in INF

x_r = {x_dr : d in I_r, x_dr != {}}
while CHECK != {}

pick and remove r from CHECK
if x_r={}

if r not in IMM
remove r from INF and DELTA
for-each d in D with r in I_d

if x_rd != {}
x_rd = {}
remove x_rd from x_d
add d to INF, DELTA and CHECK

if r in I_N
y_rN = {}

for-each r in INF
send *-message(*,x_r,t) to component r

if INF = {}
y_coupling={y_dN : d in I_N, y_dN!={}}
send y-message(y_coupling,t) to parent

Receiving an x-message means that the λ iteration

is finished and the state transitions can be conducted.

This is done by sending an x-message to every im-

minent child component and to every child component

with non-empty input bag. These components have been

gathered in DELTA during the λ iteration. After the

x-messages are sent, the coordinator waits until all of

them are done with their state transition. Afterwards, the

time of the next internal event can be calculated and the

set IMM is cleared.

when receive x-message(x,t)
for-each r in DELTA
send x-message(x_r,t) to r

wait until DELTA = {}
sort event-list according to tn_d
tl = t
tn = min{tn_d: d in D}
IMM = {}
send done-message(done, tn) to parent

end RPDEVS-coordinator

2.3 Root Coordinator

Finally, on top of the uppermost coordinator is the root

coordinator. It starts the simulation by sending an

i-message to its child coordinator. Then it advances

the simulation time to the time of next event, initiates the

λ iteration by sending a *-message, waits until the λ
iteration is finished and then triggers the state transition
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by sending an x-message. This is repeated until the

simulation time t exceeds the final time tend.

RPDEVS-root-coordinator
variables:
tstart // simulation start time
tend // simulation end time
t // current simulation time
child // direct subordinate coordinator

t = tstart
send i-message(i,t) to child
wait for done-message(done,tn) from child
t=tn
while t < tend
send *-message(*,t) to child
wait for y-message(y,t) from child
send x-message({},t) to child
wait for done-message(done,tn) from child
t=tn

end RPDEVS-root-coordinator

3 Conclusion
In this work, we first recapped RPDEVS and pointed out the paral-

lels of PDEVS and RPDEVS to Moore and Mealy automata. Fur-

thermore, we demonstrated how the input bags can be formally

split up into sub-bags, one for each influencer. This separation is

used by the abstract simulator as it makes it easier to detect input

bag changes due to λ recalculations in the influencers. The struc-

ture of the abstract simulator is basically similar to the one of Zei-

gler’s PDEVS abstract simulator [1]. For synchronization purposes

though, we also added the done-message of Chow’s algorithm

[11].

When implementing the algorithm, especially when facilitat-

ing parallelism, aspects like consistent global variable manipulation

and execution order have to be taken into account. However, this

degree of detail would go beyond the scope of this paper.

Nevertheless, there already exists a proof-of-concept imple-

mentation of an RPDEVS simulator. We reprogrammed the simula-

tion engine of the open-source classic DEVS simulator PowerDEVS
and named it PowerRPDEVS. It is available on SourceForge [14].

In PowerRPDEVS, a sequential version of the algorithm is imple-

mented. Exploitation of parallelism in the PowerRPDEVS engine

is an issue for future work.
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Abstract. This paper addresses the simulation of fun-
damental logic gates (e.g. AND, OR, NOT) using the soft-
ware PowerRPDEVS that is based on the Revised Paral-
lel Discrete Event System Specification (RPDEVS) formalism.
The formal differences of the models of a NOR gate in
RPDEVS and PDEVS are analyzed. It is further shown,
which possible pitfalls may occur when connecting these
logic gates with feedbacks that cause algebraic loops and
in which cases these algebraic loops are resolved by the
RPDEVS simulation algorithm. For this purpose, a static
RS flip-flop, a triggered D flip-flop and a shift register are
modeled and simulated in PowerRPDEVS. The results are
compared to previous research about the simulation of
such logic circuits in Simulink and Modelica.

Introduction

In the theory of computation, the notion of Mealy and

Moore automata exists which are forms of finite state

automata [1]. The difference between these two types is

how the output function is defined. The output function

of the Moore type depends only on the internal state of

the automaton, whereas for the Mealy type it also de-

pends on the automaton’s input. The formal definition

of an automaton has a lot in common with the modeling

formalism Discrete Event System Specification (DEVS)

[2] and thus, also with its extension the Parallel Dis-
crete Event System Specification (PDEVS), introduced

by Chow and Zeigler [3]. However, since the output

function in PDEVS depends only on the internal state,

in principle, in PDEVS only Moore behavior is sup-

ported [4]. For Mealy behavior, a workaround includ-

ing a transitory state (i.e. a state with zero life time) is

necessary. This means that PDEVS models which im-

mediately react to an external event with an output first

have to enter a transitory state before the output func-

tion can be used to set the output.

In Revised Parallel Discrete Event System Specifi-
cation (RPDEVS), introduced by Preyser et al. [5], the

formalism was restructured to support Mealy behavior

naturally. In RPDEVS immediate reactions to external

events can be modeled directly with the output function,

which removes the need for transitory states in this con-

text.

As for PDEVS, an abstract simulator for RPDEVS

was defined and published in the acompanying work

[6]. An implementation is provided with the program

PowerRPDEVS that also includes a graphical model ed-

itor.

With the goal to extend the PowerRPDEVS model

library, we created a library with combinational logic

and sequential logic elements. Combinational logic

gates output the result of a boolean operator applied

onto the input values. Thus, when signal delays are

not taken into account, their models are all of type

Mealy. Sequential logic components, in practice, are

usually designed by coupling combinational logic ele-

ments with storage elements [7]. As Junglas’ findings

in [8] show, this can be a cumbersome business in sim-

ulation tools.

In this work, first it is analysed how the RPDEVS

models of logic gates differ from the corresponding

PDEVS models. Afterwards, it is investigated how the

RPDEVS simulation algorithm performs when creating

sequential logic components and the results are com-

pared to Junglas’ work.

1 The PDEVS and RPDEVS
Formalisms

PDEVS and RPDEVS are hierarchical modelling for-

malisms where models are composed of atomics and

couplings. An atomic can receive inputs from other

atomics or couplings, it has an internal state and can

produce outputs. Couplings can be composed of atom-

ics and other couplings. The formal definition of a cou-

pling is omitted here, it can be found in [3] and [6].
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1.1 Atomic PDEVS

In Equation (1) the definition of a PDEVS atomic is

given as tuple.

A :=< Xb,Y b,S,δext ,δint ,δcon f ,λ , ta > (1)

Xb . . . set of possible input bags

Y b . . . set of possible output bags

S . . . set of possible (internal) states of the atomic

δext : Q×Xb → S . . . external state transition function

where Q = {(s,e)|s ∈ S,e ∈ [0, ta(s)]}
δint : S → S . . . internal state transition function

δcon f : S×Xb → S . . . confluent state transition function

λ : S → Y b . . . output function

ta : S → R
+
0 ∪{∞} . . . time advance function

The time advance function ta determines the time to live

ta(s)∈ [0,∞] for every internal state s ∈ S. Whenever this

time expires, an internal event is triggered, which first

causes the execution of the output function λ and then

leads to a state transition conducted by δint . However, if

at the same time an input event occurs, the state transi-

tion is performed by δcon f . If the atomic is not imminent
(i.e. it has no internal event) while an input event xb is

received, δext is called and the atomic changes into a new

state s′ = δext(s,e,xb) without producing any output. The

λ function that sets the output of the atomic is only eval-

uated right before an internal state transition and relies on

the old state of the model. Thus, when an atomic has to

respond to an input with a change in output, there has to

be a state transition in δext (or δcon f ) into a transitory state

(i.e. a state s′ with ta(s′) = 0). This way, λ can set a new

output at the same point in simulation time.

1.2 Atomic RPDEVS

A :=< Xb,Y b,S,δ ,λ , ta > (2)

λ : (Q×Xb)→ Y b . . . output function

δ : (Q×Xb)→ S . . . external state transition function

where Q = {(s,e)|s ∈ S,e ∈ [0, ta(s)]}
In RPDEVS (see atomic definition in Equation (2)), the

three state transition functions of PDEVS are merged to

one single transition function δ which always is preceded

by an evaluation of the output function λ . This evalution

of λ though, happens iteratively. That is, λ is recalcu-

lated every time the input bag has changed due to a λ
computation in an influencing component. As shown in

[5], this λ iteration terminates as long as the model does

not contain algebraic loops. Furthermore, it still may ter-

minate if the algebraic loop can be resolved as we will

see in Section 1.4. In contrast to PDEVS, λ also depends

on the current input bag. Thus, Mealy behavior can be

modelled without having to change the internal state. In

fact, pure functional blocks can be modeled which do not

need an internal state at all, e.g. a logic NOT gate just

forwards input messages inverted to the output.

As already mentioned in the introduction, a PDEVS

model can be compared to a Moore machine (λ (s)),
wheras an RPDEVS can be compared to a Mealy ma-

chine because its output is a function of the input and the

internal state (λ (s,e,xb)).

1.3 NOR gate

A NOR gate with two inputs is constructed in PDEVS and

RPDEVS to demonstrate the differences with an example

in the context of logic gates.

NORPDEV S :=< X ,Y,S,δext ,δint ,δcon f ,λ , ta > (3)

X = {1,2}×{0,1}
Y = {0,1}
S = {0,1}2 ×{0,∞}, s = (s1,s2,σ) ∈ S

δext(s,e,x) = (a1(s,x),a2(s,x),0)

δint(s) = (s1,s2,∞)

δcon f (s,x) = δext(s, ta(s),x)

λ (s) = ¬(s1 ∨ s2)

ta(s) = σ

ai(s,xb) =

{
xi : if (i,xi) ∈ xb

si : otherwise

Equation (3) shows a PDEVS NOR gate. As an exter-

nal event could update either both or only one input, the

model has to keep the last seen values of its inputs in the

internal state. A helper function ai chooses the new input

value from the input bag xb if there is any, or otherwise

the saved value from the internal state. The model also

keeps the value σ for ta, which is set to 0 in the case of

an external event. In this way, every external event is fol-

lowed by a transitory state used to create an output event.

NORRPDEV S :=< X ,Y,S,δ ,λ , ta > (4)
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X = {1,2}×{0,1}
Y = {0,1}
S = {0,1}2 . . . s = (s1,s2) ∈ S

ta(s) = ∞

λ (s,e,xb) = ¬(a1(s,xb)∨a2(s,xb))

δ (s,e,xb) = (a1(s,xb),a2(s,xb))

When looking at Equation (4) which shows the NOR gate

in RPDEVS, one can see that, because λ can access the

input bag directly, the transitory state is not needed and

therefore, the state space is reduced.

1.4 Static RS Flip-Flop

Flip-flops are sequential logic elements. That means,

their outputs not only depend on their current inputs but

can also on historic input values [7]. This implies that

they have an internal state to store the historic data. A

static RS flip-flop is commonly built using two NOR gates

connected with their outputs fed back to the input of the

other (see Figure 1).

Figure 1: PowerRPDEVS model of the static RS flip-flop

composed of two NOR gates.

Notably, the RS flip-flop is constructed from two combi-
national logic elements – the two NOR gates ideally have

no state. Thus, deducing the mathematical model from

the circuit of Figure 1 results in a system of two implicit

equations:

Q = ¬(R∨Q) (5)

Q = ¬(S∨Q) (6)

Equations 5 and 6 can be solved as long as the inputs S
and R are not both equal to 0 (see Table 1). The defined

behavior for a RS flip-flop actually is to keep its previous

output values in the case of R = S = 0. However, to know

the previous value, the system needs to have a memory,

i.e. an internal state. A real flip-flop is a continuous sys-

S R Q Q

0 0 ¬Q ¬Q

0 1 0 1

1 0 1 0

1 1 0 0

Table 1: Solutions of Equations (5) and (6).

tem and its signals are exposed to delays. These delays

cause the system to still know its previous output, when

the input changes.

Due to the discrete event nature, our PDEVS and

RPDEVS models have to store the last seen input val-

ues and, thus, also possess an internal state. When one

of the inputs S or R of the RS flip-flop changes, the af-

fected NOR gate still has stored the previous output of

the other NOR gate. Consequently, during the simulation

of the PDEVS and RPDEVS models, not Equations (5)

and (6) are solved, but a recurrence relation. How this

recurrence relation looks like depends on the number of

inputs that change concurrently and on whether the sim-

ulation algorithm works in parallel or sequentially.

Single input change. We now consider the cases in

which only one input changes its value.

If input S changes, the upper NOR gate first calculates

its output using the new value of S and the stored value

for Q. Then, due to the change in Q, the lower NOR gate

calculates its output, already using the new value for Q.

Thus, the recurrence relation has the form:

Qn = ¬(R∨Qn) (7)

Qn = ¬(S∨Qn−1) (8)

In Table 3 the evolution of the recurrence relation in

Equations (7) and (8) is depicted for all possible initial

states Qn−1 and input values S and R. It can be seen, that

in all cases a fix point is reached after at least 2 iterations

(Qn+1 = Qn). Nevertheless, the simulation of this model

in PDEVS leads to an infinite loop. When processing the

external event due to the change in one of the two inputs,

the affected gate schedules an internal event with ta = 0.

Then λ sets the output and triggers the other gate for an

external event. Finally, δint sets ta = ∞. The other gate is

activated though, and will do exactly the same afterwards.

This again reactivates the first gate and, thus, the simula-
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Qn−1 S R Qn Qn Qn+1 Qn+1

0 0 0 0 1 0 1

0 0 1 0 1 0 1

0 1 0 1 0 1 0

0 1 1 0 0 0 0

1 0 0 1 0 1 0

1 0 1 0 0 0 1

1 1 0 1 0 1 0

1 1 1 0 0 0 0

Table 2: Solutions of Equations (7) and (8).

tion gets stuck in a loop (the model is illegitimate). To

mitigate this issue, the PDEVS model must be extended,

such that δext of the NOR gates only enters a transitory

state when the input bit xi is different from the already

stored bit si. It should be noted here, that this is an ex-

ample for how reusability of PDEVS models is impaired

due to the need of transitory states for modeling Mealy

behavior.

In RPDEVS, the simulation terminates. The change

in the input S directly leads to an execution of λ of the

upper NOR gate. The produced output respectively input

for the lower gate then triggers λ of the lower NOR. The

output produced thereby triggers a recalculation of λ at

the upper gate. However, if the newly produced output of

the upper gate does not differ from its previous one, the

lower gate is not triggered again. Consequently, as long

as the recurrence relation reaches a fix point in a finite

number of steps, the RPDEVS simulation algorithm will

find that fix point and will be able to continue simulation.

The case in which the input R changes and S does not

change, is completely analog and, thus, is not described.

Concurrent input change. If both inputs S and

R change concurrently, it depends on the simulation al-

gorithm, how the recurrence relation that is solved dur-

ing simulation looks like. In the case of a sequen-

tial RPDEVS simulation algorithm, like implemented in

PowerRPDEVS [9], first λ of the first block is calculated.

Then λ of the second block is calculated, already using

the new output of the first block. Thus, the recurrence re-

lation to solve again is the one of first order discussed in

the previous paragraph. Consequently, PowerRPDEVS

can handle any concurrent change of both inputs S and R

without getting stuck in an endless loop.

However, if the RPDEVS simulation engine works in

parallel, that is, it calculates λ of both gates concurrently,

the recurrence relation to be solved would be of second

order (see Equations (9) and (10)).

Qn = ¬(R∨Qn−1) (9)

Qn = ¬(S∨Qn−1) (10)

This recurrence relation can become unstable though.

When both inputs are 1 and then concurrently change to

0, the outputs start to alternate between 0 and 1.

Qn−1 Qn−1 S R Qn Qn Qn+1 Qn+1

X X 1 1 0 0 0 0

0 0 0 0 1 1 0 0

Table 3: The recurrence relation in Equations (7) and (8)
becomes unstable if S and R change concurrently
from 1 to 0.

In PDEVS, a concurrent change of both inputs first leads

to an execution of δext at both gates, storing the new input

in the internal state and setting σ = 0 to enter a transi-

tory state. The transitory state leads immediately to inter-

nal events and thus, to a execution of λ in both gates. It

does not matter whether λ of the gates is executed in par-

allel, or consecutively, because both use the old output

of the other one that is stored in the component’s state.

Therefore, for the PDEVS simulation algorithm the con-

current change of both inputs S and R always leads to the

solution of the second order recurrence relation in Equa-

tions (7) and (8) regardless whether execution is parallel

or sequential.

2 Simulation
Simulation was done in PowerRPDEVS which is the

proof-of-concept implementation of an RPDEVS mod-

elling environment that includes the simulation engine

and a graphical model editor. It is open source and avail-

able in [9].

2.1 Static RS Flip-Flop

The model of the RS flip-flop in Figure 1 was simulated

with the initial values Q = 0 and Q = 1. The input se-

quence and results are shown in Figure 2. Contrary to

SNE 29(2) – 6/2019



89

Fiedler et al. Simulation of Logic Gates with RPDEVS

Figure 2: static RS flip-flop – Simulation results

simulation in Simulink [8], no work-arounds are needed

and the outputs are not delayed.

A transition to the "forbidden" state S = R = 1 and

back to S = R = 0 is included. As long as S = R = 1, the

behaviour is actually well-defined as Q = Q = 0. When

S and R change to 0 simultaneously, the behaviour de-

pends on the ordering of the λ function executions. As

mentioned in Section 1.4, parallel execution of the NOR

gates’ λ functions would cause an infinite loop (oscilla-

tion) in the simulation, but it works in PowerRPDEVS
because the execution is serialized.

2.2 D Flip-Flop

A (clock triggered) D flip-flop can be constructed from

a triggered RS flip-flop and additional wiring at its in-

puts. The atomic LogicTriggeredSampling (LTS)

was implemented for this example. It can detect edges

on its second (lower) input, either triggering for rising

edges, falling edges or both, and it either forwards the left

(y(t) = limτ↗t x(τ)) or the right limit (y(t) = limτ↘t x(τ))
of its first (upper) input when triggered by an edge. This

block was placed before the inputs of a static RS flip-flop

(see Figure 3). When the LTS blocks are set to take the

right limit a change in the input that occurs at the same

time as the clock edge is accepted by the flip-flop and it

is not accepted otherwise.

It was first tried to use a different trigger detection

mechanism: a falling block as in [8] in the Modelica

model of the triggered RS flip-flop. This did not work

out well in RPDEVS though, as the block has to send a 1

for an infinitesimal time frame and then switch back to 0

whenever it detects an edge. This means that because of

the event-based nature of RPDEVS, the λ output at the

time of the edge would be 1 and the block would need

to schedule an internal event to set the output 0. If ta is

set to 0 for this purpose a transitory state would be intro-

duced which we are trying to avoid. On the other hand,

if it was set to ta = x ∈ R
+ this would open a time frame

during which the flip-flop would accept changes in its in-

puts, although the clock edge occured in the past. Thus,

in the end the triggered RS flip-flop was modeled as de-

picted in Figure 3.

Figure 4 shows the D flip-flop consisting of the trig-

gered RS flip-flop and a NOT. The results of the simula-

tion of the D flip-flop are shown in Figure 5. Q is omitted

as it always carries exactly the opposite logic level of Q.

The triggering clock edge is set to be the falling edge.

Figure 3: triggered RS flip-flop model

Figure 4: D flip-flop model

During the design of the LTS block we recognized that

it is actually a D flip-flop in its own right. The block ac-

cepts its first input (corresponding to D) as its output only

when there is an edge on its second input (corresponding

to CLK) which is exactly the behaviour of a D flip-flop.

Replacing the D flip-flop with an LTS block yields

exactly the same results as in Figure 5.

2.3 Shift register

A shift register is a series of D flip-flops where the input

signal is shifted through one flip-flop at a time whenever

the clock input triggers.
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Figure 5: D flip-flop – Simulation results

The shift register in Figure 6 was modelled by using three

of the D flip-flops designed above. Note that for the first

flip-flop the LTS blocks (that are part of the triggered RS

flip-flop, see Figure 3) is set to use the right limit and for

the other flip-flops it is set to use the left limit of the input.

The reason is that the input signal would otherwise

travel through all the flip-flops when the first clock edge

arrives, because all D flip-flops are triggered by the same

clock and none of them delays the signal.

The results of the simulation are shown in Figure 7.

They show the individual D flip-flops’ output and how

the input signal (first a 1, then a 0) propagates through

the shift register one stage per clock cycle.

Figure 6: Shift register model

Figure 7: Shift register – Simulation results

In Junglas’ tests [8], the Simulink model worked

correctly without intervention, but the Modelica model

seemed to show a peculiar issue that he mitigated by plac-

ing Pre blocks between the flip-flops which introduces an

infinitesimal delay to break algebraic loops.

3 Conclusion
The Revised Parallel DEVS formalism offers new ways to

deal with immediate outputs (Mealy behaviour of mod-

els) and algebraic loops. Specifically, we discussed a

purely functional NOR gate in detail, showing that a

model of it in RPDEVS can be realized with a smaller

state space than in PDEVS, thus, reducing the complex-

ity of the model. The static RS flip-flop was presented to

show the behaviour of RPDEVS models with a feedback

loop with no delay. The result was that a primitive cou-

pling of NOR gates to form an RS latch would almost in

any case lead to the expected behaviour of a physical NOR

gate, but a transition to the "forbidden" state can lead to

oscillation if the simulation engine utilizes parallelism.

The simulation of the RS flip-flop with Power-

RPDEVS shows the behaviour that is expected from an

RS flip-flop, without the need to introduce delay blocks

or arrange it in a special way, which is necessary in other

simulators.

The triggered D flip-flop model required the creation

of the LTS block that was capable of forwarding an input

event exactly when a clock edge occured which turned

out to be a D flip-flop on its own. When they were put

together to form a shift register, we needed to take into

account the delays that actually make a shift register work

and introduce them in our model as infinitesimal delays

in the LTS block.
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Abstract.  The development of thermal systems for 
supermarkets is a challenging task. Both, heating and 
cooling demands at different temperature levels have to 
be satisfied under individual boundary conditions. In 
combination with a broad range of available technolo-
gies and components, a high number of possible system 
layouts exist. Thus, various types of refrigeration systems 
can be found in supermarkets: Central refrigeration 
systems with one or two stages and direct evaporation, 
central systems with a secondary loop or systems with 
(semi)-plug-in-cabinets. The system topology and operat-
ing strategy depend on climate conditions, building scale, 
customer’s occupancy or evaluation criteria. In practice, 
established solutions based on experience are used. 
However, comparing all alternative concepts is difficult. 
Beside the consideration of investment costs, it is essen-
tial to evaluate the energy consumption. For the calcula-
tion of energy consumption, considering dynamic inter-
actions between components is crucial. 
To compare different system layouts under considera-
tion of dynamic interactions, an optimal operating con-
trol has to be applied. Furthermore, the high number of 
possible topologies makes it necessary to reduce the 
complexity for the selection of components and their 
interconnections. Therefore, software based methods 
are needed to efficiently reduce complexity and evaluate 
system alternatives in a dynamic environment.  
This paper presents a procedure that supports the user 
to find an optimal system topology under individual 
conditions. As an example, a secondary-loop refrigera-
tion system with low and medium temperature cabinets 
is applied.  

The user defines ambient conditions and requirements 
such as cooling load and temperature setpoints. Addi-
tionally, a set of transient, non-linear models for availa-
ble technical equipment is defined. The parametrized, 
ready-to-use models are managed in a catalogue plat-
form. In the catalogue, additional information is stored, 
like valid operational ranges, which is used during opti-
mization. On this information basis, an algorithm deduc-
es a reasonable refrigeration system layout. Intermedi-
ate result is a ready-to-simulate system. It contains only 
catalogue models that have physical reasonable inter-
connections. Subsequently, the system’s fluid flow rate of 
each connection is optimized. The result of the optimiza-
tion is used for evaluation of the system layout and fur-
ther reduction of its topology. 
The paper shows, that using simple input information, 
the complexity of the optimization problem can be ex-
tremely reduced. The suggested procedure is capable to 
deploy an optimal system topology under consideration 
of non-linear dependencies. 

Introduction
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Figure 1: Employed procedure for system synthesis and 
optimization. The synthesis uses a well-suited 
information basis to find physical reasonable 
interconnections. The synthesized ready-to-
simulate system model is optimized. 

3 Information Basis for System 
Synthesis 

3.1 Catalogue models 

Figure 2: Catalogue models available for the system syn-
thesis. The models for the cabinets are as-
sumed to be part of the requirement. All other 
components are optional. 

3.2 Requirements and specifications 

4 Synthesis of a Secondary-loop 
Refrigeration System 
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4.1 Thermal analysis to find reasonable 
interconnections 

Figure 3: Simplified view of combined meta data as in-
formation basis for system synthesis. 

•

•

•

•

•
•

•

Figure 4: Example for system synthesis algorithm. Start-
ing at the outlet of the MT cabinet, a valid flow 
connection to the condenser of the LT refrig-
eration cycle is found. From there other valid 
connections are found until the loop is closed. 
Estimated temperatures of the stream are dis-
played along the blue lines. 

4.2 Integration of hydraulic components 

5 Optimization of the 
Synthesized System 
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5.1 Optimization problem and algorithm 

Cost function and constraints.

Figure 5: System evaluation during optimization.  
Optimization parameters are the mass flow 
rate inputs ( ) for all pumps in the hydraulic 
system. Calculated variables for electrical 
power consumption ( ), temperatures ( ) and 
dependent mass flow rates ( ) are part of 
the cost function. 

 

5.2 Optimization results 
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Figure 6: Detail of one local search at 20 °C ambient 
temperature. After elimination of the con-
straint penalties, the cost function value 
equals the power consumption. After 800 
evaluations, a set of parameters is found that 
represents a better operating strategy. 

Figure 7: Optimized mass flow rates at 20 °C ambient 
temperature. The mass flow rate that flows 
from the evaporator of the MT refrigeration 
cycle to the condenser of the LT refrigeration 
cycle is completely passed on to the MT  
cabinet without direct return. 

Figure 8: Optimized mass flow rates at -5 °C ambient 
temperature. MT refrigeration cycle is 
switched off. The LT refrigeration cycle and the 
MT cabinet are cooled via outdoor unit. A big 
amount of working fluid at the condenser  
outlet is passed on to the MT cabinet. 

6 Derivation of System Layout 
Reduction 
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Figure 9: Optimized mass flow rates at 5 °C ambient 
temperature. The LT refrigeration cycle could 
be cooled only via outdoor unit. Thus, the red 
interconnections could be eliminated with al-
most the same electrical energy consumption. 
The path with pump 10 could be eliminated 
anyway. The reduced system layout is valid for 
all considered ambient temperatures. 

7 Conclusion 

Acknowledgements 
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Abstract. This contribution presents a knee model im-
plemented in SimscapeTM and analyses its usability re-
garding biomechanical aspects. The model simulates the
flexion of a human knee. It contains the three bones of
the human knee, which are linked together by two rev-
olute joints and one spring damper element represent-
ing the patellar tendon. This illustrates a simplification
of the human knee joint due to the restriction of degrees
of freedom. Finally, this work discusses the advantages
and disadvantages of using the multibody library in Sim-
scape for biomechanical models.

Introduction

In the research field of biomechanics, mathematical

models for anatomic joints play an important role

analysing kinematics and kinetics in the human body.

Mainly, two different modelling approaches are used,

models based on partial differential equations and

multibody systems. They differ in their mathematical

description and therefore in application fields as well.

Models described by partial differential equations

(PDEs) depend on time and space, which gives the op-

portunity to analyse even small deformations, which

take place in human bone and soft tissue, as ligaments

and tendons, under repeated loads.

Multibody models are described by ordinary differ-

ential equations (ODEs), which leads to final solutions

dependent on time only. These models do not require

a precise description as PDE models, because detailed

information about the geometries of the bodies does not

influence the solution of the model strongly. Multibody

models are often used for investigating gross motion

and interaction of various connected bodies. Here, a de-

scription of movement change over time is needed and

no deformations in tissues are investigated.

One possible application is the gait analysis. The

study of motion sequences, in case of injuries compared

to a normal gait cycle, can give insights to rehabilita-

tion and therapy techniques. Further on, biomechan-

ical models, which simulate the human walk, can be

extended to various walking scenarios, as running or

climbing stairs.

Results gained from these models can be used in the

development of prostheses to improve functions of leg

prostheses. For example, multibody models are devel-

oped for the investigation of interactions taking place in

the human body of amputees wearing prostheses during

various falling scenarios as it is done in [1].

1 Multibody Modelling
Physical modelling describes a system based on fun-

damental physical laws. This technique is often used

for systems, where no mathematical equations describ-

ing the dynamical behaviour of the system are known.

Multibody models are based on the physical modelling

approach and describe relative motion between differ-

ent bodies and the resulting dynamics. Multibody sys-

tems consist of bodies and joints, which link them to-

gether. Bodies are defined by their physical properties,

as mass, centre of mass, density, inertial rotation, etc.

There exist various types of joints, which differ in their

amount and properties of degrees of freedom, resulting

in rotational or translational movement respectively.

Figure 1 shows two rigid bodies, which are con-

nected by a kinematic joint. The positions of the bodies,

defined by their local coordinates, can be described in

respect to the global coordinate system as it is explained

more detailed in [2]. Since the physical model build-

ing process does not require mathematical equations,

the development of multibody models is often simpler

and faster than other methods. The description of a sys-

tem by PDEs requires more detailed information about
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x0

y0

z0

x1

y1

z1

x2

y2

z2

Figure 1: Illustration of a multibody system with local
coordinates, indicated by xxx1 and xxx2, and the global
coordinate system, indicated by xxx0.

geometries defining the included bodies and the numer-

ical solving procedure is more complex than using ODE

solver, which are sufficient for multibody models. Fur-

thermore, the physical modelling approach can be used

to detect mathematical equations of complex systems to

describe their dynamical behaviour. The combination

of components, whose dynamics are already known,

leads to the desired system description. The analysis

and further investigation of simulation results gives the

possibility to describe the dynamics by mathematical

equations.

In multibody models, the relative motion of a rigid

body, which results by applying a force FFF , is given by

the set of a second order ordinary differential equations

Mẍxx+ JT
xxx λ = FFF , (1)

with the mass matrix M of the system, the coordinates

xxx of the investigated body, the corresponding Jacobian

matrix J and the Lagrange multipliers λ . The derivation

can be conducted by using the Lagrange formalism and

is explained in [3].

As already mentioned above, multibody models are

used to analyse kinematics between bodies in biome-

chanics. For example, they are used to analyse the in-

teractions in the human body, which take place during

motion.

2 Conceptual Model for the
Human Knee

The platform https://simtk.org offers a reposi-

tory of biomechanical models. Researchers can share

their work, including simulation models and corre-

sponding files as geometries or data. The open access

strategy facilitates the development of new models.

The following model simulates the flexion of a hu-

man knee and is based on the work of [4], [5] and

[6]. The investigated models are mainly implemented

in AdamsTM, a multibody dynamics simulation soft-

ware. These models describe the flexion of the tibia

and the involved movement of the patella in respect to

a fixed femur after applying a force at the tibia. Simi-

lar to the anatomy of the human knee, ligament forces

are included, connecting the bones together and prede-

termining the direction of motion. Additionally, contact

forces influence the movement to prevent interpenetra-

tion of the bones.

The usage of the multibody library for Simscape,

embedded in the Simulink R© environment, requires the

introduction of joints, otherwise no movement is possi-

ble. A possible simplification of the knee joint reduces

the degrees of freedom in the knee to one rotational as

it is stated in [7]. For the analysis of load distribution

in the knee joint, this simplification is sufficient. This

rotational degree of freedom describes the flexion of the

tibia and is represented by one revolute joint. This revo-

lute joint j1, connecting femur and tibia, is placed in the

last third of the femoral condyle as it is depicted in Fig-

ure 2. A second revolute joint j2 is introduced, linking

the patella to the femur and describing the movement of

the patella. This joint is situated at the centre of mass

of the femur to ensure that the patella is sliding between

the femoral condyles at the front side. In the anatomy

of the human knee, the patella is situated in the patel-

lar tendon, which connects the quadriceps to the tibia.

In biomechanics, tendons are often implemented using

j1
j2

j1
j2

Figure 2: Visualisation of the joint centres in the knee model

in the initial position left and in flexion right.
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spring damper forces. Therefore, one spring damper el-

ement is introduced, which connects tibia and patella.

This component applies a linear force acting recipro-

cally between the connected bodies. This force f is pro-

portional to the distance x between the connected bodies

and the resulting velocity ẋ. It is calculated by

f = k · (x− l)+D · ẋ, (2)

with the spring constant k and damper coefficient D.

The natural length of the spring is given by l. This

spring damper force does not imply any movement to

the bodies, but ensures that the patella is sliding follow-

ing the rotation of the tibia. The tibia starts to move

only after an applied torque at the joint j1.

3 Simulation Model in Simscape
for the Human Knee

Simscape is embedded in the Simulink environment and

is intended for the development of physical systems.

The library comprises elements for driveline, electrical,

fluids and multibody models. Due to the embedment to

Simulink, it is possible to use components of Simulink

as well. For that purpose, special blocks convert the

different signal types from 3D of Simscape to 1D of

Simulink and vice versa.

The construction of a simulation model in Simscape

is similar to Simulink and realised by drag and drop of

components. The final model structure for the flexion

of a human knee is shown in Figure 3. Each block rep-

resents one component of the model. The global pa-

rameters, as gravity and solver settings as well as the

global reference frame, are defined in blocks too. With-

out these blocks, a simulation run of a Simscape model

is not possible.

The knee model consists of three bones, femur, tibia

and patella, which are implemented as rigid bodies.

The corresponding blocks contain stl-files defining

their geometry and shape as well as physical parame-

ters, namely mass, centre of mass and inertial rotation.

These files and parameters are given with the Adams

models of [4], [5] and [6] and represent data of the right

knee of a 77 year old man.

The stiffness of the spring and damping coefficient

for the patellar tendon between tibia and patella are the

same values as in the Adams model. The rigid trans-

forms between the components assure the correct at-

tachment points of the tendon to the bones and the right

position of joint centres, respectively.

The revolute joints contain parameters for spring

stiffness and damping coefficient of the joint and are

summarised in Table 1. These parameters are not the

same as in the Adams models, because there no rota-

tional joints are considered. These models deal with

ligaments only, which contain parameters for transla-

tional movements. The conversion of these parameters

for rotational movement requires knowledge about ro-

tational stiffness and is not accessible in this case.

Spring stiffness Damping coefficient

j1 553.5 N mm
deg 1 N mm s

deg

j2 33 N mm
deg 1 N mm s

deg

Table 1: Parameters for the joints.

Therefore, the parameters for the joints are calculated

by calibration and comparing the outputs from the

Adams and Simscape model. Both model do not show

the same behaviour due to the already discussed restric-

tions. One more subsequent difference from the model

description is the input. In the Adams model, a force is

acting at the tibia in posterior direction. The Simscape

model requires a torque τ acting on the joint j1. The

torque τ is calculated by using geometrical basics and

is finally given by

τ(t) = 28.8 · sin(2π ·0.125(t −1)) ·H(t −1) Nm, (3)

with the step function H. The acting torque is imple-

mented in Simscape by using Simulink blocks.

The output of the simulation model is the resulting

angle between femur and tibia representing the flexion

and extension of the human knee. Figure 4 shows the

angle of the Adams model and the Simscape model.

The comparison of the output leads to the missing joint

parameters. The non-linearity of the Adams model,

coming from the ligaments, results in a more steep

waveform than the sine wave from the Simscape model.

4 Conclusion and Outlook
The presented knee model is a simplification of the hu-

man knee joint and it shows the possibilities and re-

strictions of using the multibody library in Simscape

for biomechanical models. The usage of Simscape for

building multibody models is a good option due to the

embedment in the Simulink environment. This allows
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Figure 3: Block structure of the multibody model for the human knee implemented in Simscape.

to use block elements from other libraries and all tools

which are available in Simulink. Moreover, the postpro-

cessing in MATLAB R© offers many possibilities. This

gives flexibility in the development and extension of the

model and later in the analysis. For example, the con-

struction of more complex model structures and combi-

nation with system based modelling approaches allows

to build feedback loops, which extend the areas of ap-

plication for biomechanical models.

Since MathWorks R© does not focus on physical

modelling, the library of Simscape is restricted regard-

ing some aspects. Anatomic joints are complex struc-

tures due to their composition of various tissues as

bones, ligaments and tendons. In order to build a model

which fulfils the biomechanical properties of the human

knee joint, the consideration of a revolute joint is insuf-

ficient. The incorporation of crucial and collateral lig-

aments to the model increases the degrees of freedom

and improves a realistic movement. As it is discussed

in [8], ligaments show a non-linear behaviour regard-

0 1 2 3 4 5

0

0.1

0.3

0.5

0.7

0.85

t

ϕ [rad]

Simscape

Adams

Figure 4: Angle ϕ between femur and tibia during flexion of

the knee for the Adams and Simscape model.

ing their stress-strain relationship. Therefore, they can

not be modelled with linear spring damper elements but

using external functions. Nevertheless, the Simscape

multibody library requires the use of joints to create the

preconditions for the movements.
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Abstract.  This Benchmark Report with educational aspects 
presents a straightforward and direct implementation of AR-
GESIM Benchmark C7 ‘Constrained Pendulum’ in MATLAB and 
in EXCEL: the given models are implemented without any 
change, and the tasks are directly simulated without any rear-
rangement. Central issue of this benchmark is the detection 
and handling of a state event: when the pendulum hits or re-
leases a pin, pendulum length and angular velocity are chang-
ing discontinuously.  
The MATLAB approach makes use of the event termination fea-
ture of the ODE solvers, and a MATLAB script loops between 
long and short pendulum and handles the event changes. The 
EXCEL approach solves the overall ODEs by Euler algorithm (a 
simple EXCEL recursion). The events are synchronized with the 
chosen time step (detection with delay), and handled by distinc-
tion of cases in any state update (no event, hit, release, velocity 
jump). The MATLAB implementation is straightforward but 
makes use of different models necessary. The EXCEL imple-
mentation shows that a spreadsheet tool – not really designed 
for simulation - can do simulation by direct implementation of 
ODE algorithms, but event-handling causes elaborate case-by-
case analysis. 

Introduction 

Figure 1: Pendulum hitting a pin. 

l
m d

l
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1 MATLAB Implementation 

function yder = ODE_pendulum(t,y,m,l,d,g) 
yder=[y(2);-g*sin(y(1))/l-d/m*y(2)]; end 

function yder = ODE_pendulum_lin(t,y,m,l,d,g) 
yder=[y(2);-g*sin(y(1))/l-d/m*y(2)]; end 

1.1 Task a: Time Domain Analysis – MATLAB 
Implementation  

l
ls

while loop
event function

event function

event function

position isterminal = 1

direction = 0

function [position,isterminal,direction] = 
event_pendelum(t,y,pinangle) 
position=y(1)-pinangle; 
isterminal=1; 
direction=0; end 

ode45 

event 
function

stopevent = odeset('Events', @(t, y) Event_pendulum 
                                                              (t, y, pinangle));   
if(startingangle>pinangle) 
    %Pendulum starts in the long state 
    [t,y,te,ye,ie]=ode45(@(t,y) DGL_pendulum(t,y,m,l,d,g), 
     [0 10],[startingangle;Initialangularvelocity],stopevent); 
else 
    %Pendulum starts in the short state 
    [t,y,te,ye,ie]=ode45(@(t,y) DGL_pendulum(t,y,m,l2,d,g), 
    [0 10],[startingangle;Initialangularvelocity],stopevent); 
    i=2; 
end 
while t(end) < 10;   %as long as the end time not reached 
  if(mod(i,2) ~= 0);  %i = odd -> short pendulum 
   [t2,y2,te,ye,ie]=ode45(@(t2,y2)  ODE_pendulum (t2,y2,m,l2,  
                d,g), [t(end) 10],[y(end,1);y(end,2)*l/l2],stopevent); 
  else         %i  = even -> long pendulum 
   [t2,y2,te,ye,ie]=ode45(@(t2,y2) DGL_pendulum(t2,y2,m,l  
               ,d,g),[t(end) 10],[y(end,1);y(end,2)*l2/l],stopevent); 
    end 
    y=vertcat(y,y2);     t=vertcat(t,t2);     i=i+1; 
end 
 

Task a1
Task a2

1.2 Task b: Comparison of Nonlinear and 
Linear Model – MATLAB Implementation  

Task b: Comparison of Nonlinear and Linear Model

Task a: Time Do-
main Analysis

ode45
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1.3 Task c: Boundary Value Problem – 
MATLAB Implementation  

Task c: Boundary Value Problem

while(perdeviation<dev) 
  if(startingangle>pinangle); % starts in  long state 
   [t,y,te,ye,ie]=ode45(@(t,y) DGL_pendulum(t,y,m,l,d,g), 
     [0 10],[startingangle;Initialangularvelocity],stopevent); 
     [t2,y2,te,ye,ie]=ode45(@(t,y) DGL_pendulum(t,y,m,l2 ,d,g),  
     [t(end) 10],[y(end,1);y(end,2)*l/l2],stopevent); 
        y=vertcat(y,y2);  t=vertcat(t,t2); 
  else    %Pendulum starts in short state 
     [t,y,te,ye,ie]=ode45(@(t,y) DGL_pendulum(t,y,m,l2,d,g), 
    [0 10],[startingangle;Initialangularvelocity*l/l2],stopevent); 
  end 
  maxangle= min(y(:,1));%until pendulum max turns 
    dev= abs(targetangle-maxangle); 
    if(dev>0.5)   delta=0.1; 
    elseif (dev<=0.5 & dev>0.1)  delta=0.01; 
    elseif (dev<=0.1 & dev>0.01) delta= 0.001; 
    else  delta=0.0001;  end 
    if(targetangle<maxangle) 
        Initialangularvelocity=Initialangularvelocity-delta; 
    else 
        Initialangularvelocity=Initialangularvelocity+delta; 
    end;     steps=steps+1; end 

2 EXCEL Implementation 

2.1 Euler Solver for Pendulum Equations 

2.2 Euler Solver with Event Handling 
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if – then- else

2.3 Event Handling in EXCEL 

hit release
if-

then-else
cellvalue =  IF(condition, THEN-formula, ELSE-formula); 

hit
release if-then-else 

THEN-formula  ELSE-formula if-then-
else if-

IF1 IF2 and IF3
IF1

true
THEN-formula IF1 if- IF2
if- IF2

IF2
l

l ELSE-formula IF1
if- IF3

IF3

THEN-for-
mula IF3

ELSE-formula IF3
if- IF1 IF2 IF3

= IF ( H16 > phi_p, IF ( H15 < phi_p, 
        ls/l * G16 * (1-h*d/m) – h * g/l* SIN(H16), 
        G16*(1-h*d/m)-h*g/l*SIN(H16)], 
IF ( H15  >phi_p, 
        l/ls * G16  *(1-h*d/m) - h*g/ls * SIN(H16), 
       G16 * (1-h*d/m) – h * g/ls * SIN(H16))) 

G17 H16
H15

G16

2.4 Task a: Time Domain Analysis – EXCEL 
Implementation  

Figure 2: Definition of parameters – EXCEL implementation. 

Figure 3: EXCEL spreadsheet structure for state updates. 
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2.5 Task b: Comparison of Nonlinear and 
Linear Model – EXCEL Implementation  

Task b: Comparison of Nonlinear and Linear Model

Figure 4: EXCEL spreadsheet structure for state updates:  
results nonlinear model, results linear model, and deviation. 

2.6 Task c: Boundary Value Problem – 
MATLAB Implementation  

Goal Seeking 
Function What If Analysis 

Goal Seeking Function
I9

I14
I13

I14

Figure 5: EXCEL goal seeking function – parameters for 
boundary value problem for initial angular velocity. 

What If Analysis, 

What If Analysis 

I9 I14

3 Results – MATLAB and EXCEL 

Figure 6: Simulation results for Task a1 – MATLAB. 

Figure 7: Simulation results for Task a1 – EXCEL. 

Task a1

hit – release

hit – 
release
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Task b: Comparison of Nonlinear and Linear 
Model

ode45

Figure 8: Comparison of  
linear and nonlinear model 
with zoom – MATLAB.  

Figure 9: Comparison of linear and nonlinear model  
with zoom – EXCEL.  

Figure 10: Time course of angle and angular velocity for 
solution of Task c: Boundary Value Problem - 
MATLAB. 

Task c: Boundary Value Problem

4 Conclusion 

hit release
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