SNE EDUCATION BENCHMARK NOTE

Direct Implementation of ARGESIM Benchmark
C7 'Constrained Pendulum' in MATLAB and EXCEL

Anna E. Stockinger?, Elisabeth Giitl!, Stefan A. Rath*, Dominik Strasser?,
Martin Bicher?”, Andreas Kérner?!, Horst Ecker®”

IMathematical Modelling and Simulation Group, Inst. of Analysis and Scientific Computing

?Inst. of Information System Engineering, °Inst. of Mechanics and Mechatronics
TU Wien, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria; *horst.ecker@tuwien.ac.at

SNE 29(2), 2019, 105 - 110, DOI: 10.11128/sne.29.bne07.10478
Received: October 25, 2018; Revised: January 13, 2019;
Revised: May 10, 2019; Accepted: May 30, 2019

SNE - Simulation Notes Europe, ARGESIM Publisher Vienna
ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Abstract. This Benchmark Report with educational aspects
presents a straightforward and direct implementation of AR-
GESIM Benchmark C7 ‘Constrained Pendulum’ in MATLAB and
in EXCEL: the given models are implemented without any
change, and the tasks are directly simulated without any rear-
rangement. Central issue of this benchmark is the detection
and handling of a state event: when the pendulum hits or re-
leases a pin, pendulum length and angular velocity are chang-
ing discontinuously.

The MATLAB approach makes use of the event termination fea-
ture of the ODE solvers, and a MATLAB script loops between
long and short pendulum and handles the event changes. The
EXCEL approach solves the overall ODEs by Euler algorithm (a
simple EXCEL recursion). The events are synchronized with the
chosen time step (detection with delay), and handled by distinc-
tion of cases in any state update (no event, hit, release, velocity
jump). The MATLAB implementation is straightforward but
makes use of different models necessary. The EXCEL imple-
mentation shows that a spreadsheet tool — not really designed
for simulation - can do simulation by direct implementation of
ODE algorithms, but event-handling causes elaborate case-by-
case analysis.

Introduction

ARGESIM Benchmark C07 'Constrained Pendulum' re-
quires the simulation of a pendulum that hits and leaves
a pin at a certain angular position. Figure 1 shows the
schematic structure of the pendulum system. The descrip-
tion of the pendulum is generally given by a nonlinear
ODE or a linear (approximating) ODE of second order:

m-l-p(t)=—m-g-sinp(t)—d-L-¢()
m-l-¢(t) =—m-g-@t)—d-1-¢(t)

Figure 1: Pendulum hitting a pin.

The angular movement @(t) (measured in radians) is
positively counted from the vertical position counter-
clockwise. Given parameters are pendulum length |, pen-
dulum mass m, damping factor d, the angular position of
the pin ¢, and initial values for angular movement ¢,
and angular velocity ¢,.
If @, or ¢ is big enough, the pendulum hits the pin
if the event function e(t) becomes zero:
e(t) = () — @pin = 0.
The hit is modelled as state event, changing pendulum
length | and angular velocity ¢ discontinously.
At hit, the pendulum length shortens to Iy =1 — 1,
and the angular velocity jumps (increase):
¢~ li X
After some time the pendulum leaves the pin, causing the
'reverse' event: the pendulum length changes back to |,
and the angular velocity jumps at release again (de-
crease):
. s
¢ - T ¢
The tasks of the benchmark are i) time domain simulations
with proper detection and handling of the hit and release
events, with varying parameters, ii) comparison of nonlin-
ear and linear model description and impact on hit and re-
lease events, and iii) a boundary value problem.

SNE 29(2) - 6/2019 ie}s]

Ecker et al. Direct MATLAB and EXCEL Implementation of Benchmark C7 ‘Constrained Pendulum’ E!a

These tasks provide different challenges for the
MATLAB implementation, and for the EXCEL imple-
mentation. Because the solution approach follows a
straightforward implementation, the detection and the
handling of the hit and release events require special con-
sideration.

1 MATLAB Implementation

The MATLAB ODE solvers require an explicit state
space description 37 = f (¥,t) , which gives for the pen-
dulum description with y; (t) = @(t), y,(t) = ¢(t) the
following equations:

Y1 =Yy, = yder,

. g . d
Y2 = _Tsm}ﬁ _EJ’Z = yder,

The MATLAB ODE solvers need these equations as
function:
function yder = ODE_pendulum(t,y,m,l,d,g)
yder=[y(2);-g*sin(y(1))/l-d/m*y(2)]; end

or in linear version

function yder = ODE_pendulum_lin(t,y,m,l,d,g)
yder=[y(2);-g*sin(y(1))/1-d/m*y(2)]; end

1.1 Task a: Time Domain Analysis - MATLAB
Implementation

Since the pendulum swings because of hit and release of
the pin in the original length | and in the shortened length
Is, a permanent change between two differential equa-
tions must take place. This was solved by a while loop in
combination with an event function characterized by the
position of the pin, which terminates the ODE solver at
hit or at release. With the event function it is possible to
toggle between the differential equations by interrogating
the momentary angle of the pendulum.

In the next listing the event function is shown as code:
the event occurs when the current angle equals the angle
of the pin (position equals zero); isterminal = 1 means
that the differential equation is only executed until the
first occurrence of the event; direction = 0 means that it
does not matter which side of the pin angle the event orig-
inates from:

function [position,isterminal,direction] =

event_pendelum(t,y,pinangle)

position=y(1)-pinangle;

isterminal=1;

direction=0; end

For solving the differential equations, MATLAB’s
0ded5 solver (standard) is used. The solver is called in a
loop (terminating with given simulation time), which tog-
gles between long and short pendulum. After the event
function has terminated the ODE solver at the event time,
the event is handled: change of length, change of angular
velocity; then the solution is concatenated to the previous
ones. The MATLAB code is:

stopevent = odeset('Events', @(t, y) Event_pendulum
(t, y, pinangle));
if(startingangle>pinangle)
%Pendulum starts in the long state
[ty.te,yeie]=oded5(@(t,y) DGL_pendulum(t,y,m,l,d,qg),
[0 10],[startingangle;Initialangularvelocity],stopevent);
else
%Pendulum starts in the short state
[ty.te,ye,ie]=oded5(@(t,y) DGL_pendulum(t,y,m,2,d,g),
[0 10],[startingangle;Initialangularvelocity],stopevent);
i=2;
end
while t(end) < 10; %as long as the end time not reached
if(mod(i,2) ~= 0); %i = odd -> short pendulum
[t2,y2,te,ye,ie]=0ded5(@(t2,y2) ODE_pendulum (t2,y2,m,I2,
d,g), [t(end) 10],[y(end,1);y(end,2)*1/I2],stopevent);
else %i =even ->long pendulum
[t2,y2,te,ye,ie]=0ded5(@(t2,y2) DGL_pendulum(t2,y2,m,|
,d,0),[t(end) 10],[y(end,1);y(end,2)*I12/I],stopevent);
end
y=vertcat(y,y2);
end

t=vertcat(t,t2); i=i+1,

This implementation works independent of position of
pin and of initial angle, so that simulations for the two
different initial angles can be performed (Taskal and
Task a2). Section 3 shows results of the simulations, in
comparison with the results from the EXCEL implemen-
tation results.

1.2 Task b: Comparison of Nonlinear and
Linear Model - MATLAB Implementation

For Task b: Comparison of Nonlinear and Linear Model,
simply the simulation is repeated with the linear model,
using the same MATLAB script as for Task a: Time Do-
main Analysis but with changed derivative function.

The oded5 solver performs stepsize control, so that
results for nonlinear and linear model are calculated at
different grid points, and the number of grid points dif-
fers. A comparison can be done simply graphically — for
a numerical comparison of results, interpolation of both
results must be used (graphical results in Section 3).

Ecker et al. Direct MATLAB and EXCEL Implementation of Benchmark C7 ‘Constrained Pendulum’

1.3 Task c: Boundary Value Problem -
MATLAB Implementation

Task c: Boundary Value Problem requires to reach a tar-
get angle of the pendulum (—m/2), by proper choice of
the initial angular velocity ¢,. For this task a line search
is implemented, which varies the initial angular velocity
with variable increments, until the desired angular posi-
tion is reached.

For controlling the search, a deviation is defined, the
difference between the target angle and the maximally
reached angle of the shortened pendulum. Depending on
the current deviation, the initial angular velocity is in-
creased or decreased with respect to the deviation size,
unless the deviation is smaller than allowed. The follow-
ing code is self-explanatory:

while(perdeviation<dev)
if(startingangle>pinangle); % starts in long state
[ty.te,ye,ie]=oded5(@(t,y) DGL_pendulum(t,y,m,l,d,g),
[0 10],[startingangle;Initialangularvelocity],stopevent);
[t2,y2 teye ie]=oded5(@(t,y) DGL_pendulum(t,y,m,2 ,d,qg),
[t(end) 10],[y(end,1);y(end,2)*I/12],stopevent);
y=vertcat(y,y2); t=vertcat(tt2);
else %Pendulum starts in short state
[ty teye ie]=oded5(@(t,y) DGL_pendulum(t,y,m,2,d,g),
[0 10],[startingangle;Initialangularvelocity*I/12],stopevent);
end
maxangle= min(y(;,1));%until pendulum max turns
dev= abs(targetangle-maxangle);
if(dev>0.5) delta=0.1;
elseif (dev<=0.5 & dev>0.1) delta=0.01;
elseif (dev<=0.1 & dev>0.01) delta= 0.001;
else delta=0.0001; end
if(targetangle<maxangle)
Initialangularvelocity=Initialangularvelocity-delta;
else
Initialangularvelocity=Initialangularvelocity+delta;
end; steps=steps+1; end

This MATLAB script results in an initial angular velocity
of ¢y = —2,187 rad/s in order to reach the angle —m/2
after one hit. Graphical results are given in Section 3.

2 EXCEL Implementation

EXCEL is not really a simulator, it is mainly used in the
area of simulation in economics, also for dynamic pro-
cesses. 'Basic' EXCEL does not offer ODE solvers - but
the spreadsheet structure allows an easy implementation
of simpler ODE solvers, as Euler solver, or Heun solver
with fixed appropriate small step size: columns calculate
time advance and state advance in a recursive manner.

Because of the fixed stepsize, state events cannot be
localized — they can only be detected at the next timestep
after the event has happened. The handling of the event
causes complicated if -then — else constructs, depending
on the quality of the event — in this case two actions with
the change of the parameter length — easy — and with the
jump of the angular velocity — complicated.

2.1 Euler Solver for Pendulum Equations
This contribution makes use of the EULER ODE solver,
in state space notationfl = f (¥, t) generally given by

y;n+1 zj}n_i_h'f(}_}n:tn)' the1 = tn+h

With y; (t) = ¢(t), y,(t) = @(t) the state space
V1 =1L Y2) =2
. g . d
V2 =L y2) = _75m3’1 _EYZ

results in the following Euler algorithm for solving the
ODEs:
Yin+1 =Yin T fiViwYon) = Vin +h-Yon
Yeme1 = Yom + 1 fo(Vim Yam) =

g . d
=Yon Tt h- (_TSIrlyl,n - EYZ,n)

2.2 Euler Solver with Event Handling

Together with the state space update due to Euler algo-
rithm, in each time step t,,; also the event function
e(t) = ¢@(t) — @pin must be checked and compared
with the previous time step:

en = Pn — Ppin = Y1n — Ppin
€n+1 = Pn+1 — Ppin = Yin+1 — Ppin

If the event function has changed sign, then the event has
happened between t, and t,,4, and the quality of the
sign change determines the event: hit or release.

The event must be handled now at t,,,,. Asfor t,,q
all time and state values are already calculated, the event
changes must be considered at the next integration step

tht2s Yint2 Yon+2

which now makes uses of a changed length (and also the
further steps) and which must make use (only once) of
the jump in the angular velocity, i.e. in case of hit

! 1

Pns1 = Yons1] Ppir =] YVon+1

S S

SNE 29(2) - 6/2019 jier

Ecker et al. Direct MATLAB and EXCEL Implementation of Benchmark C7 ‘Constrained Pendulum’

As consequence, the handling of the event requires
actions within three timesteps — resulting in complicated
case-by-case analysis of the status of the states in each

time step. The update equation for the angular velocity

g . d
Yon+1 = Yon T h- (_Tsm Vin — E)’z,n)

is extended by nested if —then- else calculations, especially
because of the singular jump of the angular velocity.

2.3 Event Handling in EXCEL

There are several ways to implement the complicated

case-by-case analysis for the events hit and release. In

any case, the implementation is based on EXCEL’s if-

then-else formula for calculating the value in a cell:
cellvalue= IF(condition, THEN-formula, ELSE-formula);

For proper implementation of the changes at events hit
and release, these if-then-else formulas must be nested, i.e.
THEN-formula and ELSE-formula are themselves if-then-
else formulas. For documentation, the order of the if-for-
mulas is identified by a number, i.e. IF1, IF2, and IF3.

The first check IF1 asks if the angle of the pendulum
¢ at time t is greater than the pin angle @p;,. If true —
THEN-formula of IF1 — another if-formula IF2 is necessary.
if-formula IF2 decides, that if the angle of the pendulum
¢ is less than the pin angle @,,;,, at the time t — h (check-
ing IF2), then the extended update equation for the angu-
lar velocity (with change of length to | and with jump of
angular velocity with factor [/l) is used; if this is not
the case (¢ greater than ¢,;, at t — h) the standard up-
date equation for the Euler update of the angular velocity
with length | is used. The ELSE-formula of IF1 is another
if-formula IF3. It decides that if the angle of the pendulum
¢ is greater than the pin angle @, at the time t —h
(checking IF3), then the extended update equation for the
angular velocity with shortened length [and with jump
of angular velocity with factor I/l) is used (THEN-for-
mula of IF3); if this is not the case, the standard update
equation for the Euler update of the angular velocity with
length [is used ELSE-formula of IF3.

The combined if-formulas IF1, IF2, and IF3 now setup
the overall update formula for the angular velocity:
= IF (H16 > phi_p, IF (H15 < phi_p,

Is/1 * G16 * (1-h*d/m) - h * g/I* SIN(H16),
G16*(1-h*d/m)-h*g/I*SIN(H16)],

IF (H15 >phi_p,

I/ls * G16 *(1-h*d/m) - h*g/ls * SIN(H16),
G16 * (1-h*d/m) - h * g/ls * SIN(H16)))

Here, the angular velocity at the time step t is calcu-
lated in cell G17; H16 is the angle value of the pendulum
at the time step ¢ — h and H15 the angle value at t — 2h.
G16 is the value of the angular velocity at the time step
before (t — h).

2.4 Task a: Time Domain Analysis — EXCEL
Implementation

The implementation follows the classical spreadsheet us-
age — time update and update of states in columns defined
by recursive formulas, and parameters are defined by
names, for better understanding of formulas.

Figure 2 shows definitions for the parameters, and
Figure 3 sketches the structure of the spreadsheet with
columns for time — step size 0.001 —, angle, and angular
velocity.

EXCEL allows graphical representations of various
kinds; result graphs can be easily produced from the re-
sult columns — results see Section 3.

A B C

1 CONSTRAINED PENDULUM

2

3 DGL:

4 phi"= =-g*sin(phi)/l-d/m*phi

7 PARAMETER:

g8 g gravity 9,81

9 m mass of the pendulum 1,02

10 |1 length of the pendulum 1

11 Is shortend length of the pendulum 0,3

12 |d damping factor 0,2

7 INITIAL CONDITIONS:

8 phi_0 starting angle 0,5235988
9 phi'_0 starting angular velocity 0
10 phi_P angle of the pin -0,262

Figure 2: Definition of parameters — EXCEL implementation.

D E F €] H

13
14 Expl. Euler
15 time phi' phi
16 0 0] 0,5235988
17 0,001 -0,004905| 0,5235988
18 0,002 -0,00980904| 0,5235939
19 0,003 -0,01471207| 0,5235841
20 0,004 -0,01961406| 0,5235693
21 0,005 -0,02451497| 0,5235497
22 0,006 -0,02941474| 0,5235252

3 0,007 -0,03431335| 0,5234958
24 0,008 -0,03921075| 0,5234615
25 0,009 -0,04410689| 0,5234223
26 0,01 -0,04900175| 0,5233782

Figure 3: EXCEL spreadsheet structure for state updates.

Ecker et al. Direct MATLAB and EXCEL Implementation of Benchmark C7 ‘Constrained Pendulum’

2.5 Task b: Comparison of Nonlinear and
Linear Model - EXCEL Implementation

For Task b; Comparison of Nonlinear and Linear Model,
simply two further columns are added, calculating the
linear equations, using same case-by-case analysis as
with the nonlinear equations.

Figure 4 sketches the structure of the spreadsheet
with —for time — step size 0.001 —, nonlinear results (an-
gle, angular velocity), and linear results (angle, angular
velocity). The fixed step size allows a direct calculation
of the deviation between nonlinear and linear results,
shown in Figure 4 with columns for deviations of angle
and angular velocity.

E P 3 i

Fupl. Fuler

time phi" phi phi'_lin |phi_lin dev phi' [dev phi

o 0| 026175339 af 0,2617993% o o
' «0,00256835) 0,36179939) =0,00253901) o

«0,00513635) 0,361796583) =0,00507778| 2,9237%-0R)

«0,007TM03%8| 0,16179168) =0,00761627) 3 -

«0,0103714(0,2617835&| =0,01005847 v

-0,01283848| 0,26177371 «0,01265234 y

-0,01540533| 0,26176087) =0,01533387) . E 17|

E T4T16| 0,36174546) 001THEN04| 6,

-0,02053756| 0,26172743) -0,0203038(&
-0,03310308| 0,76170656 -0,02384015] 1,
-0,03566517| 0,76168385 -0,02537606] 1,
-0,02823377| 0,76165818 -0,027%1151| 1,6072%
0,03079687| 0,26162955] 0,03044636| 1,92855

0,012

Figure 4: EXCEL spreadsheet structure for state updates:
results nonlinear model, results linear model, and deviation.

2.6 Task c: Boundary Value Problem —
MATLAB Implementation
EXCEL provides as standard feature the Goal Seeking
Function in the What If Analysis — suitable for approxi-
mating the initial value for angular velocity ¢, with goal
reaching an angle of pendulum (77 /2).
The Goal Seeking Function needs as input the cell of the
parameter to be iterated — here ¢ in cell 19, the goal func-
tion evaluation — here the maximal angle after one hit in
cell 114, and the goal value — here given with /2 in cell
113. Additionally an accuracy parameter can be given —
here 0.01 in cell 114 (Figure 5).

E F G H 1

6

7 |INITIAL CONDITIONS:

8 |phi_0 starting angle 0,5235988
9 |phi'_0 starting angular velocity -2,17
10 |phi_P angle of the pin -0,262
11

12 [maximum allowable deviation 0,01
13 |required maximum angle of the pendulum -1,5707963
14 |measured maximum angle of the pendulum -1,5684524

Figure 5: EXCEL goal seeking function — parameters for
boundary value problem for initial angular velocity.

After start of the What If Analysis, EXCEL performs
an optimizing search for the initial angular velocity, per-
forming several simulation runs with changing values for
the initial angular velocity.

Figure 5 shows the input cells for the What If Analysis
and the results for initial angular velocity ¢ = —2.17 in
cell 19 and the reached goal angle @.,q in cell 114
(@ena = —1.5684524 ~ —g = —1.5707963). Graph-

ical results for the solution are shown in Section 3.

An alternative is use of an EXCEL macro, which
changes the initial velocity similar to the controlled line
search in the MATLAB implementation.

3 Results - MATLAB and EXCEL

In the following graphical results from the three tasks for
the MATLAB implementation and for the EXCEL im-

plementation are shown and commented.
1

0.5

e
8 o //“

-0.5

El
5

radis
/m
/\4..
o
(
g
(
\

Time t

Figure 6: Simulation results for Task al - MATLAB.

Arghe of tha prniitom

1 > =
i \ P AN =N

AY / N N ¥4 . Ve
E N 7 \ /_/ AN i \\/ ~_

] \f "

=

ngular velacity ol the pesdin

Figure 7: Simulation results for Task al — EXCEL.

At first glance, MATLAB results and EXCEL results for
Task al look the same. But the EXCEL result comes
along with four hits, whereas the MATLAB implementa-
tion detects only three hits. It is evident from other solu-
tions, that a fourth event pair hit —release exists.
Curiously MATLAB fails, although MATLAB
makes use of a much more accurate ODE solver with step
size control. Here MATLAB outmanoeuvres itself: the
step size control choses because of high order a relatively
big step size, so that the very close fourth event pair hit —
release simply is not recognized (between one step both

SNE 29(2) — 6/2019 [T

Ecker et al. Direct MATLAB and EXCEL Implementation of Benchmark C7 ‘Constrained Pendulum’

events take place). As prevention, the ODE solver param-
eters must be better tuned.

For Task b: Comparison of Nonlinear and Linear
Model, the MATLAB implementation repeats the simu-
lation with the linear model. The ode45 solver performs
step size control, so that results for nonlinear and linear
model are calculated at different grid points, additionally

- the total number of grid
Y "~ points differs.

But both results can
be plotted over the same
time scale and look the
same; only a zoom-in al-
lows to recognize differ-
ences for later time val-
ues (Figure 8).

For a numerical comparison of results, interpolation of
both results must be used.

The EXCEL implementation calculates nonlinear and
linear model in parallel. The fixed step size allows a di-
rect calculation of the deviation between nonlinear and
linear results, shown in Figure 4 with columns for devia-
tions of angle and angular velocity.

T
Figure 8: Comparison of
linear and nonlinear model
with zoom — MATLAB.

7 N\
/ \
/ a9 \U

Figure 9: Comparison of linear and nonlinear model
with zoom - EXCEL.

The EXCEL implementation shows bigger differences,
because of less accuracy — see Figure 9.

Figure 10: Time course of angle and angular velocity for
solution of Task c: Boundary Value Problem -
MATLAB.

Task c: Boundary Value Problem requires to reach a
target angle of the pendulum (—m/2), by proper choice
of the initial angular velocity ¢,. Both implementations
work with an iterative approach to determine the initial
angular velocity, with sufficient similar results:
MATLAB gives ¢, = —2.187, and EXCEL gives ¢, =
—2.17. For completeness, Figure 10 shows the time
course of angle and angular velocity for solution of the
boundary value problem

4 Conclusion

A spreadsheet tool as EXCEL is definitely not a simulator
— modelling features for ODEs, processes, events, etc. are
missing. But spreadsheet programs are an excellent exper-
iment environment with statistical analysis, optimisation,
what-if analysis, date handling, etc. Of course, macros and
external programming could be used, but to some extent
the standard features allow to implement this benchmark
with sufficient accuracy, using explicit Euler integration.

The crucial task in the EXCEL implementation is the
handling of events. Events must be realized by elaborate
nesting IF-formulas. As a result, the entire algorithmic
model is complicated and lacks clarity.

MATLAB is a classical programming and simulation
tool, and allows quick solutions in a standardized and
comfortable manner. The MATLAB ODE solvers allow
event functions, which terminate the integration, the
overall model must be put together in a loop. Neverthe-
less, parameters for ODE solver and for event functions
must be properly tuned.

Both implementations produce quite similar results.
MATLAB allows an increase of accuracy (parameters of
ODE solvers), EXCEL is limited in choice of step size,
because each integration step adds a now row into the
spreadsheet (here about 12000 rows).

It was generally the intention to compose a direct im-
plementation, without model reformulation, without
toolboxes or macros. On the other side, simple reformu-
lation would allow much easier event handling, espe-
cially in EXCEL. If instead of the angular velocity ¢ the
tangential velocity v = [- ¢ is used as state variable, at
the events hit and release the (tangential) velocity re-
mains unchanged; event handling is then simply switch-
ing between different values for pendulum length. And
also, the boundary value problem can be avoided. Reach-
ing exactly the angle —m/2 implies, that the pendulum
must swing back; this happens only, if the angular veloc-
ity is zero for angle —m/2 . As consequence, an initial
value problem with reverse time can replace the bound-
ary value problem.

