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Abstract. This paper addresses the simulation of fun-
damental logic gates (e.g. AND, OR, NOT) using the soft-
ware PowerRPDEVS that is based on the Revised Paral-
lel Discrete Event System Specification (RPDEVS) formalism.
The formal differences of the models of a NOR gate in
RPDEVS and PDEVS are analyzed. It is further shown,
which possible pitfalls may occur when connecting these
logic gates with feedbacks that cause algebraic loops and
in which cases these algebraic loops are resolved by the
RPDEVS simulation algorithm. For this purpose, a static
RS flip-flop, a triggered D flip-flop and a shift register are
modeled and simulated in PowerRPDEVS. The results are
compared to previous research about the simulation of
such logic circuits in Simulink and Modelica.

Introduction

In the theory of computation, the notion of Mealy and

Moore automata exists which are forms of finite state

automata [1]. The difference between these two types is

how the output function is defined. The output function

of the Moore type depends only on the internal state of

the automaton, whereas for the Mealy type it also de-

pends on the automaton’s input. The formal definition

of an automaton has a lot in common with the modeling

formalism Discrete Event System Specification (DEVS)

[2] and thus, also with its extension the Parallel Dis-
crete Event System Specification (PDEVS), introduced

by Chow and Zeigler [3]. However, since the output

function in PDEVS depends only on the internal state,

in principle, in PDEVS only Moore behavior is sup-

ported [4]. For Mealy behavior, a workaround includ-

ing a transitory state (i.e. a state with zero life time) is

necessary. This means that PDEVS models which im-

mediately react to an external event with an output first

have to enter a transitory state before the output func-

tion can be used to set the output.

In Revised Parallel Discrete Event System Specifi-
cation (RPDEVS), introduced by Preyser et al. [5], the

formalism was restructured to support Mealy behavior

naturally. In RPDEVS immediate reactions to external

events can be modeled directly with the output function,

which removes the need for transitory states in this con-

text.

As for PDEVS, an abstract simulator for RPDEVS

was defined and published in the acompanying work

[6]. An implementation is provided with the program

PowerRPDEVS that also includes a graphical model ed-

itor.

With the goal to extend the PowerRPDEVS model

library, we created a library with combinational logic

and sequential logic elements. Combinational logic

gates output the result of a boolean operator applied

onto the input values. Thus, when signal delays are

not taken into account, their models are all of type

Mealy. Sequential logic components, in practice, are

usually designed by coupling combinational logic ele-

ments with storage elements [7]. As Junglas’ findings

in [8] show, this can be a cumbersome business in sim-

ulation tools.

In this work, first it is analysed how the RPDEVS

models of logic gates differ from the corresponding

PDEVS models. Afterwards, it is investigated how the

RPDEVS simulation algorithm performs when creating

sequential logic components and the results are com-

pared to Junglas’ work.

1 The PDEVS and RPDEVS
Formalisms

PDEVS and RPDEVS are hierarchical modelling for-

malisms where models are composed of atomics and

couplings. An atomic can receive inputs from other

atomics or couplings, it has an internal state and can

produce outputs. Couplings can be composed of atom-

ics and other couplings. The formal definition of a cou-

pling is omitted here, it can be found in [3] and [6].
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1.1 Atomic PDEVS

In Equation (1) the definition of a PDEVS atomic is

given as tuple.

A :=< Xb,Y b,S,δext ,δint ,δcon f ,λ , ta > (1)

Xb . . . set of possible input bags

Y b . . . set of possible output bags

S . . . set of possible (internal) states of the atomic

δext : Q×Xb → S . . . external state transition function

where Q = {(s,e)|s ∈ S,e ∈ [0, ta(s)]}
δint : S → S . . . internal state transition function

δcon f : S×Xb → S . . . confluent state transition function

λ : S → Y b . . . output function

ta : S → R
+
0 ∪{∞} . . . time advance function

The time advance function ta determines the time to live

ta(s)∈ [0,∞] for every internal state s ∈ S. Whenever this

time expires, an internal event is triggered, which first

causes the execution of the output function λ and then

leads to a state transition conducted by δint . However, if

at the same time an input event occurs, the state transi-

tion is performed by δcon f . If the atomic is not imminent
(i.e. it has no internal event) while an input event xb is

received, δext is called and the atomic changes into a new

state s′ = δext(s,e,xb) without producing any output. The

λ function that sets the output of the atomic is only eval-

uated right before an internal state transition and relies on

the old state of the model. Thus, when an atomic has to

respond to an input with a change in output, there has to

be a state transition in δext (or δcon f ) into a transitory state

(i.e. a state s′ with ta(s′) = 0). This way, λ can set a new

output at the same point in simulation time.

1.2 Atomic RPDEVS

A :=< Xb,Y b,S,δ ,λ , ta > (2)

λ : (Q×Xb)→ Y b . . . output function

δ : (Q×Xb)→ S . . . external state transition function

where Q = {(s,e)|s ∈ S,e ∈ [0, ta(s)]}
In RPDEVS (see atomic definition in Equation (2)), the

three state transition functions of PDEVS are merged to

one single transition function δ which always is preceded

by an evaluation of the output function λ . This evalution

of λ though, happens iteratively. That is, λ is recalcu-

lated every time the input bag has changed due to a λ
computation in an influencing component. As shown in

[5], this λ iteration terminates as long as the model does

not contain algebraic loops. Furthermore, it still may ter-

minate if the algebraic loop can be resolved as we will

see in Section 1.4. In contrast to PDEVS, λ also depends

on the current input bag. Thus, Mealy behavior can be

modelled without having to change the internal state. In

fact, pure functional blocks can be modeled which do not

need an internal state at all, e.g. a logic NOT gate just

forwards input messages inverted to the output.

As already mentioned in the introduction, a PDEVS

model can be compared to a Moore machine (λ (s)),
wheras an RPDEVS can be compared to a Mealy ma-

chine because its output is a function of the input and the

internal state (λ (s,e,xb)).

1.3 NOR gate

A NOR gate with two inputs is constructed in PDEVS and

RPDEVS to demonstrate the differences with an example

in the context of logic gates.

NORPDEV S :=< X ,Y,S,δext ,δint ,δcon f ,λ , ta > (3)

X = {1,2}×{0,1}
Y = {0,1}
S = {0,1}2 ×{0,∞}, s = (s1,s2,σ) ∈ S

δext(s,e,x) = (a1(s,x),a2(s,x),0)

δint(s) = (s1,s2,∞)

δcon f (s,x) = δext(s, ta(s),x)

λ (s) = ¬(s1 ∨ s2)

ta(s) = σ

ai(s,xb) =

{
xi : if (i,xi) ∈ xb

si : otherwise

Equation (3) shows a PDEVS NOR gate. As an exter-

nal event could update either both or only one input, the

model has to keep the last seen values of its inputs in the

internal state. A helper function ai chooses the new input

value from the input bag xb if there is any, or otherwise

the saved value from the internal state. The model also

keeps the value σ for ta, which is set to 0 in the case of

an external event. In this way, every external event is fol-

lowed by a transitory state used to create an output event.

NORRPDEV S :=< X ,Y,S,δ ,λ , ta > (4)
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X = {1,2}×{0,1}
Y = {0,1}
S = {0,1}2 . . . s = (s1,s2) ∈ S

ta(s) = ∞

λ (s,e,xb) = ¬(a1(s,xb)∨a2(s,xb))

δ (s,e,xb) = (a1(s,xb),a2(s,xb))

When looking at Equation (4) which shows the NOR gate

in RPDEVS, one can see that, because λ can access the

input bag directly, the transitory state is not needed and

therefore, the state space is reduced.

1.4 Static RS Flip-Flop

Flip-flops are sequential logic elements. That means,

their outputs not only depend on their current inputs but

can also on historic input values [7]. This implies that

they have an internal state to store the historic data. A

static RS flip-flop is commonly built using two NOR gates

connected with their outputs fed back to the input of the

other (see Figure 1).

Figure 1: PowerRPDEVS model of the static RS flip-flop

composed of two NOR gates.

Notably, the RS flip-flop is constructed from two combi-
national logic elements – the two NOR gates ideally have

no state. Thus, deducing the mathematical model from

the circuit of Figure 1 results in a system of two implicit

equations:

Q = ¬(R∨Q) (5)

Q = ¬(S∨Q) (6)

Equations 5 and 6 can be solved as long as the inputs S
and R are not both equal to 0 (see Table 1). The defined

behavior for a RS flip-flop actually is to keep its previous

output values in the case of R = S = 0. However, to know

the previous value, the system needs to have a memory,

i.e. an internal state. A real flip-flop is a continuous sys-

S R Q Q

0 0 ¬Q ¬Q

0 1 0 1

1 0 1 0

1 1 0 0

Table 1: Solutions of Equations (5) and (6).

tem and its signals are exposed to delays. These delays

cause the system to still know its previous output, when

the input changes.

Due to the discrete event nature, our PDEVS and

RPDEVS models have to store the last seen input val-

ues and, thus, also possess an internal state. When one

of the inputs S or R of the RS flip-flop changes, the af-

fected NOR gate still has stored the previous output of

the other NOR gate. Consequently, during the simulation

of the PDEVS and RPDEVS models, not Equations (5)

and (6) are solved, but a recurrence relation. How this

recurrence relation looks like depends on the number of

inputs that change concurrently and on whether the sim-

ulation algorithm works in parallel or sequentially.

Single input change. We now consider the cases in

which only one input changes its value.

If input S changes, the upper NOR gate first calculates

its output using the new value of S and the stored value

for Q. Then, due to the change in Q, the lower NOR gate

calculates its output, already using the new value for Q.

Thus, the recurrence relation has the form:

Qn = ¬(R∨Qn) (7)

Qn = ¬(S∨Qn−1) (8)

In Table 3 the evolution of the recurrence relation in

Equations (7) and (8) is depicted for all possible initial

states Qn−1 and input values S and R. It can be seen, that

in all cases a fix point is reached after at least 2 iterations

(Qn+1 = Qn). Nevertheless, the simulation of this model

in PDEVS leads to an infinite loop. When processing the

external event due to the change in one of the two inputs,

the affected gate schedules an internal event with ta = 0.

Then λ sets the output and triggers the other gate for an

external event. Finally, δint sets ta = ∞. The other gate is

activated though, and will do exactly the same afterwards.

This again reactivates the first gate and, thus, the simula-
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Qn−1 S R Qn Qn Qn+1 Qn+1

0 0 0 0 1 0 1

0 0 1 0 1 0 1

0 1 0 1 0 1 0

0 1 1 0 0 0 0

1 0 0 1 0 1 0

1 0 1 0 0 0 1

1 1 0 1 0 1 0

1 1 1 0 0 0 0

Table 2: Solutions of Equations (7) and (8).

tion gets stuck in a loop (the model is illegitimate). To

mitigate this issue, the PDEVS model must be extended,

such that δext of the NOR gates only enters a transitory

state when the input bit xi is different from the already

stored bit si. It should be noted here, that this is an ex-

ample for how reusability of PDEVS models is impaired

due to the need of transitory states for modeling Mealy

behavior.

In RPDEVS, the simulation terminates. The change

in the input S directly leads to an execution of λ of the

upper NOR gate. The produced output respectively input

for the lower gate then triggers λ of the lower NOR. The

output produced thereby triggers a recalculation of λ at

the upper gate. However, if the newly produced output of

the upper gate does not differ from its previous one, the

lower gate is not triggered again. Consequently, as long

as the recurrence relation reaches a fix point in a finite

number of steps, the RPDEVS simulation algorithm will

find that fix point and will be able to continue simulation.

The case in which the input R changes and S does not

change, is completely analog and, thus, is not described.

Concurrent input change. If both inputs S and

R change concurrently, it depends on the simulation al-

gorithm, how the recurrence relation that is solved dur-

ing simulation looks like. In the case of a sequen-

tial RPDEVS simulation algorithm, like implemented in

PowerRPDEVS [9], first λ of the first block is calculated.

Then λ of the second block is calculated, already using

the new output of the first block. Thus, the recurrence re-

lation to solve again is the one of first order discussed in

the previous paragraph. Consequently, PowerRPDEVS

can handle any concurrent change of both inputs S and R

without getting stuck in an endless loop.

However, if the RPDEVS simulation engine works in

parallel, that is, it calculates λ of both gates concurrently,

the recurrence relation to be solved would be of second

order (see Equations (9) and (10)).

Qn = ¬(R∨Qn−1) (9)

Qn = ¬(S∨Qn−1) (10)

This recurrence relation can become unstable though.

When both inputs are 1 and then concurrently change to

0, the outputs start to alternate between 0 and 1.

Qn−1 Qn−1 S R Qn Qn Qn+1 Qn+1

X X 1 1 0 0 0 0

0 0 0 0 1 1 0 0

Table 3: The recurrence relation in Equations (7) and (8)
becomes unstable if S and R change concurrently
from 1 to 0.

In PDEVS, a concurrent change of both inputs first leads

to an execution of δext at both gates, storing the new input

in the internal state and setting σ = 0 to enter a transi-

tory state. The transitory state leads immediately to inter-

nal events and thus, to a execution of λ in both gates. It

does not matter whether λ of the gates is executed in par-

allel, or consecutively, because both use the old output

of the other one that is stored in the component’s state.

Therefore, for the PDEVS simulation algorithm the con-

current change of both inputs S and R always leads to the

solution of the second order recurrence relation in Equa-

tions (7) and (8) regardless whether execution is parallel

or sequential.

2 Simulation
Simulation was done in PowerRPDEVS which is the

proof-of-concept implementation of an RPDEVS mod-

elling environment that includes the simulation engine

and a graphical model editor. It is open source and avail-

able in [9].

2.1 Static RS Flip-Flop

The model of the RS flip-flop in Figure 1 was simulated

with the initial values Q = 0 and Q = 1. The input se-

quence and results are shown in Figure 2. Contrary to
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Figure 2: static RS flip-flop – Simulation results

simulation in Simulink [8], no work-arounds are needed

and the outputs are not delayed.

A transition to the "forbidden" state S = R = 1 and

back to S = R = 0 is included. As long as S = R = 1, the

behaviour is actually well-defined as Q = Q = 0. When

S and R change to 0 simultaneously, the behaviour de-

pends on the ordering of the λ function executions. As

mentioned in Section 1.4, parallel execution of the NOR

gates’ λ functions would cause an infinite loop (oscilla-

tion) in the simulation, but it works in PowerRPDEVS
because the execution is serialized.

2.2 D Flip-Flop

A (clock triggered) D flip-flop can be constructed from

a triggered RS flip-flop and additional wiring at its in-

puts. The atomic LogicTriggeredSampling (LTS)

was implemented for this example. It can detect edges

on its second (lower) input, either triggering for rising

edges, falling edges or both, and it either forwards the left

(y(t) = limτ↗t x(τ)) or the right limit (y(t) = limτ↘t x(τ))
of its first (upper) input when triggered by an edge. This

block was placed before the inputs of a static RS flip-flop

(see Figure 3). When the LTS blocks are set to take the

right limit a change in the input that occurs at the same

time as the clock edge is accepted by the flip-flop and it

is not accepted otherwise.

It was first tried to use a different trigger detection

mechanism: a falling block as in [8] in the Modelica

model of the triggered RS flip-flop. This did not work

out well in RPDEVS though, as the block has to send a 1

for an infinitesimal time frame and then switch back to 0

whenever it detects an edge. This means that because of

the event-based nature of RPDEVS, the λ output at the

time of the edge would be 1 and the block would need

to schedule an internal event to set the output 0. If ta is

set to 0 for this purpose a transitory state would be intro-

duced which we are trying to avoid. On the other hand,

if it was set to ta = x ∈ R
+ this would open a time frame

during which the flip-flop would accept changes in its in-

puts, although the clock edge occured in the past. Thus,

in the end the triggered RS flip-flop was modeled as de-

picted in Figure 3.

Figure 4 shows the D flip-flop consisting of the trig-

gered RS flip-flop and a NOT. The results of the simula-

tion of the D flip-flop are shown in Figure 5. Q is omitted

as it always carries exactly the opposite logic level of Q.

The triggering clock edge is set to be the falling edge.

Figure 3: triggered RS flip-flop model

Figure 4: D flip-flop model

During the design of the LTS block we recognized that

it is actually a D flip-flop in its own right. The block ac-

cepts its first input (corresponding to D) as its output only

when there is an edge on its second input (corresponding

to CLK) which is exactly the behaviour of a D flip-flop.

Replacing the D flip-flop with an LTS block yields

exactly the same results as in Figure 5.

2.3 Shift register

A shift register is a series of D flip-flops where the input

signal is shifted through one flip-flop at a time whenever

the clock input triggers.
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Figure 5: D flip-flop – Simulation results

The shift register in Figure 6 was modelled by using three

of the D flip-flops designed above. Note that for the first

flip-flop the LTS blocks (that are part of the triggered RS

flip-flop, see Figure 3) is set to use the right limit and for

the other flip-flops it is set to use the left limit of the input.

The reason is that the input signal would otherwise

travel through all the flip-flops when the first clock edge

arrives, because all D flip-flops are triggered by the same

clock and none of them delays the signal.

The results of the simulation are shown in Figure 7.

They show the individual D flip-flops’ output and how

the input signal (first a 1, then a 0) propagates through

the shift register one stage per clock cycle.

Figure 6: Shift register model

Figure 7: Shift register – Simulation results

In Junglas’ tests [8], the Simulink model worked

correctly without intervention, but the Modelica model

seemed to show a peculiar issue that he mitigated by plac-

ing Pre blocks between the flip-flops which introduces an

infinitesimal delay to break algebraic loops.

3 Conclusion
The Revised Parallel DEVS formalism offers new ways to

deal with immediate outputs (Mealy behaviour of mod-

els) and algebraic loops. Specifically, we discussed a

purely functional NOR gate in detail, showing that a

model of it in RPDEVS can be realized with a smaller

state space than in PDEVS, thus, reducing the complex-

ity of the model. The static RS flip-flop was presented to

show the behaviour of RPDEVS models with a feedback

loop with no delay. The result was that a primitive cou-

pling of NOR gates to form an RS latch would almost in

any case lead to the expected behaviour of a physical NOR

gate, but a transition to the "forbidden" state can lead to

oscillation if the simulation engine utilizes parallelism.

The simulation of the RS flip-flop with Power-

RPDEVS shows the behaviour that is expected from an

RS flip-flop, without the need to introduce delay blocks

or arrange it in a special way, which is necessary in other

simulators.

The triggered D flip-flop model required the creation

of the LTS block that was capable of forwarding an input

event exactly when a clock edge occured which turned

out to be a D flip-flop on its own. When they were put

together to form a shift register, we needed to take into

account the delays that actually make a shift register work

and introduce them in our model as infinitesimal delays

in the LTS block.
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