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Abstract. The Revised Parallel DEVS (RPDEVS) model-
ing formalism enhances the Parallel Discrete Event Sys-
tem Specification (PDEVS) by the ability to model ’real’
Mealy behavior of components. The term ’real’ Mealy
behavior can be summarized as immediate output re-
sponse to an input event without a state transition in
between. Although this enhancement simplifies model
creation, especially of reusable components, it requires
a more complex simulation algorithm. In this paper, we
present an RPDEVS abstract simulator that describes the
simulation execution of RPDEVS models.

Introduction

The Discrete Event System Specification (DEVS) [1] is

a modular and hierarchical modeling formalism for sys-

tems that process input events, have an internal state,

and may produce output events. Basic components can

be specified as atomic DEVS which can be coupled

with one other in a block diagram manner. The for-

mal definition of an atomic DEVS is similar to a finite

automaton (or sequential machine). In [2], the author

describes an atomic DEVS as DEVS Moore Automa-
ton embedded in additional logic that provides the nec-

essary time events. Automata theory distinguishes be-

tween Moore and Mealy automata. The output events

of Moore automata solely depend on the system’s cur-

rent state, whereas the output of Mealy automata may

also depend on the current input. In theory, these two

types of automata are equivalent in the sense that every

automaton of the one type can be replaced by a corre-

sponding automaton of the other type. However, in av-

erage the Moore model needs about twice the number

of states and transitions than the corresponding Mealy

model to represent the same system [3].

Both, in classic DEVS and in its most popular revi-

sion PDEVS [4], the output function λ solely depends

on the internal state of the system. Thus, these two

formalisms only allow the modeling of Moore behav-

ior. If Mealy behavior is needed, it has to be modeled

with a workaround, using a transitory state (a state with

zero lifetime). However, as discussed in [5], the use

of transitory states leads to a delay of events regarding

processing order, which in turn impedes reusability of

components. Due to the reasons mentioned above and

the experiences we made with applying both, DEVS [6]

and PDEVS [7], we decided to revise PDEVS resulting

in RPDEVS published in [8]. Basically, the changes

include the support of ’true’ mealy behavior and the

merging of the three state transition functions δint , δext ,

and δcon f into one generic state transition function δ .

As mentioned above, a Mealy automaton needs about

half the states compared to the corresponding Moore

automaton. Evaluation of RPDEVS shows that formal-

ization of Mealy models simplifies to a similar extent

compared to PDEVS. Also merging the state transition

functions condenses model definition, since the differ-

ent transition functions often match at least in parts.

However, the price for simplifying modeling is an in-

crease in the complexity of the simulation algorithm.

In this work, we first recap the RPDEVS formal-

ism, before its simulation algorithm is described and

presented as abstract simulator.

1 RPDEVS Formalism

Equally to classic DEVS and PDEVS, RPDEVS dis-

tinguishes between atomic and coupled components

which can be used for modular and hierarchical struc-

turing of complex models (see Figure 1). As shown

in [8], RPDEVS also provides closure under coupling,

which means that for every coupled component an

equivalent atomic component can be designed. This as-

sures that couplings can be used within other couplings

as if they were atomics.
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Figure 1:Modular and hierarchical decomposition of a
complex model into atomic and coupled RPDEVS
components.

1.1 Atomic RPDEVS

Formally, an atomic RPDEVS M is defined as

M =< Xb,S,Y b,δ ,λ , ta >,

where the single entities have the following meanings:

Xb . . . set of possible input bags

S . . . set of possible states (=state space)

Y b . . . set of possible output bags

δ : Q×Xb → S . . .state transition function
λ : Q×Xb → Y b . . . output function
ta : S → [0,∞] . . . time advance function
Q = {(s,e)|s ∈ S,e ∈ [0, ta(s)]}
e . . . elapsed time since last event

Theoretically, Xb is a set of multisets with no partic-

ular structure. However, for practical implementation

where it is feasible to define input ports which can be

connected individually to output ports of other compo-

nents, the set of possible input bags may be structured

into sub-bags, one for each input port. Additionally, the

sub-bags can be structured according to the source com-

ponents the corresponding input messages origin from

(see Figure 1). This is especially done in the RPDEVS

simulation algorithm presented in Section 2, which has

to remember the source component of every input mes-

sage.

The differences of an atomic RPDEVS compared to

PDEVS are the input dependency of the output function

λ and the single state transition function δ which re-

places the three separated transition functions δint , δext ,

and δcon f (for details about PDEVS, see [4, 1]). Fur-

thermore, in RPDEVS, λ is called on any kind of event,

external, internal, and confluent. The explicit distinc-

tion between these three event types is dropped and the

behavior of an RPDEVS atomic is the same for each of

them:

1. Call the output function λ .

2. Recalculate λ as long as the input bag changes due

to (re)calculations of lambda at influencing com-

ponents (lambda-iteration).

3. Conduct state transition δ once (delta-step).

4. Call the time advance function ta which returns the

time to the next internal event.

If different treatment is necessary depending on

whether the event was triggered by the arrival of an

input (external event), by the expiration of the current

state’s lifetime (internal event), or by both happening

concurrently (confluent event), this has to be incorpo-

rated into the definitions of δ and λ . External events

can be recognized by a non-empty input bag (xb �= /0),

whereas internal events imply e = ta(s).
The single transition function δ avoids having to de-

fine identical behavior multiple times in cases in which

the three transition functions partly match.

According to [9], it frequently happens that calcula-

tions necessary for the output event in λ are also nec-

essary for the computation of the next state and thus,

have to be repeated in δint . In the classic DEVS simu-

lator DesignDEVS [10], they even merge the two func-

tions λ and δint to prevent unnecessary recalculations.

This is not possible for RPDEVS as λ may have to be

called multiple times before the state transition can be

conducted. Therefore, for practical implementation, we

recommend to split the internal state s of an atomic into

two parts s = (sδ ,sλ ) ∈ S = Sδ × Sλ which allows to

redefine λ and δ as follows:

λ : Sδ × [0,∞)×Xb → Y b ×Sλ , (sδ ,e,xb) �→ (yb,sλ )
δ : Sδ ×Sλ × [0,∞)×Xb → Sδ , (sδ ,sλ ,e,xb) �→ sδ

Thus, when λ already needs to calculate a new state

value for generating the output y, it can be buffered into

sλ to be reused in δ .

1.2 Coupled RPDEVS

The formal definition of a coupled RPDEVS is identical

to that of a coupled PDEVS (see [4]):

N =< Xb,Y b,D,{Md}d∈D,{Id}d∈DN ,{Zi,d}i,d∈DN >

with DN = D∪{N} and
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Xb . . . set of possible input bags

Y b . . . set of possible output bags

D . . . index set

Md . . . child component of N for each d ∈ D
Id ⊂ D∪{N} . . . influencer set of d
Zi,d . . . output translation function

The output translation function Zi,d translates the out-

put events of component i into input events for compo-

nent d. Theoretically, Zi,d could also alter output events.

However, in practice it just forwards events. If the des-

tination component is a coupling, the output translation

functions of that coupling further forwards the events to

the destinations within the coupling. This is repeated

until finally the events reach atomics.

As already mentioned in Section 1.1, the multiset of

possible input bags can be structured by input port and

source component. In the following, we will not con-

sider ports, but separate the input bags according to the

influencers the messages originate from. Such a struc-

turing for a component d has the form

Xb
d = ∏

i∈Id

Xb
i,d ,

with Xb
i,d being the multiset of possible input messages

from component i (Zi,d : Y b
i → Xb

i,d). Consequently, ev-

ery input bag xb
d of a component d has the form

xb
d = (xb

i1,d ,x
b
i2,d , . . . ,x

b
il ,d), Id = {i1, i2, . . . , il}.

Thereby, xb
ik,d

is the translated result of the output func-

tion of influencer ik: xb
ik,d

= Zik,d(y
b
ik
), ∀k = 1,2, . . . , l.

2 RPDEVS Abstract Simulator
To complete the introduction of RPDEVS started in [8],

the definition of an abstract simulator is given. Like

in classic DEVS and parallel DEVS, the code con-

sists of a simulator part responsible for executing an

atomic, a coordinator part responsible for executing

a coupling, and a root-coordinator responsible for the

overall model execution. Furthermore, we stick to the

format known from [1], using message passing. There

are five types of messages used:

i-message The initialization message is sent to ev-

ery component at simulation start. It is used to ini-

tialize state variables and gather the times of the

first internal events at the single components.

*-message In PDEVS, this is the internal state tran-
sition message because there the output function λ
is inseparably connected to the internal and con-

fluent state transitions δint and δcon f . However, in

RPDEVS, λ is calculated in an iterative manner

and on every kind of event. Thus, this message is

solely used to trigger the λ iteration.

y-message The y-message is used to transport the

output message calculated in λ to the parent coor-

dinator where it is forwarded to the input bag of

the receiving component.

x-message In RPDEVS, the x-message is used to

trigger the state transition. Whenever a component

receives an x-message, it executes δ and then

calculates the time of its next internal event tn.

done-message This message is used for synchro-

nization. When the coordinator triggers child com-

ponents to do their initialization or to conduct their

state transition, it has to wait until all of them are

done before simulation can proceed.

2.1 Simulator

The simulator of an atomic RPDEVS is nearly identical

to the one of an atomic PDEVS (see [1], p. 285):

RPDEVS-simulator
variables:
parent // parent coordinator
tl // time of last event
tn // time of next event
RPDEVS // assoc. model with total

// state (s,e), time advance
// function, lambda and delta

(s_i,e_i) // initial total state
y // output message bag

when receive i-message(i,t)
(s,e) = (s_i, e_i)
tl = t - e
tn = tl + ta(s)
send done-message(done, tn) to parent

when receive *-message(*,x,t)
e = t - tl
y = lambda(s,e,x)
send y-message(y,t) to parent

when receive x-message(x,t)
s = delta(s,e,x)
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tl = t
tn = tl + ta(s)
send done-message(done, tn) to parent

end RPDEVS-simulator

The most important differences compared to the

PDEVS simulator are the additional parameter x of

the *-message, and the absence of the case dis-

tinction between internal, external, and confluent event

when receiving an x-message. Like in [11], a

done-message is used for synchronization during the

potentially parallel execution to prevent the problems

with Zeigler’s PDEVS algorithm described in [12].

2.2 Coordinator

The more interesting part of the abstract simulator is

the coordinator. We start with the definition of all

necessary variables followed by the i-message and

done-message procedures:

RPDEVS-coordinator
variables:
parent // parent coordinator
tl // time of last event
tn // time of next event
RPDEVS // associated coupled model

// including index set D,
// influencer sets I_d, and
// output transl. fcts. Z_id

event-list // list of elements (d,tn_d),
// sorted ascending by tn_d

IMM // imminent children
y_coupling // output message of coupling
x_dr // sub input bags:

// d... sender, r... receiver
x_r // input bag of component r
y_dN // sub output bag of coupling

// N, d... sender
INF // set of influenced children

// (with changed input bag)
INF’ // INF for next lambda-iter.
DELTA // set of children who need to

// conduct a state transition
CHECK // components with withdrawn

// input messages

when receive i-message(i,t)
DELTA = D
for-each d in D do
send i-message(i,t) to child d

wait until DELTA = {}
sort event-list according to tn_d
tl = max{tl_d : d in D}
tn = min{tn_d : d in D}
send done-message(done, tn) to parent

when receive done-message(done, td) from d
event-list.(d,tn_d) = (d,td);
remove d from DELTA

At simulation start, the coordinator receives an

i-message from its parent coordinator. The parent of

the uppermost coordinator is the root-coordinator (see

Section 2.3). The i-message is forwarded to all child

components d∈D which causes them to calculate their

time of next internal event tn_d. Then, the coordinator

waits until all children have sent their done-message

(i.e. DELTA={}) before the time of the next internal

event tn of the coupling can be determined.

If a component is imminent (i.e. its time of next event

tn=t), it receives a *-message from its parent coordi-

nator. This message initiates the λ iteration in the cou-

pling. The goal of the λ iteration of a coupling is gener-

ating its output message y_coupling.
when receive *-message(*,x,t)
y_coupling = {}
for-each (d,tn_d) in event-list with tn_d=t
add d to IMM, DELTA and INF
remove (d,tn_d) from event-list

for-each r in D with N in I_r
if x_Nr != Z_Nr(x)

x_Nr = Z_Nr(x)
add r to INF and DELTA
if x_Nr={}

add r to CHECK
for-each r in INF
x_r = {x_dr : d in I_r, x_dr != {}}

while CHECK != {}
pick and remove r from CHECK
if x_r={}

if r not in IMM
remove r from INF and DELTA
for-each d in D with r in I_d
x_rd = {}
remove x_rd from x_d
add d to CHECK

if r in I_N
y_rN = {}

INF’={}
for-each r in INF
send *-message(*,x_r,t)

In the *-message of the coordinator first, the immi-

nent children are determined and collected in IMM, INF,

and DELTA. Then, the components’ input bag changes

caused by the couplings input are calculated. All com-

ponents whose input bag changed are added to INF and

scheduled for state transition by adding them to DELTA.

Finally, *-messages are sent to the affected child com-

ponents triggering their λ execution.
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These λ executions result in output messages trans-

ported via y-messages back to the coordinator. In the

coordinator’s y-message procedure, all output mes-

sages of all triggered child components are gathered and

converted using the output translation functions Z_dr.

Depending on the coupling relations, they are converted

either into input messages for other children or into cou-

pling output messages. Thereby, all child components

whose input bag has changed are collected in INF’. Af-

ter the last element in INF has responded to the coordi-

nator with a y-message, the components in INF’ are

shifted into INF. If INF is not empty after that, again a

*-message is sent to every component in INF and their

response, in form of y-messages is awaited. However,

if INF is empty at the end of the y-message proce-

dure, it means no input bag has changed during the last

λ iteration, i.e. they are stable. Thus, the λ iteration

of the coupling has terminated and the coordinator can

send a y-messages to its parent. In [8], it is shown

that for models without algebraic loops, the λ iteration

always terminates after a maximum of n = |D| iterations.

In some cases, algebraic loops can even be solved by the

simulation algorithm (see RS flip-flop in [13]).

During the course of λ iterations, it may happen that

input messages for child components that were produced

in previous iterations may have to be withdrawn from the

respective input bag. Thereby, it may occur that the input

bag becomes completely empty although it was not in the

preceding iteration. These components then need to be

checked separately because they may already have pro-

duced output in reaction to a non-empty input bag (Mealy

behavior) and thereby may have influenced other compo-

nents. This task is handled via the set CHECK.

A coordinator may represent a coupling that is used as

component in a parent coupling. In this parent coupling,

there is also a λ iteration in progress. Thus, the parent

coordinator may send multiple *-messages to its child

coordinators. This is why the *-message procedure of

the coordinator also has to check whether formerly re-

ceived coupling inputs still exist in the new iteration (us-

ing CHECK).

when receiving y-message(y_d,t) from d
remove d from INF
if d in I_N
y_dN = Z_dN(y_d)

for-each r in D with d in I_r
if x_dr != Z_dr(y_d)
x_dr = Z_dr(y_d)
if x_dr={}

add r to CHECK
add r to INF’ and DELTA

if INF = {}
INF = INF’
INF’ = {}
for-each r in INF

x_r = {x_dr : d in I_r, x_dr != {}}
while CHECK != {}

pick and remove r from CHECK
if x_r={}

if r not in IMM
remove r from INF and DELTA
for-each d in D with r in I_d

if x_rd != {}
x_rd = {}
remove x_rd from x_d
add d to INF, DELTA and CHECK

if r in I_N
y_rN = {}

for-each r in INF
send *-message(*,x_r,t) to component r

if INF = {}
y_coupling={y_dN : d in I_N, y_dN!={}}
send y-message(y_coupling,t) to parent

Receiving an x-message means that the λ iteration

is finished and the state transitions can be conducted.

This is done by sending an x-message to every im-

minent child component and to every child component

with non-empty input bag. These components have been

gathered in DELTA during the λ iteration. After the

x-messages are sent, the coordinator waits until all of

them are done with their state transition. Afterwards, the

time of the next internal event can be calculated and the

set IMM is cleared.

when receive x-message(x,t)
for-each r in DELTA
send x-message(x_r,t) to r

wait until DELTA = {}
sort event-list according to tn_d
tl = t
tn = min{tn_d: d in D}
IMM = {}
send done-message(done, tn) to parent

end RPDEVS-coordinator

2.3 Root Coordinator

Finally, on top of the uppermost coordinator is the root

coordinator. It starts the simulation by sending an

i-message to its child coordinator. Then it advances

the simulation time to the time of next event, initiates the

λ iteration by sending a *-message, waits until the λ
iteration is finished and then triggers the state transition
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by sending an x-message. This is repeated until the

simulation time t exceeds the final time tend.

RPDEVS-root-coordinator
variables:
tstart // simulation start time
tend // simulation end time
t // current simulation time
child // direct subordinate coordinator

t = tstart
send i-message(i,t) to child
wait for done-message(done,tn) from child
t=tn
while t < tend
send *-message(*,t) to child
wait for y-message(y,t) from child
send x-message({},t) to child
wait for done-message(done,tn) from child
t=tn

end RPDEVS-root-coordinator

3 Conclusion
In this work, we first recapped RPDEVS and pointed out the paral-

lels of PDEVS and RPDEVS to Moore and Mealy automata. Fur-

thermore, we demonstrated how the input bags can be formally

split up into sub-bags, one for each influencer. This separation is

used by the abstract simulator as it makes it easier to detect input

bag changes due to λ recalculations in the influencers. The struc-

ture of the abstract simulator is basically similar to the one of Zei-

gler’s PDEVS abstract simulator [1]. For synchronization purposes

though, we also added the done-message of Chow’s algorithm

[11].

When implementing the algorithm, especially when facilitat-

ing parallelism, aspects like consistent global variable manipulation

and execution order have to be taken into account. However, this

degree of detail would go beyond the scope of this paper.

Nevertheless, there already exists a proof-of-concept imple-

mentation of an RPDEVS simulator. We reprogrammed the simula-

tion engine of the open-source classic DEVS simulator PowerDEVS
and named it PowerRPDEVS. It is available on SourceForge [14].

In PowerRPDEVS, a sequential version of the algorithm is imple-

mented. Exploitation of parallelism in the PowerRPDEVS engine

is an issue for future work.
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