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Abstract.  In this paper, an approach for integrated be-
havior modeling and simulation within model-based elec-
tric/electronic-architecture (EEA) descriptions is pre-
sented. It leverages actor-oriented and UML state chart 
behavior modeling to address complex reactive systems. 
A key contribution is the aggregation of cross-layer behav-
ior specified at the logical function architecture layer and 
at the hardware layer together with further properties of 
the EEA like the current consumption of electronic control 
units (ECUs) and the underlying network topology. The 
EEA and behavior modeling is done in the common indus-
try tool PREEvision. Using these static descriptions, a uni-
fied simulation model is synthesized and executed using 
Ptolemy II, which extends a previously developed ap-
proach. In addition, a concept to feed back the simulation 
data into PREEvision is briefly described e.g., to further 
evaluate the gained results. Finally, a proof-of-concept is 
presented using an Adaptive Cruise Control application. 

Introduction 
Automotive electric/electronic-architectures (EEAs) are 
steadily growing in complexity due to the integration of 
evermore functions [1]. To cope with that complexity at 
system level, model-based architecture description lan-
guages (ADLs) and tools have been established in recent 
years such as the EAST-ADL [2], EEA-ADL [3] (real-
ized in the tool PREEvision [4,1]) and Vehicle Systems 
Architect [5], each of which are compliant to the AU-
TOSAR [6] standard. Each of them offer sophisticated 
static modeling capabilities from several viewpoints such 

as requirements, functional network, hardware/software 
architecture, wiring harness and topology. 

A common process is to start with the realization-in-
dependent and early stage modeling of the logical func-
tion architecture which typically stays stable for years 
and thus is the basis for further refinements in the devel-
opment life cycle [1]. Another trend is the architecture-
centric modeling of behavior integrated within the 
model-based EEA descriptions in order to have a com-
mon formal format for exchange and subsequent simula-
tion analysis. The trend to amend this is underlined e.g., 
by the behavioral annexes of the EAST-ADL [2] and the 
AADL [7] or the integration of UML-compliant state 
charts into the latest PREEvision release v9.0 [4]. There-
fore, recent research is focused on the generation of exe-
cutable behavior from these static descriptions 
[8,9,10,11,12,13]. 

A downside of the behavioral annexes is that they 
only support the association of architectural components 
with simple, flat finite state machines (FSMs) which re-
sult in state and transition explosion with more complex 
systems. The mentioned approaches therefore often del-
egate detailed behavior to external descriptions which re-
sults in the loss of the integrated characteristics. In addi-
tion, it elicits inconsistencies between the architecture 
and behavior models and prevents the consideration of 
lower abstraction layers. 

An approach which faces this challenge is presented 
in [8] by synthesizing and executing a cross-domain sim-
ulation from static EEA descriptions designed in 
PREEvision. In this work we extend that approach to sup-
port both actor-oriented and state chart behavior model-
ing to address complex reactive systems. 

Concerning state charts the UML subset provided by 
PREEvision is leveraged and enhanced to support ex-
tended state machines to further handle complexity.  
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In addition, cross-layer behavior specifications and 

further EEA properties from lower abstraction layers are 
synthesized into a unified Ptolemy II (PtII) simulation 
model. A concept to feed back the simulation data into 
PREEvision is extended and completes the contributions.  

1 Background 
The overall baseline approach as proposed in [8] and the 
extensions addressed in this work are shown in Figure 1. 
Starting point is a data model e.g., as provided by 
PREEvision, which captures all relevant abstraction lay-
ers of an EEA. For modeling executable behavior inte-
grated within the EEA model, a new layer called Behav-
ioral Logical Architecture (BLA) is introduced that re-
fines the static logical blocks with detailed behavior by 
reusing actors [14] from the PtII Actor Library. The li-
brary contains actors of the heterogeneous modeling and 
simulation tool Ptolemy II [15] and is imported as a sep-
arate library of logical block types into PREEvision. 
These block types are used to instantiate actors at the 
BLA layer. In combination with mappings from the LA 
layer to lower layers they provide the connection of the 
behavioral blocks of the BLA to domain-specific infor-
mation at lower layers enabling the cross-domain simu-
lation of the underlying network communication or even 
electric circuits [16] in an aspect-oriented manner. A var-
iant-sensitive synthesis is also implemented supporting 
the analysis of architecture variants [17]. 

2 Concepts 
To amend the baseline actor-oriented modeling with 
state-based behavior we leverage the newly added capa-
bility of PREEvision v9.0 to refine architecture artifacts 
with state charts across several layers including the logi-
cal architecture and components of the hardware layer 
such as ECUs and internal processing units. 

The basic principle is to annotate a state chart as child 
artifact to an architecture artifact. Dependent on the ab-
straction layer, the interfaces to the state chart comprise 
different data providers and consumers. At the logical ar-
chitecture, for instance, communication between func-
tions is done via typed ports, which have attached an in-
terface. The interface specifies the actual data exchanged 
e.g., in terms of data elements. This follows the AU-
TOSAR standard. 

 
Figure 1: Approach for cross-domain simulation  

synthesis of model-based EEAs [8] and new  
extensions to combine cross-layer behavior 
specifications using UML state charts and  
actor-oriented library components.  

 
The specified data elements of each port are then availa-
ble in the state chart of the function to use them in guard 
and action expressions. The modeling is illustrated in 
Figure 2. A similar modeling approach applies for hard-
ware components except that state charts are annotated at 
instance level and data providers differ from data ele-
ments. 

 
Figure 2: Modeling principle to refine logical function 

types with state charts. Communication is 
done via data elements. 

2.1 Extended State Machines 
A downside of the current state chart modeling capability 
is the missing support of extended state machines, which 
can significantly reduce the complexity [15]. Therefore, 
we propose a meta-model extension by extended state 
variables. This is indicated in Figure 2 by the composi-
tion of the state chart with the proposed meta-class MEx-
tendedStateVariable. 
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2.2 Combining Actor-oriented and State 

Chart Behavior Simulation 
In the baseline approach in Figure 1, behavior is specified 
by mapping an atomic logical function instance to a com-
posite building block at the BLA layer. Executable actors 
are instantiated within that building block. Port prototype 
mappings are generated once to ensure the consistency 
between the interfaces of the atomic logical function and 
its refinement building block. 

State charts are simulated using modal models 
[15,18] in PtII. Modal models basically represent a spe-
cialized composite actor containing a hierarchical state 
machine governed by an FSMDirector. Each state can 
contain another state machine refinement or even an ac-
tor-oriented sub-model following a distinct execution se-
mantics i.e., a different model of computation (called Di-
rector in PtII). Modal models are also suitable to deter-
ministically simulate hybrid systems [15]. Data exchange 
between modal models is done via ports. Therefore, a 
building block of type ModalModel is used to identify 
logical functions which contain a state chart description. 

Additional data element sub-mappings are generated 
once in order to respect the interfaces of the logical func-
tions and to connect the simulation model counterparts 
during simulation model synthesis. Each port of a build-
ing block represents a data element. See Figure 3. 

 
Figure 3: Generation of BLA building block stubs and 

mappings. State charts are encapsulated in a 
building block of type ModalModel. 

2.3 Cross-Layer Behavioral Synthesis 
To allow the simulation of cross-layer behavior we lev-
erage the state chart refinements of hardware compo-
nents. However, the link to higher layers i.e., the logical 
layer, is missing.  

 

Therefore, we propose to use AUTOSAR-oriented 
BasisServiceInterfaces on logical ports in order to 
provide additional data elements or operations to com-
municate with state charts of mapped hardware compo-
nents. In addition, we propose to reference ECU attrib-
utes as state chart variables. For instance, this enables the 
modeling and simulation of mode-based cross-layer be-
havior, where functions can request a certain operating 
mode of the ECU and only perform their functional be-
havior if the ECU responds it is ready to run. In order to 
allow spontaneous FSMs [15], which not only react on 
input events, a timeout guard expression (taken from 
PtII) is introduced e.g., to model the startup time of the 
ECU. A cross-layer model is exemplarily shown in Fig-
ure 4.  

Finally, we propose the mapping of current consump-
tion descriptions in terms of PREEvision’s meta-class 
MCurrentDescriptorType on state transitions of hard-
ware states. Together with the timed behavior, a mode-
based current consumption can be simulated. 

In the synthesized PtII model, the function and hard-
ware state charts are encapsulated in distinct modal mod-
els communicating via ports which represent the basis 
service interfaces. An additional output port is generated 
for the current consumption of the ECU. 
Hardware Network.  In [8], network communication 
between functions such as CAN is traced based on their 
mapping to the hardware and is considered in the result-
ing simulation in an aspect-oriented way. Together with 
the state chart refinement of ECUs and processing units, 
it is possible to automatically include additional behavior 
along the communication path, such as gateways, by cas-
caded aspect-oriented simulations. Typically gateways 
have no logical function counterpart, since they are de-
pendent on the mapping. 

2.4 Simulation Data Feedback 
To make use of the simulated results in PREEvision in 
order to perform further analysis and to relate the results 
with the original EEA model artifacts, a feedback ap-
proach is applied. The approach relies on OSGi [19] and 
is further described in [17]. We reuse and extend the ap-
proach by implementing a listener for modal model con-
trollers focusing on the feedback of information about the 
simulated state machines such as timestamps, current 
state, previous state, output and variable actions. 
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Figure 5: Cross-layer behavior specification using basis 

service interfaces on logical ports to  
communicate with the mapped hardware 
component state chart via additional data  
elements or operations. 

2.5 Transformation Rules 
In Table 1 the basic transformation rules between 
PREEvision’s UML state chart subset and modal model 
artifacts in PtII are summarized.  

Note that each generated PtII artifact is suffixed by 
the UUID of the original EEA model artifact in order to 
uniquely relate the artifacts and avoid name conflicts on 
PtII side. 

3 Use Case Results 
In this chapter, the concepts are demonstrated by means 
of an Adaptive Cruise Control (ACC) application pre-
sented in [8] which is enhanced based on Figure 4. The 
logical function architecture is shown in Figure 5. 

UML State Chart Subset Ptolemy II Modal Models 

simple state, choice & 
junction pseudo-state 

state 

initial pseudo-state state with property isInitialState 

final state state with property isFinalState 

composite state state machine refinement state 

orthogonal state default refinement state contain-
ing a discrete-event director and a 
modal model composite for each 
parallel region. Data dependencies 
between regions are analyzed and 
communicated via ports between 
the affected modal models. [18] 

deep history state history transition 

state transition ordinary transition 

guard condition guard expression  

IO/variable action output/set action expression 

Table 1: Basic transformation rules between  
PREEvision’s UML state chart subset and  
PtII modal models. 

The ACC_Testbench generates the stimuli for the vehicle 
speed and radar speed sensor functions as well as for the 
ACC controller in a closed-loop fashion based on the cal-
culated acceleration of the ACC controller. The stimuli 
values are generated with a sample period of 100 . The 
initial speeds and the distance are set to 15 /  and 190  
respectively. Each of the functions offer BasisSer-
viceInterfaces to request or retrieve a certain operat-
ing mode of the state chart of their mapped hardware 
component. The corresponding BLA building block 
stubs and mappings are generated according to Figure 3.  

 
Figure 4: Logical function architecture of the ACC application. Each of the logical functions except for ACC_Testbench is  

refined by a state chart. Their mapping to the hardware layer is illustrated by the annotated text boxes. The  
behavior of the ACC_Testbench is modelled actor-oriented at the BLA layer and is not mapped to the hardware. 
Thus, a combined actor-oriented and state chart modeling is applied. 

ACC_Controller
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3.1 State Charts 
The most important state charts are the one of the ACC 
controller shown in Figure 6 and its corresponding ECU 
state chart realizing an ECU Manager depicted in Fig-
ure 7. The remaining state charts of the sensor and actu-
ator functions and their hardware are modeled simple. 
They only forward/retrieve the speed/acceleration values 
and request the sensors/actuator to run as long as they re-
ceive values. The ACC is calculating the acceleration 
only if the ECU is ready to run. The orthogonal state op-
erate limits the calculated acceleration by the state vari-
ables aMin and aMax. In the freeRoad state the radar de-
tects no vehicle, the own speed reached the desired speed 
and the sleep mode is requested. A wakeup is triggered 
when the radar detects a new vehicle. A shutdown is re-
quested when the vehicle stands still. 

Figure 6: ACC controller state chart. Some transition ac-
tions are omitted for space reasons. 

Figure 7: ACC ECU state chart realizing an ECU Manager 
oriented on the AUTOSAR fixed ECU Manager. 
Transitions to the yellow states have mapped a 
current descriptor type in order to simulate a 
mode-based current consumption. 

The ACC ECU state chart represents the different op-
erating modes which can be requested by the ACC con-
troller state chart and sends back the current status via the 
BasisServiceInterfaces. In addition, the startup- and 
provision time attributes of the ECU (50  and 200 ) are 
referenced as well as a wakeupTime state variable (10 ) 
which are used as timeouts. Provision time is the time a 
component stays active after its shutdown is requested. 

3.2 Simulation Results 
Figure 8 shows the PtII plot of the ACC simulation. Until 250  the vehicle is following the leading vehicle. Then 
the leading vehicle disappears and the ACC accelerates 
to its desired speed at free road. At 300  a new vehicle is 
detected at a distance of 200 . At 350  the vehicle is 
decelerating until it stands still at 380 . At 300  the ac-
celeration is limited to aMin. 

Figure 9 shows the mode-based current consumption 
of the hardware components at the key time-points with 
synthetic values. 

Figure 8: ACC simulation showing the speed of the lead-
ing vehicle (red) and the ego vehicle (green) in /  as well as the acceleration calculated by 
the ACC (blue) in / . 

Figure 9: Current consumption of the mapped ACC 
hardware dependent on the operating mode. 
Created based on the fed back simulation data 
which is written to a CSV file in PREEvision.  
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The sensors are operating until their shutdown. Until 50  the ACC ECU and Actuator are starting up before 

they are ready to run. At 253.6  the vehicle has reached 
its desired speed at free road and the ACC ECU goes to 
sleep mode. At 300  it wakes up for 10 . At 380  the 
vehicle stands still but all hardware components stay ac-
tive for the same provision time before they shutdown at 580 . 
4  Conclusion 
In this paper, we presented a set of concepts and their 
evaluation by an ACC application to model and simulate 
behavior of model-based EEAs in an integrated manner. 
The key contribution is the combination of actor-oriented 
and state chart based behavior across several abstraction 
layers. This enables new possibilities to analyze model-
based EEAs in early development stages dependent on ar-
chitectural decisions and information. 

Future work could include enhanced support of UML 
state charts, the integration and consideration of behavior 
at the AUTOSAR-compliant system software architec-
ture layer and envisioning their code generation. 
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