
S N E T E C H N I C A L N O T E

SNE 29(2) – 6/2019 73

Cross-Layer Behavioral Modeling and
Simulation of E/E-Architectures using

PREEvision and Ptolemy II
Harald Bucher1*, Simon Kamm2, Jürgen Becker1

1Karlsruhe Institute of Technology – Institute for Information Processing Technologies, Engesserstr. 5,
76131 Karlsruhe; *bucher@kit.edu

2Vector Informatik GmbH, Philipp-Reis-Str. 1, 76137 Karlsruhe

Abstract. In this paper, an approach for integrated be-
havior modeling and simulation within model-based elec-
tric/electronic-architecture (EEA) descriptions is pre-
sented. It leverages actor-oriented and UML state chart
behavior modeling to address complex reactive systems.
A key contribution is the aggregation of cross-layer behav-
ior specified at the logical function architecture layer and
at the hardware layer together with further properties of
the EEA like the current consumption of electronic control
units (ECUs) and the underlying network topology. The
EEA and behavior modeling is done in the common indus-
try tool PREEvision. Using these static descriptions, a uni-
fied simulation model is synthesized and executed using
Ptolemy II, which extends a previously developed ap-
proach. In addition, a concept to feed back the simulation
data into PREEvision is briefly described e.g., to further
evaluate the gained results. Finally, a proof-of-concept is
presented using an Adaptive Cruise Control application.

Introduction
Automotive electric/electronic-architectures (EEAs) are
steadily growing in complexity due to the integration of
evermore functions [1]. To cope with that complexity at
system level, model-based architecture description lan-
guages (ADLs) and tools have been established in recent
years such as the EAST-ADL [2], EEA-ADL [3] (real-
ized in the tool PREEvision [4,1]) and Vehicle Systems
Architect [5], each of which are compliant to the AU-
TOSAR [6] standard. Each of them offer sophisticated
static modeling capabilities from several viewpoints such

as requirements, functional network, hardware/software
architecture, wiring harness and topology.

A common process is to start with the realization-in-
dependent and early stage modeling of the logical func-
tion architecture which typically stays stable for years
and thus is the basis for further refinements in the devel-
opment life cycle [1]. Another trend is the architecture-
centric modeling of behavior integrated within the
model-based EEA descriptions in order to have a com-
mon formal format for exchange and subsequent simula-
tion analysis. The trend to amend this is underlined e.g.,
by the behavioral annexes of the EAST-ADL [2] and the
AADL [7] or the integration of UML-compliant state
charts into the latest PREEvision release v9.0 [4]. There-
fore, recent research is focused on the generation of exe-
cutable behavior from these static descriptions
[8,9,10,11,12,13].

A downside of the behavioral annexes is that they
only support the association of architectural components
with simple, flat finite state machines (FSMs) which re-
sult in state and transition explosion with more complex
systems. The mentioned approaches therefore often del-
egate detailed behavior to external descriptions which re-
sults in the loss of the integrated characteristics. In addi-
tion, it elicits inconsistencies between the architecture
and behavior models and prevents the consideration of
lower abstraction layers.

An approach which faces this challenge is presented
in [8] by synthesizing and executing a cross-domain sim-
ulation from static EEA descriptions designed in
PREEvision. In this work we extend that approach to sup-
port both actor-oriented and state chart behavior model-
ing to address complex reactive systems.

Concerning state charts the UML subset provided by
PREEvision is leveraged and enhanced to support ex-
tended state machines to further handle complexity.

SNE 29(2), 2019, 73 - 78, DOI: 10.11128/sne.29.tn.10472
Received: February 20, 2019 (Selected ASIM GMMS/STS 2019
Postconf. Publ.), Accepted: March 31, 2019
SNE - Simulation Notes Europe, ARGESIM Publisher Vienna,
ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

 Bucher et al.

 74 SNE 29(2) – 6/2019

T N
In addition, cross-layer behavior specifications and

further EEA properties from lower abstraction layers are
synthesized into a unified Ptolemy II (PtII) simulation
model. A concept to feed back the simulation data into
PREEvision is extended and completes the contributions.

1 Background
The overall baseline approach as proposed in [8] and the
extensions addressed in this work are shown in Figure 1.
Starting point is a data model e.g., as provided by
PREEvision, which captures all relevant abstraction lay-
ers of an EEA. For modeling executable behavior inte-
grated within the EEA model, a new layer called Behav-
ioral Logical Architecture (BLA) is introduced that re-
fines the static logical blocks with detailed behavior by
reusing actors [14] from the PtII Actor Library. The li-
brary contains actors of the heterogeneous modeling and
simulation tool Ptolemy II [15] and is imported as a sep-
arate library of logical block types into PREEvision.
These block types are used to instantiate actors at the
BLA layer. In combination with mappings from the LA
layer to lower layers they provide the connection of the
behavioral blocks of the BLA to domain-specific infor-
mation at lower layers enabling the cross-domain simu-
lation of the underlying network communication or even
electric circuits [16] in an aspect-oriented manner. A var-
iant-sensitive synthesis is also implemented supporting
the analysis of architecture variants [17].

2 Concepts
To amend the baseline actor-oriented modeling with
state-based behavior we leverage the newly added capa-
bility of PREEvision v9.0 to refine architecture artifacts
with state charts across several layers including the logi-
cal architecture and components of the hardware layer
such as ECUs and internal processing units.

The basic principle is to annotate a state chart as child
artifact to an architecture artifact. Dependent on the ab-
straction layer, the interfaces to the state chart comprise
different data providers and consumers. At the logical ar-
chitecture, for instance, communication between func-
tions is done via typed ports, which have attached an in-
terface. The interface specifies the actual data exchanged
e.g., in terms of data elements. This follows the AU-
TOSAR standard.

Figure 1: Approach for cross-domain simulation

synthesis of model-based EEAs [8] and new
extensions to combine cross-layer behavior
specifications using UML state charts and
actor-oriented library components.

The specified data elements of each port are then availa-
ble in the state chart of the function to use them in guard
and action expressions. The modeling is illustrated in
Figure 2. A similar modeling approach applies for hard-
ware components except that state charts are annotated at
instance level and data providers differ from data ele-
ments.

Figure 2: Modeling principle to refine logical function

types with state charts. Communication is
done via data elements.

2.1 Extended State Machines
A downside of the current state chart modeling capability
is the missing support of extended state machines, which
can significantly reduce the complexity [15]. Therefore,
we propose a meta-model extension by extended state
variables. This is indicated in Figure 2 by the composi-
tion of the state chart with the proposed meta-class MEx-
tendedStateVariable.

 Bucher et al.

 SNE 29(2) – 6/2019 75

T N
2.2 Combining Actor-oriented and State

Chart Behavior Simulation
In the baseline approach in Figure 1, behavior is specified
by mapping an atomic logical function instance to a com-
posite building block at the BLA layer. Executable actors
are instantiated within that building block. Port prototype
mappings are generated once to ensure the consistency
between the interfaces of the atomic logical function and
its refinement building block.

State charts are simulated using modal models
[15,18] in PtII. Modal models basically represent a spe-
cialized composite actor containing a hierarchical state
machine governed by an FSMDirector. Each state can
contain another state machine refinement or even an ac-
tor-oriented sub-model following a distinct execution se-
mantics i.e., a different model of computation (called Di-
rector in PtII). Modal models are also suitable to deter-
ministically simulate hybrid systems [15]. Data exchange
between modal models is done via ports. Therefore, a
building block of type ModalModel is used to identify
logical functions which contain a state chart description.

Additional data element sub-mappings are generated
once in order to respect the interfaces of the logical func-
tions and to connect the simulation model counterparts
during simulation model synthesis. Each port of a build-
ing block represents a data element. See Figure 3.

Figure 3: Generation of BLA building block stubs and

mappings. State charts are encapsulated in a
building block of type ModalModel.

2.3 Cross-Layer Behavioral Synthesis
To allow the simulation of cross-layer behavior we lev-
erage the state chart refinements of hardware compo-
nents. However, the link to higher layers i.e., the logical
layer, is missing.

Therefore, we propose to use AUTOSAR-oriented
BasisServiceInterfaces on logical ports in order to
provide additional data elements or operations to com-
municate with state charts of mapped hardware compo-
nents. In addition, we propose to reference ECU attrib-
utes as state chart variables. For instance, this enables the
modeling and simulation of mode-based cross-layer be-
havior, where functions can request a certain operating
mode of the ECU and only perform their functional be-
havior if the ECU responds it is ready to run. In order to
allow spontaneous FSMs [15], which not only react on
input events, a timeout guard expression (taken from
PtII) is introduced e.g., to model the startup time of the
ECU. A cross-layer model is exemplarily shown in Fig-
ure 4.

Finally, we propose the mapping of current consump-
tion descriptions in terms of PREEvision’s meta-class
MCurrentDescriptorType on state transitions of hard-
ware states. Together with the timed behavior, a mode-
based current consumption can be simulated.

In the synthesized PtII model, the function and hard-
ware state charts are encapsulated in distinct modal mod-
els communicating via ports which represent the basis
service interfaces. An additional output port is generated
for the current consumption of the ECU.
Hardware Network. In [8], network communication
between functions such as CAN is traced based on their
mapping to the hardware and is considered in the result-
ing simulation in an aspect-oriented way. Together with
the state chart refinement of ECUs and processing units,
it is possible to automatically include additional behavior
along the communication path, such as gateways, by cas-
caded aspect-oriented simulations. Typically gateways
have no logical function counterpart, since they are de-
pendent on the mapping.

2.4 Simulation Data Feedback
To make use of the simulated results in PREEvision in
order to perform further analysis and to relate the results
with the original EEA model artifacts, a feedback ap-
proach is applied. The approach relies on OSGi [19] and
is further described in [17]. We reuse and extend the ap-
proach by implementing a listener for modal model con-
trollers focusing on the feedback of information about the
simulated state machines such as timestamps, current
state, previous state, output and variable actions.

 Bucher et al.

 76 SNE 29(2) – 6/2019

T N

Figure 5: Cross-layer behavior specification using basis

service interfaces on logical ports to
communicate with the mapped hardware
component state chart via additional data
elements or operations.

2.5 Transformation Rules
In Table 1 the basic transformation rules between
PREEvision’s UML state chart subset and modal model
artifacts in PtII are summarized.

Note that each generated PtII artifact is suffixed by
the UUID of the original EEA model artifact in order to
uniquely relate the artifacts and avoid name conflicts on
PtII side.

3 Use Case Results
In this chapter, the concepts are demonstrated by means
of an Adaptive Cruise Control (ACC) application pre-
sented in [8] which is enhanced based on Figure 4. The
logical function architecture is shown in Figure 5.

UML State Chart Subset Ptolemy II Modal Models

simple state, choice &
junction pseudo-state

state

initial pseudo-state state with property isInitialState

final state state with property isFinalState

composite state state machine refinement state

orthogonal state default refinement state contain-
ing a discrete-event director and a
modal model composite for each
parallel region. Data dependencies
between regions are analyzed and
communicated via ports between
the affected modal models. [18]

deep history state history transition

state transition ordinary transition

guard condition guard expression

IO/variable action output/set action expression

Table 1: Basic transformation rules between
PREEvision’s UML state chart subset and
PtII modal models.

The ACC_Testbench generates the stimuli for the vehicle
speed and radar speed sensor functions as well as for the
ACC controller in a closed-loop fashion based on the cal-
culated acceleration of the ACC controller. The stimuli
values are generated with a sample period of 100 . The
initial speeds and the distance are set to 15 / and 190
respectively. Each of the functions offer BasisSer-
viceInterfaces to request or retrieve a certain operat-
ing mode of the state chart of their mapped hardware
component. The corresponding BLA building block
stubs and mappings are generated according to Figure 3.

Figure 4: Logical function architecture of the ACC application. Each of the logical functions except for ACC_Testbench is

refined by a state chart. Their mapping to the hardware layer is illustrated by the annotated text boxes. The
behavior of the ACC_Testbench is modelled actor-oriented at the BLA layer and is not mapped to the hardware.
Thus, a combined actor-oriented and state chart modeling is applied.

ACC_Controller

 Bucher et al.

SNE 29(2) – 6/2019 77

T N
3.1 State Charts
The most important state charts are the one of the ACC
controller shown in Figure 6 and its corresponding ECU
state chart realizing an ECU Manager depicted in Fig-
ure 7. The remaining state charts of the sensor and actu-
ator functions and their hardware are modeled simple.
They only forward/retrieve the speed/acceleration values
and request the sensors/actuator to run as long as they re-
ceive values. The ACC is calculating the acceleration
only if the ECU is ready to run. The orthogonal state op-
erate limits the calculated acceleration by the state vari-
ables aMin and aMax. In the freeRoad state the radar de-
tects no vehicle, the own speed reached the desired speed
and the sleep mode is requested. A wakeup is triggered
when the radar detects a new vehicle. A shutdown is re-
quested when the vehicle stands still.

Figure 6: ACC controller state chart. Some transition ac-
tions are omitted for space reasons.

Figure 7: ACC ECU state chart realizing an ECU Manager
oriented on the AUTOSAR fixed ECU Manager.
Transitions to the yellow states have mapped a
current descriptor type in order to simulate a
mode-based current consumption.

The ACC ECU state chart represents the different op-
erating modes which can be requested by the ACC con-
troller state chart and sends back the current status via the
BasisServiceInterfaces. In addition, the startup- and
provision time attributes of the ECU (50 and 200) are
referenced as well as a wakeupTime state variable (10)
which are used as timeouts. Provision time is the time a
component stays active after its shutdown is requested.

3.2 Simulation Results
Figure 8 shows the PtII plot of the ACC simulation. Until 250 the vehicle is following the leading vehicle. Then
the leading vehicle disappears and the ACC accelerates
to its desired speed at free road. At 300 a new vehicle is
detected at a distance of 200 . At 350 the vehicle is
decelerating until it stands still at 380 . At 300 the ac-
celeration is limited to aMin.

Figure 9 shows the mode-based current consumption
of the hardware components at the key time-points with
synthetic values.

Figure 8: ACC simulation showing the speed of the lead-
ing vehicle (red) and the ego vehicle (green) in / as well as the acceleration calculated by
the ACC (blue) in / .

Figure 9: Current consumption of the mapped ACC
hardware dependent on the operating mode.
Created based on the fed back simulation data
which is written to a CSV file in PREEvision.

 Bucher et al.

 78 SNE 29(2) – 6/2019

T N
The sensors are operating until their shutdown. Until 50 the ACC ECU and Actuator are starting up before

they are ready to run. At 253.6 the vehicle has reached
its desired speed at free road and the ACC ECU goes to
sleep mode. At 300 it wakes up for 10 . At 380 the
vehicle stands still but all hardware components stay ac-
tive for the same provision time before they shutdown at 580 .
4 Conclusion
In this paper, we presented a set of concepts and their
evaluation by an ACC application to model and simulate
behavior of model-based EEAs in an integrated manner.
The key contribution is the combination of actor-oriented
and state chart based behavior across several abstraction
layers. This enables new possibilities to analyze model-
based EEAs in early development stages dependent on ar-
chitectural decisions and information.

Future work could include enhanced support of UML
state charts, the integration and consideration of behavior
at the AUTOSAR-compliant system software architec-
ture layer and envisioning their code generation.

References

[1] Schäuffele J, “E/E Architectural Design and
Optimization using PREEvision,” in SAE Technical
Paper 2016-01-0016, 2016. [Online].
https://doi.org/10.4271/2016-01-0016

[2] EAST-ADL Association. (2013) EAST-ADL Domain
Model Specification. [Online].
http://www.east-adl.info/Specification

[3] Matheis J, „Abstraktionsebenenübergreifende
Darstellung von Elektrik/Elektronik-Architekturen in
Kraftfahrzeugen zur Ableitung von Sicherheitszielen
nach ISO 26262,“ Karlsruhe Institute of Technology,
Ph.D. thesis ISBN: 978-3-8322-8968-3, 2010.

[4] Vector Informatik GmbH, “PREEvision v9.0
Manual,” 2018.

[5] Mentor Graphics. (2018, Oct.) Volcano™ Vehicle
Systems Architect. [Online].
https://www.mentor.com/products/vnd/autosar-
products/volcano-system-architect

[6] AUTOSAR Consortium. (2018) AUTOSAR 4.4
(Automotive Open System Architecture)
Specifications. [Online]. http://www.autosar.org

[7] SAE International, “SAE Architecture Analysis and
Design Language (AADL) Annex Volume 2: Annex
B: Data Modeling Annex, Annex D: Behavior Model
Annex, Annex F: ARINC653 Annex,” USA,
Standard AS5506/2, Jan. 2011.

[8] Bucher H, Reichmann C, Becker J. “An Integrated
Approach Enabling Cross-Domain Simulation of
Model-Based E/E-Architectures,” in SAE Technical
Paper 2017-01-0006, Mar. 2017. [Online].
http://papers.sae.org/2017-01-0006/

[9] Weissnegger R et al. “Simulation-based Verification
of Automotive Safety-critical Systems Based on
EAST-ADL,” Procedia Computer Science, vol. 83,
pp. 245-252, 2016.

[10] Marinescu R et al. “Analyzing Industrial
Architectural Models by Simulation and Model-
Checking,” in Formal Techniques for Safety-Critical
Systems.: Springer International Publishing, 2015,
vol. 476, pp. 189-205.

[11] MAENAD Consortium, “MAENAD Analysis
Workbench,” Deliverable D5.2.1 V4.0 2014.
[Online]. http://www.maenad.eu/public/Deliverables

[12] Lasnier G, Pautet L, Hugues J, Wrage L. “An
Implementation of the Behavior Annex in the
AADL-Toolset Osate2,” in 2011 16th IEEE
International Conference on Engineering of Complex
Computer Systems, Apr. 2011, pp. 332-337.

[13] Larsen PG et al. “Integrated Tool Chain for Model-
Based Design of Cyber-Physical Systems,” in The
14th Overture Workshop: Towards Analytical Tool
Chains, vol. 4/28, Nov. 2016, pp. 63-79.

[14] Lee EA, Neuendorffer S, Wirthlin MJ. “Actor-
Oriented Design Of Embedded Hardware And
Software Systems,” Journal of Circuits, Systems, and
Computers, vol. 12, pp. 231-260, 2003.

[15] Claudius Ptolemaeus, System Design, Modeling, and
Simulation using Ptolemy II.: Ptolemy.org, 2014.
[Online]. http://ptolemy.org/books/Systems

[16] Bucher H, Becker J. “Electric Circuit- and Wiring
Harness-Aware Behavioral Simulation of Model-
Based E/E-Architectures at System Level,” in 2018
IEEE International Systems Engineering Symposium
(ISSE), 2018, pp. 1-8.

[17] Bucher H, Neubauer K, Becker J. “Automated
Assessment of E/E-Architecture Variants using an
Integrated Model- and Simulation-based Approach,”
in SAE Technical Paper 2019-01-0111, 2019.

[18] Lee EA, Tripakis S. “Modal Models in Ptolemy,” in
Proceedings of the 3rd International Workshop on
Equation-Based Object-Oriented Modeling
Languages and Tools, Oct. 2010, pp. 11-21.

[19] Wütherich G, Hartmann N, Kolb BJ, Lübken M. Die
OSGi-Service-Platform: eine Einführung mit Eclipse
Equinox, 1st ed.: dpunkt Verlag, 2008.

