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Abstract. Some discrete simulation models are too
large to be executed on a single processor; in other
cases, results might be required faster than a sequential
execution can provide them. Suchmodels are candidates
for parallelization. Here, models are distributed among
several processors, and are then executed with careful
synchronization.
This paper provides an introduction to the fundamen-
tals and methods of the parallel execution of simulation
models, with a focus onmodel-based parallelization. The
paper describes the two main classes of parallel simu-
lation methods, conservative and optimistic simulation,
their respective advantages and shortcomings. A sec-
ond focus is put on static and dynamic load balancing,
with a dynamic load balancing method first developed to
accelerate the simulation of transportation systems be-
ing introduced in some detail. In addition, the paper de-
scribes some typical applications of model-based paral-
lelization.

Introduction

Many discrete simulation models contain a certain de-

gree of inherent concurrency. For example, in the sim-

ulation of a light rail network the braking manoeuvres

of one vehicle in one region of the network would not

directly influence the passenger exchange of a different

vehicle in another region. The two vehicles can thus be

simulated independently of each other in the majority

of cases.

The goal of model-based parallelization is to exploit

that existing concurrency through parallel execution of

events that take place in different regions of the model

on a number of participating processors or processor

cores. The basic assumption is that these events can

often be executed independently of each other without

inducing communication between partial models. Dur-

ing the course of the execution, synchronization issues

may arise between these partial models. For example,

if a vehicle entity leaves the partial model of one pro-

cessor it has to be sent to another processor and there

has to be integrated with the partial model already be-

ing executed.

This paper presents an introduction to background,

approaches, and techniques for the parallel execution of

simulation models, with a focus on model-based par-

allelization. It introduces a dynamic load balancing

method first developed for the efficient execution of

multimodal transportation models. The paper is espe-

cially addressed to students of the craft, and to prac-

titioners who might want to look beyond the GUI of

their usual modeling tools. While in many cases par-

allelization methods are hidden in the execution engine

of a simulation tool, some applications call for a more

hands-on approach. The fundamentals of parallel sim-

ulation are easily understood, and its methods are also

very powerful. Researchers, students, or practitioners

can utilize well-researched parallelization methods to

create fast simulation applications executing large mod-

els.

The paper continues by sharing some background

on the concepts and general approaches to parallel sim-

ulation (see Section 1), and then goes on to describe the

two main classes of model-based parallelization tech-

niques: conservative and optimistic methods (see Sec-

tion 2). Subsequently, static and dynamic load balanc-

ing approaches are described (see Section 3), followed

by an examination of some typical applications (see

Section 4). The paper closes with a summary of the

lessons learned and recommendations for further read-

ing (see Section 5).
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1 Background
Discrete simulation models consist of a set of entities

that represent physical or logical components of the ex-

amined system, including their behavior and relation-

ships to each other and their state changes over time.

In discrete simulation, a model changes its state at

discrete points in simulation time. Here, simulation

time – or model time – is the time that elapses from the

point of view of the simulated entities (see [1]). Simu-

lation time has to be distinguished from wallclock time,

the time elapsing in the real world while the simula-

tion run is executed. In many cases simulation models

are executed as fast as possible. In certain applications,

however, it is desirable to tie model execution to wall-

clock time, for example if a human has to react to the

changes in the model. This is referred to as real-time

execution or scaled real-time execution.

Simulation time can progress in fixed or variable in-

crements. In models with fixed time increments, the

model is executed by starting out from simulation time

tstart , iterating through steps i with a fixed model time

increment Δt – the model state can change at any of

these points tstart + i∗Δt in simulation time. The entities

communicate with each other via messages that might

be scheduled with a timestamp in the (model time) fu-

ture.

With models with a variable time step, simulation

time is incremented while processing simulation events.

These methods are often called event-based simulation

(see [1] or [25]). Each of these events has a timestamp

that marks the scheduled time of its occurrence, and of-

ten also an attribute that describes the type of the event

and various other fields such as a list of the intended re-

ceivers and the identity of the sending entity. The events

are managed in a Future Event List (FEL), a priority

queue that keeps all scheduled events sorted in ascend-

ing order of their timestamp. To execute the model,

the event with the least timestamp is pulled from the

FEL, the simulation time is advanced to its timestamp,

and the event is processed – which usually changes the

model state. New events can be scheduled during pro-

cessing; they are then inserted into the FEL.

In order to accelerate model execution, computation

can be distributed over parallel processes, for example

on several processors or, more and more often, several

cores of the same processor. Here, usual goals are to

execute the model as fast as possible or in (scaled) real

time. An execution that is too fast for a desired real-

time binding can be slowed down to the desired speed

without any problems.

A central condition for such a parallel execution is

that a simulation run in parallel has to deliver identi-

cal results as a sequential execution of the same model;

the simulation technique must not influence the model

behavior (see [6] or [19]).

The central measure for the efficiency of a paral-

lelization method is the speedup. That value determines

the ratio of the runtime of the sequential execution of a

model to the time needed for parallel execution. The

aim of parallel execution is to achieve the highest pos-

sible speedup with a given number of processors, or,

more precise, given computational resources.

A number of vastly different approaches to paral-

lel simulation exist. For an in-depth discussion of the

methods described below – and more – see [6]. Model-
based parallelization methods, also called space-based

parallelization, aim to exploit the parallelism inherent in

the model. For this purpose, the model is decomposed

into partial models, which are then distributed on the

available processors for execution. The different partial

models communicate via messages encapsulating simu-

lation events or serialized entities that are sent over the

shared cache or the connecting network. The proces-

sors p1 to pk from the set of processors P each execute

a specific partial model – they can be seen as the nodes

of a graph, with the messages sent between processors

inducing edges.

Any model-based parallelization method has to keep

the execution of partial models carefully synchronized.

Here, the local causality constraint prescribes that each

model entity has to process simulation events in a non-

descending order regarding their timestamps. If the lo-

cal causality constraint is not met, the simulation results

might be invalidated by causality errors. For example,

lets assume that in a light rail simulation a processor p1

has processed an operational day up until a simulation

time of 12:30, while a processor p2 has only arrived at

12:05. Now a vehicle entity leaves the partial model of

p2. That processor sends a message to p1 and trans-

fers the vehicle data for further simulation from 12:06.

From the point of view of p1 that message comes from

24 simulation minutes in the past. During these 24 sim-

ulated minutes p1 might have already allocated the re-

sources “rightfully” occupied by the vehicle to other en-

tities. The transferred message can not be processed

sensibly; the simulation has to terminate with an error

message.
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A central concept is the lookahead (see [5] or [13]):

If an entity or a partial model is currently processing

events at a simulation time t, then a lookahead of L
guarantees that no additional simulation events will be

generated with a timestamp lesser than t +L (see [6]).

For models with a fixed time increment the lookahead

corresponds of that increment and is therefore always

greater than zero. For event-based models the looka-

head usually changes in the course of the simulation;

under certain circumstances a lookahead value of zero

is possible (see Section 2.1).

2 Model-based Parallelization
Model-based parallelization methods can be catego-

rized based on the way the causality constraint is kept:

With conservative methods, causality is guaranteed at

all times by only processing simulation events that are

explicitly considered safe. With optimistic methods,

each entity indiscriminately executes events as quickly

as possible. In case a processor receives an event with

a timestamp that lies in the past from its local point of

view, it rejects corresponding parts of the already exe-

cuted simulation and restores causality by recalculating

them from the timestamp of that event on.

In the following, a selection of important conser-

vative and optimistic parallelization methods are de-

scribed.

2.1 Conservative Parallelization Methods

Two of the most important conservative parallelization

methods are synchronization with null messages and

synchronous execution. Both methods – and more –

are described in great detail in [6].

Synchronizationwith nullmessages. Synchro-

nization with null messages was independently devel-

oped as the first conservative parallelization method for

event-based simulations by Bryant (see [2]) and Chandy

and Misra (see [3]) and explained in detail by Fujimoto

(see [6]). Here, the processors p1 to pk are regarded as

nodes of a graph. In that graph, if a processor pi sends

messages to a processor p j in the course of the simula-

tion run, a directed edge exists between these nodes.

The method assumes that a processor pi sends mes-

sages to a processor p j in order of non-decreasing

timestamps. A processor stores incoming messages in

a series of FIFO queues, each assigned to an incoming

edge of the processor graph. It follows that messages

are present in each of these queues in non-decreasing

order. In a model with variable time progress, messages

or events that stay local on one processor are managed

in a separate priority queue.

A message with timestamp t is declared secure if

there is at least one message with a timestamp not lower

than t at the head of each inbound queue. The pres-

ence of these messages means that no processor can

send messages that lie before t in simulation time. Now

the processor selects the message Nmin with the low-

est timestamp from all incoming queues and, if applica-

ble, the local event list. Since no message with a lower

timestamp can subsequently occur, the causality condi-

tion is maintained when Nmin is processed.

During event processing, further events with the

same or a greater timestamp are sent to neighboring

processors if necessary. At that point deadlocks can oc-

cur: If for every participating processor not all queues

at the incoming edges are filled with at least one mes-

sage, each processor waits for messages from the other

processors to arrive (see Figure 1). Therefore, no events

can be declared safe – the simulation is blocked.

To solve this problem, Bryant (see [2]) and Chandy

and Misra (see [3]) suggest that each processor, after

processing a message, sends so-called null messages to

all neighboring processors. These messages are times-

tamped with the current simulation time plus the looka-

head value L of the processor.

The handling of null messages by the receiving pro-

cessor is the same as that of regular messages. However,

when processing a null message, no change is made

to the model state apart from advancing the simulation

time to its timestamp. Sending null messages during

each event processing ensures that messages are always

available in the FIFO queues – the development of a

deadlock is thus precluded.

The efficiency of the method largely depends on the

lookahead value: A small lookahead means that many

null messages have to be sent and processed. In addi-

tion, the model cannot contain any circles in the graph

with a lookahead of L = 0, otherwise deadlock situa-

tions become possible. Here, the processors involved

process only null messages and send (because of L = 0)

further null messages with the same timestamp to each

other. The simulation time never advances, the applica-

tion is caught in an endless loop.
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Figure 1: A deadlock occurs when each processor is waiting
for its neighbors to send messages; sending null
messages can solve this issue.

Synchronous execution. In synchronous execu-

tion (see [6]), each processor executes the events or sim-

ulation steps of a simulation time interval recognized as

safe and then enters a synchronization barrier. Here,

each processor waits for all other processors to com-

plete calculation. Then the next interval, now declared

safe, is processed. Thus, there is a defined point in wall-

clock time when all processors have finished calculat-

ing a certain simulation time interval and before any of

them starts calculating the next time interval.

To determine what events are safe to be executed,

the lookahead L(i) for a step i is used. While t(i)
is defined as the simulation time of the next unpro-

cessed message at processor p, L(i) is its local looka-

head value. The global lookahead tL is the minimum

value of t(i)+L(i) for all processors. All messages with

timestamps of up to tL are then declared safe.

The synchronization barrier can be implemented in

different ways. When synchronizing with tree barriers,

the processors are regarded as a balanced span tree, with

one processor being designated as a controller. A leaf

processor that has completed the calculation step and

now wants to enter the barrier sends a barrier message

to its parent node in the tree and then waits for a re-

sponse. An inner node that wants to enter the barrier

waits for messages from its daughter nodes. If these

are complete, it sends a barrier message to its parent

node and then waits for the response. When the con-

troller has finished calculating the interval and has re-

ceived barrier messages from all daughters, all the pro-

cessors have reached the barrier phase. To then leave

the barrier and initiate the next calculation phase, the

controller sends release messages to its daughters, who

in turn send them on to their daughters.

A special case of tree barriers is the so-called central

barrier. Here all processors are synchronized directly by

a controller. The disadvantage of the otherwise very ef-

ficient central barrier is the linear growth of the number

of messages that have to be processed by the controller,

leading to a bottleneck when a large number of proces-

sors is involved.

The synchronization messages can be utilized for

sending piggybacked data values, such as local looka-

head values. The method calls for no other prerequisites

than the presence of a positive lookahead for determin-

ing the size of the simulation time increments. In par-

ticular, there are no requirements for the connections

between the individual partial models, since the pres-

ence or fill level of FIFO queues need not be taken into

account.

2.2 Optimistic Parallelization Methods

The optimistic method Time Warp was first proposed

by Jefferson (see [11]) and is described in detail by Fu-

jimoto (see [6]). During the 1990s the method matured

with modifications that improve memory consumption

(see [22]) as well as reduce costly rollbacks (see [4] and

[23]). In Time Warp the parallelization tasks are divided

into a local and a global control mechanism. The work

carried out by the local mechanism takes place locally

on each processor – the processors can work largely in-

dependently of each other. The global mechanism per-

forms activities such as input, output, and garbage col-

lection, and requires coordination between the proces-

sors.

Local control mechanism. As with other event-

based methods, processors execute events from the lo-

cal Future Event List (FEL), and the state variables

of the model are changed if necessary. However, the

events are not simply discarded after processing, but

stored in another list, the Processed Event List (PEL).

If a message arrives from another processor whose

timestamp is greater than or equal to the current simu-

lation time of the local partial model, it is inserted into

the FEL and processed normally. If a straggler message

N arrives with a timestamp t lesser than the local simu-

lation time, the model has to be rolled back to its state at

time t – all state changes from this point on have to be

undone. Furthermore, the already processed events with

a timestamp greater than t have to be retrieved from the

PEL and inserted back into the FEL for reprocessing.

Message N is also inserted in the FEL.
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There are two general ways to perform this rollback:

In copy state saving, the values of all state variables are

saved before each event processing. If a straggler ar-

rives, the saved state with the corresponding timestamp

is copied back to the state variables – later changes are

discarded. With incremental state saving, a log entry

notes each change of a state variable. That log entry is

then put on a stack keeping a record of all changes.

It may not be enough to reset the local model state:

If invalidated messages were sent to other processors,

these messages have to be retrieved – or “unsent” – and

their effects have to be undone by the receiving proces-

sor. Time Warp uses so-called anti-messages for this

purpose. Each anti-message NA corresponds to exactly

one regular message N. When an anti-message arrives

at a processor, the corresponding regular message is au-

tomatically deleted from the corresponding data struc-

ture (FEL or PEL). The anti-message is also destroyed.

That mechanism elegantly undoes all invalidated

changes and restores causality, but also might lead to

a cascade of rollbacks and anti-messages.

Rollbacks do not affect the model state at a time less

than or equal to t, i.e. simulation results up to the simu-

lation time of the straggler are retained. It follows that

at least the processing of the event with the system-wide

least timestamp will not be cancelled. There is there-

fore a minimum simulation time that might be affected

by potential rollbacks – the state of the model before

that simulation time will never be invalidated.

Global control mechanism. The Global Virtual

Time GV Tt at a time t denotes the minimum times-

tamp of all unprocessed or partially processed events

across all processors involved at a time t. As already

described, no rollbacks can take place to times times

lesser than GV Tt .

When calculating GV Tt , messages must be taken

into account that have already been sent but not yet re-

ceived by the recipient. Since these transient messages

can potentially trigger a rollback and thus reduce the

local simulation time, the minimum of local simulation

times cannot simply be determined. As a remedy, a sim-

ple protocol can be used in which each recipient of a

message N confirms the reception to the sender. Until

this acknowledgement is received, the sender is respon-

sible for the message N and has to include it in the cal-

culation of the local minimum – afterwards N becomes

the responsibility of its receiver. This guarantees that at

any point in time the simulation time of N is included

in the calculation of GV Tt .

The value of GV Tt is used for a number of adminis-

trative tasks, for example the collection of fossil states:

backup copies older than it can safely be deleted. As in-

put/output operations generally cannot be undone, sim-

ulation events can only order outputs when the current

GV Tt has advanced to at least the simulation time of

the event. A special case is the processing of program

and calculation errors: These can occur due to causality

errors, for example a negative number of trains in a de-

pot. The program cannot simply be terminated, as such

errors may be reversed by rollbacks.

2.3 Comparison

The best method for the parallel execution of an indi-

vidual model is largely dependent on its specific prop-

erties; no single method is optimal for all applications

(as analyzed in detail in [6]).

Generally, conservative methods tend to be less

complex in structure (see [9] and [15]). They work with

only a single set of state variables, without the need to

manage backups. Since conservative methods only ex-

ecute events or time increments that are explicitly de-

clared safe – they are based on worst-case scenarios –,

they do not fully exploit the parallelization potential of

a model. Conservative methods can therefore be exces-

sively pessimistic. In general, the greater the lookahead

value, the more events can be processed in parallel, so

that a higher degree of model-inherent parallelism can

be exploited.

An advantage of optimistic methods is that even

models with a lookahead of zero can be efficiently ex-

ecuted without further restrictions. Parallel execution

is not hindered by all potential dependencies between

partial models, as is the case with conservative meth-

ods, but only by dependencies that actually occur in the

course of a run.

If these dependencies are high, or if the computa-

tional loads shift over time, for example resulting from

dynamically changing activities in the model, these

methods might behave too optimistically, so that a cas-

cade of miscalculations is carried out, that then have

to be taken back by complex rollback operations (see

[14]). To ensure causality, backups of the model state

are necessary for each occuring change. For activities

such as input/output, error handling, or memory man-

agement, for which the usual library functions can be

used in conservative methods, optimistic procedures re-

quire specifically implemented rollback-safe functions.
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In summary, optimistic methods tend to be more

complex than conservative methods. The lower over-

head of conservative methods has a positive effect on

performance, especially when the lookahead is known

– and ideally large in comparison to the event density.

However, if a lookahead value is not known or is very

low compared to the event density, optimistic methods

generally have performance advantages.

3 Load Balancing

Resulting from the typical dependencies in simulation

models, the speed of the execution is generally depen-

dent on the partial model that advances most slowly in

simulation time. It is therefore beneficial to incorpo-

rate a load balancing system into the simulation engine.

Such a system does not exclusively aim at high utiliza-

tion of the processor capacity, but also has to consider a

uniform advance in simulation time.

Load balancing schemes employed by parallel simu-

lation methods can be characterized as dynamic, static,

adaptive, non-adaptive, local, centralized, or hierarchi-

cal (see [16]): A static method estimates the load and

assigns partial models to processors in a preprocess-

ing step before the start of the simulation run, and thus

does not consider dynamic changes in the model activ-

ity. In contrast, a dynamic load balancing method con-

tinuously considers imbalances that develop from shifts

in the computational load and re-assigns partial models

to appropriate processors while executing the simula-

tion run. Adaptive methods consider fluctuations in the

available processor power originating from the demand

of dynamic processes belonging to third parties. In

inhomogeneous computer networks adaptive methods

also consider the dissimilar performance power of the

respective processors. A non-adaptive system ignores

those fluctuations and differences. In local methods, the

processors only exchange data with determined neigh-

borhoods and act on this local information, while cen-
tralized methods utilize a marked controller process to

whom the other processors report. Hierarchical meth-

ods usually organize communication in a tree topology.

A load balancing method used on a PC or laptop

computer should have static and dynamic components,

with the latter being also adaptive, and thus consider

both the changing computational load of the models,

and the changing availability of resources on a non-

exclusively used machine. A centralized method is

usually simpler to implement and quite adequate for a

system with only eight to sixteen processor cores (see

[27]); if a method is targeted at a massive parallel sys-

tem it should avoid a potential bottleneck by utilizing a

hierarchical or local scheme.

3.1 Static Load Balancing

At the start of a simulation run, the model entities

should be assigned to the participating processors in a

way that ensures a balanced load. As a second objec-

tive to optimally using the computational potential of

the processors, the communication load, resulting from

sending and receiving messages from one processor to

another, shall be as low as possible. Without further

knowledge of model specifics, the static load balancing

mechanism uses the number of edges between model

partitions as an indicator for communication load. It

therefore aims to distribute the model in a way that

keeps the number of inter-partition edges at a minu-

mum.

In literature, the decomposition of a graph G(V,E)
with n = |V | nodes into k components of simular size is

known as the GRAPH PARTITION problem. GRAPH

PARTITION is NP complete (see [10]), and can thus –

in case P �=NP holds – not be solved efficiently. For the

parallelization of simulation models an exact solution is

not necessary, especially since a dynamic change of the

load in the course of a simulation run would quickly

destroy any optimum static load balance (see [24]).

Kernighan and Lin (see [12]) describe a simple

heuristic method suitable for static load balancing. The

method starts out from a given partition where all par-

tial models have the same number of nodes (give or take

one) – for many models that may be a simple geograph-

ical breakdown. The method then iteratively improves

the communication load using a hill climbing algorithm

(see [18]).

Kernighan and Lin first describe a method to decom-

pose a graph into two partitions K1 and K2. Starting out

from a given initial partition the method computes for

each pair of nodes (vi,v j) with vi ∈ K1 and v j ∈ K2,

the impact of a potential movement of vi to K2 and v j
to K1 on the number of inter-partition edges. In case

an improvement is possible, the nodes are moved ac-

cordingly. The method iterates as long as additional

improvements are possible, and thus until a local op-

timum is reached. It has a computational complexity of

N(n2).
The described method is then extended to disect a

graph into k > 2 partitions: To that effect each pair Ki
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and Kj out of the k partitions are locally optimized us-

ing the k = 2 method. Usually several iterations are

executed, so that the simple method is run e ∗ (k− 1) ∗
(k− 2) = O(k2) times. That results in a computational

complexity of O(k2 ∗ (n/k)2) = O(n2) for k partitions

with n/k nodes – the method is thus independent of the

number of participating processors. Kernighan and Lin

empirically determine that after two iterations of their

method approx. 95% of the potential gain has been

reached.

3.2 Dynamic Load Balancing

In many models the majority of inter-entity dependen-

cies are regional in nature: most of the time entities

interact with their neighbors, only rarely do they send

messages to far away regions of the model. Based on

that thought dynamic load balancing generally has two

aims:

• ensuring that all participating processors progress

uniformly in simulation time by computing loads

adequate to their respective performance, and

• keeping the communication load between the pro-

cessors as low as possible by exploiting regional

dependencies in the model.

Generally, the processors perform the load balancing in

three steps: load measuring: each processor pi deter-

mines its own load and communicates the results to the

other processors; load evaluation: each processor pi de-

termines whether any model nodes shall be migrated to

adjacent processors and, if so, what nodes shall be mi-

grated to what processor p j; and load migration: the

model nodes are encapsulated as messages and sent to

adjacent processors.

The dynamic load balancing mechanism described

here has been first developed for the parallel simulation

of transit systems as part of a conservative, synchronous

execution engine (see [24] and [27]).

Measuring loads. To be able to employ effective

countermeasures against overload or underload the load

of individual processors has to be measured in regu-

lar intervals. In conservative parallelization that can be

achieved for example as part of the synchronization bar-

rier, in optimistic methods as part of the local control

mechanism. The following describes a comparatively

simple way to measure load as part of the synchroniza-

tion barrier that also integrates the available individual

performance of a processor – including its change over

time, for example through external user or system pro-

cesses (see [27]).

Each processor p ∈ P measures its load lp(i) at time

t(i) when all processors have completed their computa-

tions regarding simulation step i (see Figure 2). By uti-

lizing the timer functions of the operating system each

processor p measures the model-dependent processing

time tm(p, i) it needs to execute the simulation step, and

the duration of synchronization time ts(p, i) that elapses

between the completion of the execution and t(i). The

load lp(i) of the processor at step i is now defined as

lp(i) =
tm(p, i)

tm(p, i)+ ts(p, i)
(1)

The still available capacity that was wasted as idle

time can be determined as

fp(i) =
ts(p, i)

tm(p, i)+ ts(p, i)
(2)

The total time tg(i) used to execute simulation step

i is now composed of the processing time, the synchro-

nization time and the communcation time tc(p, i) used

to load balancing and other administrative work (see

Equation 3). The values of tg(i) are equal for all p ∈ P.

tg(i) = tm(p, i)+ ts(p, i)+ tc(p, i) (3)

Based on local load data alone a value of lp(i) near

1 – and thus a synchronization time ls(p, i) near 0 – can

signal either an optimum load near capacity or a bot-

tleneck caused by overload. To be able to discern, the

load data of the other processors in P has to be included.

That data basically consists of two numbers that can be

exchanged as part of the synchronization process.

The load measurement based on ts(p, i) takes into

account internal and external disturbances, it considers

both the progress of simulation time (which in the de-

scribed, simple case is fixed) and the change of avail-

able computing power over time. Based on that load

measurement method a dynamic and adaptive load eval-

uation can be performed.

Evaluating loads. During the load evaluation step,

each processor p has to decide whether load balancing

has to be performed at all, and if so, how many and

which nodes are to be migrated.

Moving model nodes requires computing time and

network resources. To avoid over-reaction caused by

SNE 29(2) – 6/2019



70

Ullrich, Lückerath An Introduction to Parallel Discrete Event Simulation

Figure 2: Load measurement on a system with two

processors.

only short-term load imbalances, a smoothed value si
of the synchronization time ts(p, i) is considered (see

Equation 4) when deciding whether load balancing

should take place. Nodes are only migrated if si is be-

low a threshold value βi.

si = α ∗ ts(p, i)+(1−α)∗ si−1 (4)

An effective method has to prevent overcompensa-

tion occuring due to long network runtimes or from at-

tempting to balance even very small imbalances. To

avoid thrashing, i.e. nodes being repeatedly sent back

and forth between two processors, the value βi is not

constant, but changes over the course of the simulation

run between limits βmin and βmax: If load movements

have been performed in step i, the threshold value is de-

creased: βi+1 = max(βi/γ;βmin), with γ ≥ 1. Further

movements are therefore only performed if processor p
is heavily overloaded. If no load balancing has been

performed for a while, the threshold value is increased:

βi+1 = min(βi ∗ γ;βmax).

The number δ of to be migrated nodes from the set

of all nodes Vps managed by the sending processor ps is

determined as δ = max(1,�|Vps |∗ϕ�), with ϕ being the

ratio of nodes to be moved. Candidates are those nodes

that have at least one edge to a node v j managed by any

other processor p(v j) �= ps.

The method preferredly (priority 1) selects those

nodes vi for movement to a target processor p f (vi)
where the number of edges (vi,v j) to nodes v j with

p(v j) = p f (vi) is greater than the number of edges to

nodes vk with ps = p(vk). That processor p f (vi) =
p(v j) then is the target of a potential migration. In addi-

tion, any node vi that has at least one edge to a node v j
managed by a processor p(v j) �= ps not currently run-

ning at full capacity can also be moved (priority 2).

Moving a priority 1 node vi to processor p f (vi) re-

duces the number of edges between model partitions.

The load balancing method therefore does not only dis-

tribute the computing load evenly, but also reduces the

expected communication load.

Moving loads. The load movement itself takes

place during a defined time when all processors pause

model computation. For optimistic methods that would

be during the control mechanism, while conservative

methods using barriers typically utilize the synchro-

nization step. At that time changes can be made to the

model graph without having to regard ongoing simula-

tion calculations.

Here, each processor ps(v) encodes each model

node v to be relocated as a message Nv, then sends it

through the common cache or over the network to the

corresponding target processor p f (v) and, if necessary,

informs third processors that contain nodes with edges

to v of its relocation. Each received message Nv is de-

coded and converted to a new node v, which is inte-

grated into the partial model administrated by p f .

4 Applications
Since their inception, a large number of applications of

model-based parallelization and load balancing meth-

ods have been developed. A few typical applications

reported on during the years are presented below.

Simulation of Electronic Circuits. Schlagenhaft

et al. (see [21]) and Schlagenhaft (see [20]) describe

a method to parallelize the simulation of the dynamic

behavior of logical circuits. Their event-based model

is parallelized using the optimistic Time Warp method.

The executing processors are not exclusively available

to the application, but are also used by third-party pro-

cesses. The modeled logical circuits consist of switch-

ing elements between which dependencies in the form

of binary signals exist. In the model, each switching el-

ement is mapped as an entity; these are combined into

clusters by statically partitioning the model at the start

of the simulation run; the clusters are then joined to-

gether to form partitions that are then assigned to the

individual processors. These clusters are managed in-

dividually, with each cluster having its own FEL. Thus,

clusters can be moved during load balancing. A fur-

ther advantage of dividing the partitions into individual

clusters comes into play in case of a rollback: Here, the
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simulation does not have to be wholly discarded and

recalculated for the entire partition, but only for a few

clusters – or even only for a single one.

Schlagenhaft, et al. describe a dynamic and adap-

tive load balancing method to utilize the available re-

sources in the best possible way. The global control

mechanism is extended by a load balancing method that

can move individual clusters between partitions. Load

measurement, load evaluation and load shift are per-

formed as part of the Global Virtual Time GV Tt cal-

culation mechanism. When used on two processors and

with a load from external processes (see [21]), the load

balancing procedure improves the runtime by approx.

24%. Schlagenhaft (see [20]) reports on improvements

of up to 60% when using six processors in networks

with external loads.

Simulation of Social Interactions. Permalla

(see [17]) presents a parallel discrete event model of

the Naming Game, a sociological model of social in-

teractions and consensus building without a central co-

ordinating instance. They utilize the concurrency in-

herent in the model to implement an efficient applica-

tion based on a parallel discrete event simulation frame-

work. Analogous to the work of Schlagenhaft (see [20])

the individual entities are bundled into clusters, depend-

ing on the indidivual structure of the social network.

These clusters are hosted by a processor core each that

also administrates one FEL per cluster.

While the parallelization overhead resulting from

the step from one to two involved processors signifi-

cantly increases the runtime, Permalla reports a speedup

of 3.43 using 16 processor cores on a single machine.

Simulation of Transit Networks. Ullrich et al.

(see [24], [27], and [26]) utilize synchronized execu-

tion to parallelize transit simulation models. Their aim

is to support the decision-making of operator personnel

in the case of major network disturbances. Often the

operators only have a short time window at their dis-

posal, as decisions have to be taken in a matter of min-

utes or even seconds. To be effective, a simulation ap-

plication enabling the online examination of the impact

of potential counter-measures has to run fast, enabling

the quick rejection of strategies unsuitable for specific

situations. As the traffic operator’s desktop computers

that also run third-party user processes are the target

platform of the resulting simulation tool, the method

is specifically aimed at utilizing their small scale par-

allel processing capacity while being able to quickly

shift load to idle processor cores in case external user

processes claim resources. To address these issues, the

method applies a dynamic and adaptive load balancing

scheme analogous to the one described in Section 3.

Ullrich et al. report a speedup of 2.83 for four paral-

lel processor cores with a common cache. Connecting

machines over the network with its longer message de-

lays reduces the speedup to 2.25. While the dynamic

and adaptive load balancing mechanism only improves

run time by a few percent on machines exclusively

available to the transit simulation, it has a significantly

larger impact when used to compensate for ressources

assigned to third-party processes on machines concur-

rently used by other user processes (see [24]). Exper-

iments with artificial loads demonstrate that effect of

load balancing increases with the size of the model.

5 Conclusion

This paper presented an overview of basic concepts and

methods of the parallel execution of discrete simula-

tion models, with a focus on model-based paralleliza-

tion. Following a short description of the background

of parallel simulation, the two main classes of meth-

ods – conservative and optimistic execution – were pre-

sented, complemented by a description of typical static

and dynamic load balancing mechanisms. Finally, some

typical applications of model-based parallelization we

introduced.

Model-based parallelization is a comparatively sim-

ple, easy to understand, but also very powerful ap-

proach. It is especially useful to accelerate the exe-

cution of large models that have to yield results fast.

A wide array of applications has been reported on dur-

ing the last two decades, including communications and

electronics, disaster mitigation, health care, logistics,

supply management, and transportation.

For further, more detailed study a number of sources

authored by Richard Fujimoto, the unrivaled chronicler

of the field, can be recommended: His introductionary

book “Parallel and Distributed Simulation Systems”

(see [6]) covers most concepts described in this article

in great detail; it has aged exceedingly well. More re-

cent developments are shared in his tutorial papers for

the Winter Simulation Conference (see [7]). For stu-

dents of the development of parallel (and distributed)

simulation since the 1970s the historical overview “Par-

allel Discrete Event Simulation: the Making of a Field”

by Fujimoto et al. (see [8]) is warmly commended.
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