
39

S N E S O F T W A R E N O T E

MATLAB/Simulink’s Variant Manager
vs SESToPy

Christina Deatcu*, Thorsten Pawletta, Hendrik Folkerts

Hochschule Wismar - University of Applied Sciences, Research Group CEA, Philipp-Müller-Straße 14,
23966 Wismar, Germany; *christina.deatcu@hs-wismar.de

SNE 29(1), 2019, 39-43, DOI: 10.11128/sne.29.sw.10466

Received: March 11, 2019 (Selected ASIM GMMS/STS 2019

Conference Publication); Accepted; March 20, 2019

SNE - Simulation Notes Europe, ARGESIM Publisher Vienna,

ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Abstract. This paper describes how a complex case
study for variability modeling and simulation from the
documentation of MATLAB/Simulink can be remodeled
with the extended System Entity Structure and Model
Base (eSES/MB) approach using the Phython-based tool
SESToPy and the accompanying modelbuilder SESMoPy.

Introduction
Generally, variability modeling can be seen as an ap-

proach to describe more than one system configuration.

According to Capilla and Bosch [1], a software vari-

ability model has to describe the commonality and vari-

ability of a system at all stages of the software lifecy-

cle. In simulation engineering, the problem of variabil-

ity modeling is well known from the eighties. One of

the first high level approaches for variability modeling

in the design phase was introduced with the System En-

tity Structure (SES) by Zeigler in 1984 [2] and is con-

stantly enhanced until today [3] [4]. The SES is a high

level approach for variability modeling, particularly in

simulation engineering. An SES describes a set of sys-

tem configurations, i.e. different system structures and

parameter settings of system components. In combina-

tion with a Model Base (MB), executable models can

be generated from an SES.

A common tool for today’s engineering applications

is MATLAB/Simulink. It offers pragmatic solutions for

variability modeling and can be seen as a quasi-standard

in engineering. In the following section, the example of

a power window control system modeled with differ-

ent degrees of detail is introduced. This application is

taken from MATLAB/Simulink’s examples section and

can be found in the online documentation [5]. There-

fore, the Simulink model did not have to be created but

needed to be analyzed. Remodeling the example using

the extended System Entity Structure and Model Base

(eSES/MB) approach as described by Pawletta et al. [6]

was successfully done.

After the problem description in Section 1, Sections

2 and 3 describe the two modeling approaches using the

case study. Finally, a comparative evaluation is tried

regarding: (i) the modeling effort, (ii) the clarity, (iii)

the reusability, and (iv) the maintainability.

1 Problem Description

The passenger-side power window system of an auto-

mobile is modeled and simulated. The power window

can be controlled from both the driver’s and the passen-

ger’s side. Furthermore, closing should be stopped for

security reasons, in case an obstacle is detected during

upward movement of the window. The window shall be

lowered by some centimeters in this case.

The system is modeled with different degrees of de-

tail and with using different modeling concepts. From

this problem specification, multiple model structures

and configurations result, which are called variants. For

all variants, main model parts are two switches for con-

trolling the window, the control model, a process model

of the window, and a model for 3D-animation. The

occurrence of an obstacle can be controlled interac-

tively. Furthermore, some outputs are needed to observe

the window’s behavior. A complete description of the

Power Window Control Project example can be found

in MATLAB’s online documentation [5].

SNE 29(1) – 3/2019



40

Deatcu et al. Variant Manager vs SESToPy

2 Implementation with
Simulink’s Variant Manager

Simulink as one of the most popular tools for model-

based development provides special blocks for switch-

ing between model structures, the Variant Subsys-
tems Blocks. Project management is facilitated by the

Simulink Project capabilities. Anyhow, that means

that all variants need to be coded in only one model.

Models of this kind are called 150%-models. The

main Simulink model is depicted in Figure 1. The

model comprises five variant subsystems: (i) the

driver_switch, (ii) the passenger_switch, (iii) the model

for obstacle detection, which is a submodel of the

power_window_control_system model, (iv) the win-
dow_system model, and (v) the model window_world,

that offers optional 3D-animation.

Both switches can operate either in a mode called

normal mode or use a communication protocol (CP)

implementation. For obstacle detection (DOE) four

variants are available. The first variant is a simplis-

tic continuous system model (Cont), the second uses

power effects (PE), the third works with a visual-

ization (Vis), and the last provides support for real-

istic armature and the communication protocol (RA

CP). The window_system model subsystem (WS) com-

prises three variants, one simple continuous model

(Cont), one reproducing power effects and additional

3D-visualization options (PE Vis), and a third variant

where the realistic armature and the communication

protocol is included (RA CP). The two variants for the

window_world are a Simulink 3D animation or no ani-

mation at all.

Some of the variants use Stateflow, which is The

MathWorks’ implementation of state machines, and/or

physical modeling, i.e. Simscape, submodels. One im-

portant aspect when modeling the variants is, that the

number and names of input and output ports of variant

subsystems need to be the same, no matter which vari-

ant is chosen.

The active variant of the main model can be pro-

grammatically changed prior to simulation via the con-

trol variable CV. Table 1 lists the possible configu-

rations and corresponding values of the control vari-

able CV. Not all combinations of selected variants in

the subsystems are valid. If e.g. for the switches the

communication protocol variant is chosen, the active

variants of window_system and of the obstacle detec-

tion modeled in power_window_control_system need to

Switches DOE WS

CV=1 Normal Cont Cont

CV=2 Normal PE PE Vis

CV=3 Normal Vis PE Vis

CV=4 Normal RA CP RA CP

CV=5 CP RA CP RA CP

Table 1: Valid variants, control variable values and selected

submodels.

be the communication protocol implementations, too.

The variation in window_world is not addressed in Ta-

ble 1, because all configuration sample scripts in the

MATLAB/Simulink example implementation use the

Simulink_3D_Animation View variant, none uses the

No_View submodel.

To allow only valid variant combinations, the value

of CV is evaluated prior to simulation and mapped to

specific control variables, called variant control, asso-

ciated with the single variant subsystems. A variant

choice is active, when the associated variant control

evaluates to TRUE.

3 Implementation with the
eSES/MB Approach

For remodeling of the power window example, the

platform-independent and open source variability mod-

eling tools SESToPy [7] and SESMoPy were used.

These Python-based tools are developed by the re-

search group Computational Engineering and Automa-

tion (CEA) at Hochschule Wismar. Both tools and the

infrastructure they are used with are described in detail

in [8].

A family of systems, which in this context means

all possible variants, can be defined within a System

Entity Structure (SES) using SESToPy. An SES is rep-

resented by a directed acyclic graph with an amount of

entity nodes, descriptive nodes and attributes. For usage

with model generation, entity nodes are linked to basic

models organized in a Model Base (MB). Attributes of

an entity node correspond to the parameters of the be-

longing model component. The available three kinds of

descriptive nodes specify the relationship between en-

tities. Aspect nodes are used to define the composition

of entities, multi-aspect nodes are a special kind of as-

SNE 29(1) – 3/2019



41

Deatcu et al. Variant Manager vs SESToPy

Figure 1: Overall Simulink model structure according to The MathWorks [5].

pect nodes, where all component entities are of the same

type. The third descriptive node type, the specialization

node, describes the taxonomy of an entity.

Descriptive nodes can be seen as variation points of

an SES. Associated with the descriptive nodes, there are

rules which need to be evaluated when deriving one spe-

cific system variant. Each specific system variant com-

prises of a system structure and a parameter configura-

tion.

The process of deriving a system variant from an

SES is called pruning and the result is a Pruned En-

tity Structure (PES). The PES still is a directed acyclic

graph like the SES, but without any variation points.

Applying the flattening method to a PES, all inner nodes

are removed to obtain a Flattened Pruned Entity Struc-

ture (FPES). In conjunction with an MB, a fully con-

figured and executable model can be generated from an

FPES using the modelbuilder tool SESMoPy.

First step for remodeling the power window exam-

ple was to identify the basic models which then needed

to be organized in an MB. As the MB for the imple-

mentation of this example application the basic models

were structured in four libraries. In the libraries, pre-

configured blocks or submodels can be stored to reduce

parametrization effort when defining the SES.

The library LibSimple contains basic models which

are blocks copied directly from Simulink’s block library

to allow preconfiguration and to make the MB indepen-

dent from Simulink versions. The other three libraries

LibSwitches, LibCtrl, and LibWindowSys contain more

complex models and can be seen as user-defined li-

braries. Then all configuration variants were coded in

an SES tree according to the structure of The Math-

Works’ 150%-model. Figure 2 shows the SES tree mod-

eled in SESToPy.

The entire example and all variants are covered

except the 3D-animation variation in window_world.

The SES was developed step by step making use of

SESToPy’s capability to combine several SES trees

with the merge method [8]. The variation points are

expressed by the specialization nodes DriverSwitch-
SPEC, PassengerSwitch-SPEC, DOE-SPEC, and WS-
SPEC. For each specialization node, a specialization

rule is defined. During pruning the rules are evaluated

and it is decided, which of the child nodes will be part

of resulting PES. How models are connected is defined

with the coupling attribute at aspect and multi-aspect

nodes. Since couplings can be set dynamically here,

names and number of input and output ports are vari-

able.

SNE 29(1) – 3/2019



42

Deatcu et al. Variant Manager vs SESToPy

Figure 2: SES tree of the power window control system

family in SESToPy.

In analogy to the control variable CV and the vari-

ant control variables in The MathWorks’ 150%-model,

three SES variables are used. The SES variables

are driver_MODE, detect_O_E, and window_system.

Ranges of the SES variables and combinations among

them are restricted by defining semantic conditions.

Thus, only valid variants can be generated, i.e. the SES

can be pruned only to a valid PES. Figure 3 shows the

example of one possible PES. This PES corresponds to

the Simulink variant, where CV=1. After flattening,

model generation from the resulting FPES was finally

successfully done with SESMoPy.

4 Conclusion

Both approaches offer the possibility to model and sim-

ulate variability systems. A significant difference is

that with the Variant Manager interfaces of submodels

are static, while the eSES/MB approach allows to de-

fine variable interfaces and couplings. Regarding the

modeling effort the approaches do not differ consid-

Figure 3: Resulting PES for driver_MODE=1, detect_O_E=1, and

window_system=1.

erably, but modeling with Simulink’s Variant Manager

can be seen as a bottom-up procedure while modeling

with the eSES/MB approach is rather top-down. The

eSES/MB approach gives more clarity during the mod-

eling process, because the overall structure of the model

can be captured with one sight. If one uses Simulink’s

Model Explorer to determine the structure, one cannot

see, that and where a model contains variant subsystems

until one selects a variant subsystem block. The Vari-
ant Manager offers a view, where the overall structure

is displayed, but e.g. block properties cannot be seen

then. Information about the model is distributed over

several tools, which may confuse new users. A survey

among our students came to the result, that eSES/MB

is a lot easier to get started with. Reusability of models

is ensured for both approaches but may differ in the ef-

fort. The maintainability is closely associated with the

reusability. Admittedly, a final comparison is not pos-

sible on the basis of just one example. According to

the available findings, the eSES/MB approach appears

to be easier in use for beginners.

Acknowledgement

Main preliminary work is done by our student Paul

Buschow who analyzed the power window example and

remodeled it with the SES/MB Toolbox for MATLAB

for his bachelor thesis.

SNE 29(1) – 3/2019



43

Deatcu et al. Variant Manager vs SESToPy

References
[1] Capilla R, Bosch J. Binding Time and Evolution. In

Systems and Software Variability Management, edited

by R. Capilla, J. Bosch, and K. C. Kang, pp. 57-73.

Springer 2013, Berlin Heidelberg, Germany.

[2] Zeigler BP. Multifaceted Modelling and Discrete Event
Simulation. Cambridge 1984, Academic Press.

[3] Zeigler BP, Kim TG, Praehofer H. Theory of Modeling
and Simulation. 2nd ed. San Diego 2000, CA, USA,

Academic Press.

[4] Schmidt A. Variant Management in Modeling and
Simulation Using the SES/MB Framework. Ph.D. thesis,

Rostock University, Germany. Submitted 10/2018.

[5] The MathWorks Website Power Window Control
Project.
https://de.mathworks.com/help/simulink/examples/power-

window-control-project.html, accessed

2018-11-01.

[6] Pawletta T, Schmidt A, Durak U, Zeigler BP. A
Framework for the Metamodeling of Multivariant
Systems and Reactive Simulation Model Generation
and Execution. SNE - Simulation Notes Europe. 2018;

SNE 28(1): 11-18. doi: 10.11128/sne.28.tn.10402.

[7] SESToPy at GitHub.

https://github.com/hendrikfolkerts/sestopy, accessed

2019-03-07.

[8] Folkerts H, Pawletta T, Deatcu C. A Python Framework
for Model Specification and Automatic Model
Generation for Multiple Simulators. In: Proc. of

ASIM-Workshop STS/GMMS, Braunschweig,

Germany, 21./22., February, 2019, ARGESIM Report

57 & ASIM Mitteilung AM 170, ARGESIM Pub.

Vienna/Austria 2019, pp. 69 - 75. (ISBN

978-3-901608-06-3)

SNE 29(1) – 3/2019


