
33

S N E E D U C A T I O N A L N O T E

Probabilistic State Space Models –
A Theoretical Framework with Practical

Relevance
Peter Junglas*

Department of Engineering “Dr. Jürgen Ulderup”, PHWT Vechta/Diepholz, Schlesierstr. 13a,
49356 Diepholz, Germany; *peter@peter-junglas.de

SNE 29(1), 2019, 33-38, DOI: 10.11128/sne.29.en.10464

Received: March 12, 2019 (Selected ASIM GMMS/STS 2019

Conference Publication); Accepted; March 20, 2019

SNE - Simulation Notes Europe, ARGESIM Publisher Vienna,

ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Abstract. Corresponding to the modeling purpose dis-
crete models can be defined using very different ap-
proaches: For a precise description and thorough analy-
sis one of the many different mathematical descriptions
can be applied, while a working practitioner often will
describe a model within a concrete simulation environ-
ment. To demonstrate that mathematical models are
useful for practical purposes as well, we will present a
simple state-space model for a stochastic discrete sys-
tem. By means of a concrete example we will show, how
the use of this model makes the practical modeling pro-
cess much easier and leads to a more concise concrete
implementation.

Introduction

For the description of discrete systems a large number

of different mathematical models can be applied, rang-

ing from the simple finite state machine [1] to the com-

plex PDEVS formulation [2]. If one includes stochas-

tic processes, the models get more complicated, well-

known examples being the non-deterministic finite au-

tomaton [1] and the generalized semi-Markov process

[3].

Using mathematical models brings considerable

benefits: First of all it allows a complete and precise

specification of a model. Secondly the whole machin-

ery of mathematics can be used for the analysis of im-

portant properties of the models like the reachability of

states, reducibility of the state space or the existence of

equilibrium configurations [3].

These points are of a more theoretical nature, but

there is a third advantage, often overlooked, which is

important for the practitioner: A mathematical model

can simplify the actual modeling and implementation

in a concrete simulation environment considerably.

To illustrate this point we will present a pedagogi-

cal example and implement it in Simulink in a straight-

forward manner. This turns out to be more difficult

than expected and leads to a structurally complicated

solution. Next we will introduce a simple mathemat-

ical model using a probabilistic state space represen-

tation and show, how the reformulation of the exam-

ple problem using this model leads to a much simpler

and clearer implementation. Finally we will turn to the

soundness of the basis by having a quick look at the

mathematical status of some important simulation pro-

grams.

1 A Pedagogical Example

The model used in the following describes class sizes

of a three-year third level school and the number of

prospected school graduates. It is formulated in three

steps of increasing detail, based on an example from

[4] and extended here. The basic outputs are the class

sizes xi(k), i = 1 . . .3, at the beginning of year k and the

number of graduates xg(k).
As a first step we assume given constant rates Ri of

students, who have to repeat year i, and Di of dropouts

during year i. The model is then defined by

x1(k+1) = xin(k)+R1 x1(k) (1a)

x2(k+1) = (1−R1 −D1)x1(k)+R2 x2(k) (1b)

x3(k+1) = (1−R2 −D2)x2(k)+R3 x3(k) (1c)

xg(k+1) = (1−R3 −D3)x3(k) (1d)

SNE 29(1) – 3/2019



34

Junglas Probabilistic State Space Models – A Theoretical Framework with Practical Relevance

The resulting class sizes are non-integer, representing

“mean values” over several years.

In the next step the mean values are replaced by in-

teger random numbers following a binomial distribu-

tion B(n,p). In the defining equations the number of

repeaters and dropouts are replaced according to

Ri xi(k) → ξR,i ∼ B(xi(k),Ri)

Di xi(k) → ξD,i ∼ B(xi(k),Di)

leading to integer-valued class sizes.

Finally we add a rate Mi (i = 2,3) of pupils who

return to the previous class at midterm – a realistic

possibility at German schools. The concrete numbers

are again drawn from a Binomial distribution: ξM,i ∼
B(xi(k),Mi). This seemingly simple extension has dras-

tic consequences for the modeling, because it leads to

changes of the class sizes at half-integer years.

2 Straightforward
Implementation

The implementation of the simplest model in Simulink

can be done easily. One starts by introducing a generic

component for a class with one input i for new pupils

and three outputs: the class size c at the end of the

term, the number t of pupils transferred to the next class

and (for completeness) the number d of pupils that have

dropped out during the current year. It is built with one

UnitDelay block storing the class size x(k) and the

usual arithmetic blocks to implement the following re-

lations derived from the model equations (1)

x(k+1) = i(k)+Rx(k) (2a)

c(k) = i(k)+Rx(k) (2b)

t(k) = (1−R−D)x(k) (2c)

d(k) = Dx(k) (2d)

The complete model is then just a chain of three class

components (cf. Figure 1).

Figure 1: Simple school model.

To replace the fixed rates with binomial random

variables, one creates a component that outputs a ran-

dom value ξ ∼ B(n, p), where p is given as parameter,

while n comes from an input. This can be done with

a simple Matlab function. The corresponding class is

shown in Figure 2.

Figure 2: Class component with random values.

The real challenge is of course the inclusion of the

midterm downgrading. On the upper level this is simple

enough: Just add another output m to the class compo-

nent that gives the number of downgraders and route

it back to the input of the lower class (cf. Figure 3).

Due to the different timing of the values, m cannot sim-

ply be added to the normal input. But a TimeSwitch
that uses a standard Switch component to route its

two inputs according to the time (integer or half-integer)

solves this problem.

Figure 3: Complete school model.

The implementation of the new class component

starts by adding a binomial block for the downgraders,

whose output is routed back internally to another

Time-Switch. But the interesting question is of

course, how one realises the different sample times: The

class size changes every half year, the numbers of re-

peaters and dropouts at the beginning of a year and the

number of downgraders at midterm.

Apparently Simulink offers an easy solution: Set-

ting the SampleTime parameter of the UnitDelay
to 0.5 and adding two Rate Transition blocks,

SNE 29(1) – 3/2019



35

Junglas Probabilistic State Space Models – A Theoretical Framework with Practical Relevance

which convert the signal to sample times [1,0] and

[1, 0.5], should do the trick. The corresponding

class component is shown in Figure 4, where the col-

ors denote the different sample times.

Figure 4: Complete class model.

But running the model we get the error message

Determinism of data transfer between

’school3a/

Class 1/Unit Delay’ and ’school3a/Class

1/Sum3’ cannot be ensured because either or

both blocks have non-zero sample time offset.

You can resolve this by using a rate transition

block whose parameter ’Ensure deterministic

data transfer’ is unchecked

The suggested resolution actually leads to a work-

ing model: After unchecking the option Ensure
deterministic data transfer of the second

Rate Transition, the model runs without prob-

lems, and the results are as expected. But do we really

know what is going on here?

Changing the sample rate is generally a non-trivial

business, but a look at the relevant Simulink documen-

tation [5] shows that there are more troubles looming

around than one probably thought of, e. g. problems

with timing when using multicore cpus. Without a pre-

cise understanding of the Rate Transition block,

one cannot be sure that the Class component still

works, when it becomes part of a very complex model

– as real world components usually do.

The incremental modeling approach has lead into

murky ground, since the simple structure of the model

got lost on the way. Instead of relying on only half-

understood remedies, we will therefore start afresh, this

time with a solid foundation in the form of an underly-

ing mathematical model.

3 A Probabilistic State Space
Model

We start with the well-known state space description

z(k+1) = G(z(k),v(k)) (3a)

w(k) = H(z(k),v(k)) (3b)

The integer k is the number of the time step, while z de-

notes the internal state, v the external input and w the

output of the model, all possibly being vectors. This

model can be easily implemented in Simulink by us-

ing the generic model shown in Figure 5 and providing

components for the functions G(z,v) and H(z,v).

Figure 5: Generic state space model.

For the stochastic examples we have to enlarge the

state-space description. A common approach is the in-

clusion of an additional disturbance term d(k) [6]:

z(k+1) = G(z(k),v(k),d(k))

w(k) = H(z(k),v(k),d(k))

In our case the disturbance is stochastic and its distribu-

tion depends on the state z. Therefore we define a ran-

dom vector ξ (z) and the probabilistic state-space de-
scription

z(k+1) = G(z(k),v(k),ξ (z(k))) (4a)

w(k) = H(z(k),v(k),ξ (z(k))) (4b)

Again a generic Simulink implementation can be easily

given, cf. Figure 6. The additional component Random
computes the value of the random vector ξ (z) using the

current state vector z(k).

SNE 29(1) – 3/2019



36

Junglas Probabilistic State Space Models – A Theoretical Framework with Practical Relevance

Figure 6: Generic probabilistic state space model.

4 Theory-based
Implementation

We will now reimplement the example models using the

mathematical descriptions and corresponding generic

models defined above.

To reformulate the first model using eq. (3) we iden-

tify the state variable z with the class size x. Then

we rewrite the defining equations (2) by setting v ≡ i,
w ≡ (c, t,d)′ and get

G(z,v) = v+Rz

H(z,v) =

⎛
⎝ v+Rz

(1−R−D)z
Dz

⎞
⎠

The Simulink implementation of G and H is completely

trivial, but so was the version we started with. Therefore

we didn’t gain much here expect for making contact to

standard mathematical formulations.

For the implementation of the second model we now

use the probabilistic state-space description eq. (4) and

write

ξ (z)≡
(

ξR(z)
ξD(z)

)
∼

(
B(z,R)
B(z,D)

)

G(z,v,ξ ) = v+ξR

H(z,v,ξ ) =

⎛
⎝ v+ξR

z−ξR −ξD
ξD

⎞
⎠

The component Random simply combines the outputs

of two Binomial blocks into a vector.

The final example model is time-dependent, since

its behaviour changes between full and half years. The

standard trick here is to include the time as a compo-

nent of the state vector. In our case we only need to

know whether we are at full or half term. Therefore we

enlarge the state vector writing

z =
(

x
s

)
, z(0) =

(
0

0

)

where x is again the class size and the variable s is 0 or

1 at full resp. half term. Its state equation then simply

is

s(k+1) = 1− s(k).

Now we have to define the functions ξ (z), G(z,v,ξ ) and

H(z,v,ξ ), especially their behaviour at s = 0 and s =

1. First we define the random vector ξ = (ξR,ξD,ξM)′.
The first two components describe the numbers of re-

peaters and dropouts, so they should be 0 at midterm.

Correspondingly the number ξM of midterm down-

graders should be 0 at the beginning of a term. Thus

we have

ξR(z) ∼
{

B(x,R) | s = 0

0 | s = 1

ξD(z) ∼
{

B(x,D) | s = 0

0 | s = 1

ξM(z) ∼
{

0 | s = 0

B(x,M) | s = 1

Similarly we at arrive at the state equation

G1(z,v,ξ ) =

{
v+ξR | s = 0

v+ x−ξM | s = 1

G2(z,v,ξ ) = 1− s

Finally we enlarge the output vector to include the

downgraders writing w ≡ (c, t,d,m)′ and get the output

function

H1(z,v,ξ ) =

{
v+ξR | s = 0

v+ x−ξM | s = 1

H2(z,v,ξ ) =

{
x−ξR −ξD | s = 0

0 | s = 1

H3(z,v,ξ ) = ξD

H4(z,v,ξ ) = ξM

This formal approach guarantees a completely precise

problem specification, though it may seem a bit te-

SNE 29(1) – 3/2019



37

Junglas Probabilistic State Space Models – A Theoretical Framework with Practical Relevance

dious. On the upside the Simulink implementation is

now merely a matter of routine: We use the generic

model from Figure 6 adding a Demux block to get the

single output ports. Next we implement the equations

for Random (cf. Figure 7), State (cf. Figure 8) and

Output (along the same lines).

Figure 7: Implementation of the Random function.

Figure 8: Implementation of the State function.

The auxiliary component PhaseSwitch (cf. Fig-

ure 9) helps to implement the case switches. Instead of

a clock (as in the first implementation) it now simply

uses the value of the state variable s.

Figure 9: Implementation of PhaseSwitch.

The complete school model looks almost like be-

fore (cf. Figure 3), but the TimeSwitch components

at the class inputs are replaced by simple summation

blocks. This is possible now, since all signals have the

same sample time 0.5 and have meaningful values at all

times.

5 Mathematical Foundation of
Simulation Tools

Even if a model is based on a sound mathematical foun-

dation, its simulation results may be not, namely when

it is implemented using a simulation environment that

is itself not precisely defined. The Simulink blocks that

have been used in the above model, are very simple and

can be easily described mathematically. But already the

example of the Rate Transition block has shown

that this may not always be the case. Therefore lets fi-

nally have a quick look at the mathematical status of

some important tools.

While the model descriptions of continuous systems

often boil down to differential or differential-algebraic

equations, there is no generally accepted mathemati-

cal formulation of hybrid systems containing a few dis-

crete events or even complex state charts [7]. So even

the framework, in which to formulate a mathematical

model of a simulation tool, is still under construction.

For Stateflow [8], a Simulink add-on to model hi-

erarchical state machines and flowchart diagrams, the

situation has been described as follows:

However, Stateflow lacks any formal defini-

tion. The semantics of a program is given by

the result of its simulation within the Math-

works tools. This absence of formal defini-

tion is a big obstacle to static analysis, veri-

fication, or automatic test-cases generation of

Stateflow designs.[9]

Therefore the authors proceed to define operational [10]

and denotational [9] semantics for Stateflow in a for-

mal way. One immediate result is the insight that State-

flow is structurally different from other, seemingly very

similar formulations of statechart diagrams. A differ-

ent way to formalize a hybrid Simulink/Stateflow model

has been proposed in [11] with applications to the for-

mal verification of such complex systems as the guid-

ance control of a lunar lander or the control system of a

high-speed train.

Another simulation program in the Matlab/Simulink

tool chain is SimEvents [12] that implements the

transaction-based modeling paradigm for discrete event

systems. Earlier releases had some serious deficiencies

SNE 29(1) – 3/2019



38

Junglas Probabilistic State Space Models – A Theoretical Framework with Practical Relevance

[13], therefore Mathworks came up with a complete re-

design with version 5. A very interesting feature is that

the design is based on a unifying theoretical description

[14]. Unfortunately, Mathworks has chosen a new de-

sign instead of relying on the well-known PDEVS for-

malism [2] and doesn’t provide these internal specifica-

tions in general.

The discrete-events simulation program Arena [15]

from Rockwell Automation implements the process-

based modeling approach. It is based internally on

the simulation language SIMAN [16] and outputs a

SIMAN program corresponding to the graphically con-

structed model. This can be useful for verification pur-

poses, since the specification of the lower-level SIMAN

constructs is much easier to understand than the com-

plex blocks used on the upper level in Arena. And

one can go down further: In [17] an essential part of

the SIMAN language has been implemented using the

PDEVS formalism, thereby providing a sound mathe-

matical formulation of important parts of Arena.

6 Conclusions

Using a clear mathematical description of our exam-

ple problem we arrived at a precise specification that

could be implemented in Simulink in a completely rou-

tine way and is structurally simpler than the previous

“straightforward implementation”. But this idea only

works, if the underlying simulation tools are grounded

on sound mathematical models themselves. Though

some efforts have been made in this direction, a lot

needs to be done to reach a satisfying, well defined en-

vironment for our models.

The practitioner often works in the context of a

given very large model that changes in the course of

further development. He can’t be an expert of every in-

tricacy of the complex simulation tool he works with,

and very often has not enough time to go to the bot-

tom of every problem. This can lead to ad-hoc imple-

mentations that are potentially dangerous in the highly

dynamic larger context. The only way out is to use a

precise mathematical model – for the own problem as

well as for the relevant features of the simulation tool.

References

[1] Lunze J. Ereignisdiskrete Systeme. Berlin: de Gruyter,

3rd ed. 2017.

[2] Zeigler BP, Praehofer H, Kim TG. Theory of Modeling

and Simulation. San Diego: Academic Press, 2nd ed.

2000.

[3] Cassandras CG, Lafortune S. Introduction to Discrete
Event Systems. New York: Springer, 2nd ed. 2008.

[4] Junglas P. Praxis der Simulationstechnik.

Haan-Gruiten: Verlag Europa-Lehrmittel. 2014.

[5] The Mathworks. Handle Rate Transitions (Simulink
Coder). https://de.mathworks.com/help/
releases/R2018a/rtw/ug/
handle-rate-transitions.html.

[6] Ljung L, Glad T. Modeling and Identification of
Dynamic Systems. Lund: Studentlitteratur AB. 2016.

[7] Breitenecker F, Zauner G, Popper N, Judex F, Troch I.

Structure of Simulators for Hybrid Systems –

Development and New Concept of External and Internal

State Events. SNE Simulation News Europe. 2007;

17(2):39–48.

[8] The MathWorks. Stateflow: Model and simulate
decision logic using state machines and flow charts.

http://www.mathworks.com/products/
stateflow/.

[9] Hamon G. A denotational semantics for Stateflow. In:

Proceedings of the 5th ACM international conference
on Embedded software. ACM. 2005; pp. 164–172.

[10] Hamon G, Rushby J. An operational semantics for

Stateflow. International Journal on Software Tools for
Technology Transfer. 2007;9(5-6):447–456.

[11] Zhan N, Wang S, Zhao H. Formal Verification of
Simulink/Stateflow Diagrams: A Deductive Approach.

New York: Springer. 2017.

[12] Clune MI, Mosterman PJ, Cassandras CG. Discrete

Event and Hybrid System Simulation with SimEvents.

In: 8th International Workshop on Discrete Event
Systems. Ann Arbor. 2006; p. 386–387.

[13] Austermann L, Junglas P, Schmidt J, Tiekmann C.

Conceptional problems of transaction-based modeling

and its implementation in SimEvents 4.4. SNE
Simulation Notes Europe. 2017;27(3):137–142.

[14] Li W, Mani R, Mosterman PJ. Extensible discrete-event

simulation framework in SimEvents. In: Proc. 2016
Winter Simulation Conference. Arlington: IEEE. 2016;

pp. 943–954.

[15] W David Kelton NBZ Randall P Sadowski. Simulation
with Arena. New York: McGraw-Hill, 6th ed. 2015.

[16] Pegden CD, Shannon RE, Sadowski RP. Introduction to
Simulation using SIMAN. New York: McGraw-Hill,

2nd ed. 1995.

[17] Sanz V. Hybrid System Modeling using the Parallel

DEVS Formalism and the Modelica Language. Ph.D.

thesis, UNED Madrid, E.T.S.I. Informatica. 2010.

SNE 29(1) – 3/2019


