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Abstract. This Benchmark Study with educational key aspects
presents a spreadsheet-based approach to ARGESIM Bench-
mark C12 ‘Collision Processes in Rows of Spheres'. The process,
the collision of spheres in a row, is seen as discrete process with
a discrete time base, using two modelling approaches. A classi-
cal time-oriented approach describes the movement of the
spheres by a discrete-time model, the collisions are approxi-
mated within the discretization points. The event-oriented ap-
proach makes use of the explicit movement formula and deter-
mines a sequence of exact collision times and collision events.
Both approaches are implemented in the spreadsheet pro-
gram Excel, which is quite suitable for simulation of discrete
processes by means of recursive formulas. The implementa-
tion uses standard features of Excel, so that the provided
sources can be used in arbitrary spreadsheet programs. Inter-
estingly, with given medium accuracy and sufficient time reso-
lution, time-oriented and event-oriented results coincide. The
study also concentrates on educational aspects in giving a
sketch on the physical background of elastic and inelastic colli-
sions, in giving hints for proper implementation, and in provid-
ing background information on the selection of required exper-
iments with the model (benchmark tasks).

Introduction

The ARGESIM Benchmark C12 Collision Processes in
Rows of Spheres, defined in SNE in 1999 ([1]), is based on
a continuous mechanical model with collision events, but
mainly concentrates on discrete events within the move-
ment of the spheres — on the collision of the spheres and
tries to analyse the phenomena of collisions, from elastic
to plastic, or inelastic, resp. The tasks of the benchmark —
the experiments to be performed with the model — require

determination of collision sequences depending on the col-
lision type (between elastic and inelastic), boundary value
problems for initial hits, analysis of the number of colli-
sions and of final velocities of the spheres, and stochastic
analysis for stochastically modelled collisions strength.

A time-oriented and an event-oriented discrete model
approach is implemented in the spreadsheet program Ex-
cel, which is quite suitable for simulation of discrete pro-
cesses by means of recursive formulas (in case of time
constants of medium or large range). The implementation
uses standard features of the spreadsheet tool Excel, so
that the provided sources can be used in arbitrary spread-
sheet programs.

Section 1 sketches the model and necessary equa-
tions, formulas, and algorithms for movement and for
collisions. Section 2 presents two discrete model ap-
proaches — time-oriented and event-oriented — and the re-
spective implementation in Excel. Section 3 presents re-
sults of time domain analysis for specific collision types
in a comparative manner for the different implementation
approaches. Section 4 shows the results for a structural
collision analysis investigating the dependence of the
number of collisions and of the final velocities of the
spheres on the collisions coefficient. Section 5 sketches
the experiment description and the results for a boundary
value problem for the initial velocity, and the stochastic
analysis of collision strength with results for final veloc-
ities.

1 Model Equations

The model consists of four spheres in a row, with posi-
tions x;, velocities v;, (X;) and parameters mass m, diam-
eter d and distance a (Figure 1).

The first sphere starts moving, hits the second, both
move, the second hits the third, the first may re-hit the
second, the third hits the fourth sphere, etc.
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Figure 1: Spheres in a row — pendulum with infinite length.

With development of time, a sequence of collisions oc-
curs — from minimal three collisions up to a theoretically
infinite number of collisions n.. Time instants of colli-
sions are denoted by t& or tZ, resp. Movements of the
spheres after each collision follow a simple linear trans-
lational movement, i.e.

x()=vt+x, i=1.4e

¥;(t) =0, %;(t8) = vie, x:(0) = x;c (1

Here x; . and v; . = %; . denote initial position and initial
velocity after a collision: position is continued, and ve-
locity is changed if the i - th sphere is involved, otherwise
continued.

The effect of the collision is given by the momentum
conservation law for the impact of two masses (Figure 2):
the quality of impact is controlled by the collisions coef-
ficient e,0 < e < 1, or restitution coefficient resp., and
may range from elastic collision (collisions coefficient
ee; = 1), via the quasi-elastic collision (all spheres move
with same velocity), until the inelastic or plastic collision
(collisions coefficient e,,; = 0).

before collision collision in progress after collision

—e>Q@> @ «cr o>
m 'm, v ' m Yim v
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Figure 2: Central impact of two masses — momentum

conservation law.
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The change of velocities in case of collision at tg is
based on the momentum conservation law depending on
the collision (restitution) coefficient (Figure 2):

Vinew = v;(1-e) L

——— Wi = vit1)

Vil +e)—— (v, —vy1) ()

Vitinew = S
L L

In order to avoid small faulty differences, relative quan-

tities y; =X — % —d,j=1,...3, ¥ =X — X =
Vi1 — v; have to be used as further variables.

The process starts with an active hit of the first sphere
with an initial velocity v:

Vie= X1 =g at ty =1t, =0, with x, . =0
resulting in initial values for the other variables with

Yie = Yo =Y3c = @ Yiec = —Vo, Yoo = V30 =0

so that next movement starting at collision time tg is

given by

¥ =0, X3 = K10 x(t3) = x9 (3)

Vi =0, y;(t) = Vi, yit&) = yjej=1..3 4
The change of velocities at collision C,y5 (collision sec-

ond sphere —third sphere) at collision time tZ is given by
momentum law (2):

. - (1+e)*xmy |
= _—
Yi=h s+ m, Y2,
.. (1+e)*my . . g
Y3 =Yy3+ Tmatmg *Yo, Yo =—€x)Y; Q)

These formulas for the collision Cyx41),2 <u<n-—1
of two inner spheres is generally valid, also in case of n
spheres n > 4. Similar formulas hold for collisions with
first sphere C;x, and last sphere C3x4 Cin-1)xn :

L +(1+e)*mz o .
= —_— % = —e %
X1 =X "+ m, Yu i e*y;
. . _|_(1+e)*m1 )
= _— %
Y2 =Y2 tm, 1
L. a+e)smy . . .
Y2 = Yot ¥ Y3 Y3 = e xys (6)

The simple linear translational movement (1) allows to
calculate the collision times in advance. After collision
time t¢, two neighbouring spheres move with

xi(6) = Vie t+ X, Xig1(t) = Vigret CF Xigae
and collide if v; 1 . < v; . and x4 (t) = x;(t), given by
Vie b+ Xic = Vi U+ Xig100

This results in the relative timespan t(;y;,, until next

collision Cix (i1
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_ Xi+1,cXic

Vic—Vi+1,c

= Yic
_yi,c

Gixi+1 (7N
Depending on the velocity differences, one, two, three, or
no collision can occur, where one must be the first. Con-
sequently, the absolute time instant t¢ ., is given by

®

a — a s r
togrr = top T afl{}g}l(tc,ixiu)

Obviously, for the dynamics of movement more com-
plicated dynamics can be used, e.g. taking into account
air resistance, so that instead of linear translational move-
ment (1) nonlinear dynamics must be used:

xl(t) = Ui(t),' Ul(t) = f(x,:, U,:),i = 1, ,4

2 Implementation

Two types of approaches are implemented in MS Excel: a
time-oriented approach and an event-oriented approach.
The event-oriented approach computes the exact collision
times, whereas the time-oriented approach detects the col-
lisions within discrete time progress.

2.1 Time-oriented approach

The time-oriented approach defines a time grid with
given step size At and calculates the dynamics in a recur-

sive manner by a discretisation of model (1)
xl-(tk+1) = Vic* At + xl-(tk), i=1,...4, (9)

and analogously for the derivative variables and differ-
ence variables according to model (3-4).

A
ARGESIM BENCHMARK C12 'Collision of Speres' Time-oriented Approach

BOC D E F G H 1 J

1
2

3 Parameters Time Position Variables Velocity Variables
4 t x1 x2 %3 x4 dxl dx2 dx3
5 la 1 0,00 000 200 4,00 600 1,000 000/ 0,00
6 d 1 0,05 005 200 400 600 1000 000 000
i v 0 1 0,10 0,10 2,00 4,00 6,00 1,00 0,00 0,00
& m1 1 0,15 0415 200 400 600 1,000 000 000
9 m_2 1 0,200 020 200 400 600 1,000 000 0,00
10 m_3 1 0,25 025 200 400 600 100 o000 0,00
11 m_4 1 0,30 0,30 2,00 4,00 6,00 1,00 0,00 0,00
12 e 0,2 0,35 03s| 200 400 6000 1,000 000 000
13 (L0 0 040 040 2,00 4,00 600 1,000 000 0,00
14 delta_t 0,05 045 045 2,00 400 600 1,000 o000 0,00
15 tend 15 050 050 2,000 400 600 1,000 000 0,00
16 0,55 055 2,000 400 600 1,000 000 000
17 060 060 200 400 600 100 o000 000
18 065 065 200 400 600 100 o000 000
19 'Number 13 0,70, o070 2,00 400 600 1,000 000 0,00
20 collisions 0,75 0,75 2,00 4,00 6,00 1,00 0,00 0,00
2 080 o080 200 400 600 1,000 000 000
22 085 085 200 400 600 100 o000 000
23 090 o900/ 200 400 600 1000 000 000
24 0,95 0,95 2,00 4,00 6,00 1,00 0,00 0,00
25 1,000 1,000 2000 400 600 0400 060 0,00
26 | || 105 1020 203 400 600 040/ 060 0,00
?? 3 0 0 . . 0 . .

dxa |
0,00
0,00/
0,00
0,00
0,00§
0,00/
0,00
0,00/
0,00
0,00
0,00|
0,00/
0,00_'
0,00/
0,00|
0,00/
0,00|
0,00
0,00|
0,00/
0,00|
0,00

In each recursive calculation (9) the occurrence of a
collision is checked. If a collision has happened in the last
recursion (between t;, and t,,;) then it is handled by
means of formulas (5) and (6) at time instant ¢, — in
general too late, but proper choice of the timestep can
keep the error small.

The straightforward implementation in Excel makes
use of the following variables, calculated in rows and
partly updated recursively along the time column:

t
x1 x2 x3 x4 x;(t;) position of spheres

current time ¢,

dx1 dx2 dx3 dx4 x;(t;) velocity of spheres

yl y2 y3  y;(t;) position differences
dyldy2dy3 y;(t,) velocity differences
s12 s23 s34  collision indicator at (t;) (‘0’ or 1)

delta yl deltay2 delta y3 y;(ty) — yi(tx-1)

recursive difference of position differences.
Parameters are defined in fixed calls and named:
a,d,vo,ml m2 m3 m4, e t0,deltat, tend.
Figure 3 shows the Excel worksheet with parameter def-
initions and results of the recursive updates, to be ex-
plained in more detail in the following.

The implementation of the model and its formulas is
straightforward and briefly sketched in Figure 3 for row
no. 7, with recursive updates from row no. 6. Only the
sometimes necessary distinction of cases with nested IF
and AND constructs seems elaborate.

Figure 3: Time-oriented approach, calculation spreadsheet.

M N Q il 8] R 8U | VW X ¥ Z
Impact |Difference: Previous Pos. Diff.
| Position Difference Var. | Velocity Difference Var. | | Indicator |[minus Actual position Diff.
vyl y2 y3 dy1 dy2 dy3 | [s12|s23s34|delta_y1|delta y2| delta y3
1,000 1,000 1,00 -1,000 000 0,00
095 100 100 -100 o00 o000/ o o o 0,05 0,00 0,00
0,90 1,00 1,000 -1,00 0,00 0,00 0 0 0 0,05 0,00 0,00
o850 1,000 100, 00 ooo opol| o of o 0,05 0,00 0,00
0,80, 100 1000 100 o000 o000 0o o0 0 0,05 0,00 0,00
0,75 100 100 -100 o000 o000/ o of o 0,05 0,00 0,00
0,70 1,00 100 -1,00 0,00 0,00 0 0 0 0,05 0,00 0,00
0,65 100 1000 -100 o000 o000/ of of O 0,05 0,00 0,00
060, 100 100 -1.000 o000 o000 o of o 0,05 0,00 0,00
0,55 100 100 -1,000 o000 o000 0o of o 0,05 0,00 0,00
0,50, 1,00 100/ -1,000 o000 o00/| o of o 0,05 0,00 0,00
0,45 1,000 1,00 -1,000 o000 o00/| o of O 0,05 0,00 0,00
0,40 100 100 -1,000 o000 o000 | o of o 0,05 0,00 0,00
0,35 100 100 -1,000 o000 o000 0 of o0 0,05 0,00 0,00
0,30 100 100/ -1,000 o000 o00/| o of o 0,05 0,00 0,00
0,25 1,00 1,00 1,00 0,00 0,00 0 0 0 0,05 0,00 0,00
0,200 1000 1000 -1000 oo00 oo0o| o of o 0,05 0,00 0,00
0,15 100 100/ -1,000 o000 o000 o of o 0,05 0,00 0,00
0,10 100 100/ -1,000 o000 o000/ o of o 0,05 0,00 0,00
0,05 1,00 1,00 1,00 0,00 0,00 0 0 0 0,05 0,00 0,00
0,00 100 100 o020 060 oo0of 2 of o 0,05 0,00 0,00
0,01 097 100 o020 -060 o000/ o of o -00 0,03 0,00
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Time Advance
t: D7=IF(D6<t_end; D6 + delta_t)
If the previous time is smaller than the maximum time

(15 seconds), the actual time is the previous time plus the
time step.

Position update: The actual positions are the previous
position plus the previous velocity times the time step:
Xi: E7 =E6 + delta_t, X, X3, X4 alike

Position difference is calculated by differences of

positions minus sphere diameter:
Yi: M7 =F7-E7-d, Y2, V3 alike

Collisions Detection:
The difference between previous position difference and
actual position difference changes sign, if a collision has
just occurred:
delta_y1: X7=M6-M7, delta_y2 and delta_y3 alike,
the type of collision is given by the impact indicator
$12: U7 = IF (M7<=0; IF (X7>0;1,0); 0)
s23 and s34 alike, being ‘1’ in case of detected
collision €y, Cyx3, OF C3x4 TESP.

Collision Handling:
New Velocity difference:
If the impact number s12 is ‘1’, the velocity difference
dy1 is calculated with formula (5) for C; .,

dyl: P7 = IF (U7=1; -e*P6;

IF (V7=1; P6+(1+e)*m_3/(m_2+m_3)*Q6; P6 ) )

If the impact number s23 is one, the velocity difference dy3
is calculated with formula (5). If both impact numbers s12
and s23 are zero, the actual velocity difference dy1 is the
previous velocity difference dyl (dy2 and dy3 alike).

New Velocity:  dx1: 17=IF(U7=1;
16+(1+e)*m_2/(m_1+m_2)*P6; 16 )

If the impact number s12 is one (C; x; ), the actual veloc-

ity dx1 is calculated with formula similar to (5), else the

actual velocity is the previous velocity, dx2, dx3 and dx4

alike, and analogously for collisions Cyy3.and Czyy4.

The worksheet for the first task (Figure 3) shows the
movement for the first 22 timesteps — with step size
delta_t of 0.05; the first collision is detected and handled
att =1, indicated by a one for s12 (highlighted in orange.

The columns for the collision indicators allow a sim-
ple calculation of the number of collisions: indicated in
cell A19 (highlighted in orange): n, =SUM (U:W).
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The advantage of the time-oriented approach is the
flexibility in the model description — instead of the simple
linear translational movement for the position update also
a nonlinear movement described by ODEs can be used —
instead of the update a Euler solver for the ODE must be
used. The disadvantage of the approach is the fact, that
all collisions time instants tZ are detected with a delay at
the next grid time instant ¢;,,;. The classical interpolation
strategy of simulators for event detection could help, but
is elaborate: the collision time t¢ could be interpolated
between t;, and tj,q.

Most of the up to now 14 published benchmark solu-
tions are based on a simulator, which makes use of an
ODE solver with integrated event detection for the colli-
sions, e.g. [2-4].

2.2 Event-oriented approach

The event-oriented approach makes use of the special lin-
ear movement dynamics given by model (1), which al-
lows to calculate the next collision time instant by means
of the intersection formula (7). Each collision is a state
event, which changes the velocities of the involved
spheres due to collision formulas (5) and (6). From the
viewpoint of events, the collision event is an algorithmic
state event: intersection formulas and case-by-case anal-
ysis constitute the algorithm for the next collision time
with the associated collision type.

The implementation in Excel follows the time-ori-
ented approach, in order to provide a better comparabil-
ity. Again, in rows the variables are calculated, but each
row is now associated with the respective collision time.
Variables and parameters are:

tca current absolute collision time t¢

ter current relative collision time t[

x1 x2 x3 x4 x;(t;) position of spheres
dx1 dx2 dx3 dx4 x;(ty) velocity of spheres
yl y2 y3
dyldy2dy3 y;(t,) velocity differences
tcrl2 ter23 ter34

time instant t/;.;,, (‘FALSE’ if no collision possible)

¥;(ty) position differences

time until next possible collision

cind collision indicator for next collision type.

Parameters are defined in fixed calls and named:
a,d,v0o,mil m2 m3 m4e,t0,tend.

Figure 4 shows the Excel worksheet with formula imple-
mentation. The implementation of the model and its for-
mulas is straightforward and briefly sketched for row
no. 9, with recursive updates from row no. 8:
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A B C D E F G H | | K
1 ARGESIM BENCHMARK C12 "Collision of Speres' Event-oriented Approach
3 Parameters collision | collision Positions Velacities
4 |time abs. | time rel |
4 a 1 tca ter | w1 x2 x3 xd dxl dx2 dx3
5 d 1| 0 o o 2 4 6 1 o @
7 v.0 1 1 1 1 2 4 6 04 08 o
8 m.1 1| 2,66667| 166667 1,667 3 4 8 04 024 036
9 m2 1 4,75| 2,08333| 25 35 475 6l 0304 0336 036
10 m_3 i 5,44444| 069444 2,711 3733 5 6| 0304 0336 0,144
11 m_4 1 6,83333 1.33339; 3,133 42 52 63 0304 0221 0259
17 le 02 | 763462 u,auua; 3377 4,377 5408 6,473 0,254 0271 0,258
13 't 0 0 9,14815| 1,51353| 3,761 4,787 58 68 0254 0271 0,233
14 tend 15 | 950427| 03ss13| 3852 483 5282 6388 0254 0248 07256
15 9,72685 0,22253; 3509 4938 59594 694 0254 0248 0,247
16 Number 11,7937 2,0668| 4,434 5451 6451 7457 0254 0248 0248
17 Cellisions 13 14612 281836 515 615 715 8162 025 0252 0,248
18 14,7375 0,12545, 5181 6,181 7181 8194 025 0249 025
19 14,9109 0,1734-4; 5225 6,225 7225 8237 025 025 025
20 | FALSE '

M N 8] I [ 3 5 u A W Y
Position Differences | Velocitiy Differences relative time until next coll. collision
| coll. 1x2 |coll. 2x3 |coll. 3x4 | |indicator
dxd yl y2 y3 dyl  dy2 dy3 tcrl2 tcr23 terdd cind
0 1 1 1| =1 0 0 1| FALSE FALSE c12
o o 1 1 0,2 -08 o FALSE 1,66667| FALSE a3
0| 0333 0 1 -0,16 012 -0326 2,08333| FALSE | 2,77778 C12
0 0 025 025 0032 0024 -036 FALSE FALSE | 0,69444 c34
0,216| 0,022 0,267 0| 0,032 -0,1%2 0,072 FALSE | 1,38889| FALSE c23
0,216 0,067 0 01 -0,083 0,038 -0,043 0,80128| FALSE [ 2,31481 C12
0,216 0 0031 0065 0,017 -0012 -0,043 | FALSE | 267004| 151353 | c3a
0,242\ 0,025 0,013 0: 0,017 -0,037 0,009 FALSE | 0,35613| FALSE c2z
0,242 0,031 0 0,003/ -0,006 0,007 -0,014| | 534188 FALSE | 0,22258) | C34
0,25 0,03 0,002 o -0,006 -8E-04 0,003 51193 2,0668| FALSE c2z
0,25| 0,018 0 0006 -0,008 2E-04 0,002 2,81836| FALSE FALSE 12
0,25 0 5E-04 0,012] 0,001 -0,004 0,002 FALSE | 0,12545| FALSE €23
0,25| 2E-04 0 0012 -9E-04 7E-D4 1E-04 0,17344| FALSE FALSE €12
0,25 0 1E-04 0012 2E-04 2E-04 1E-04 FALSE FALSE FALSE o

Figure 4: Event-oriented approach, calculation spreadsheet

Collision time advance

Row update starts with the selection of the next relative
collision time span t; ;,;,, due to minimum selection in
formula (7) by:

ter: E9 = IF (D8>t_end; FALSE; MIN( U8:W8))

If the previous absolute collision time t¢ is smaller than
the final time, time span t/ for next collision is the mini-
mum of precalculated relative collision times for all pos-
sible collisions.

Now the next (actual) absolute collision time tg
can be calculated by adding the actual (next) relative col-
lision time span ¢t/ to the previous absolute collision time
téy (formula (7)):

tca: D9 =IF ( D8>tend; FALSE; D8+E9)

Position update: The next (actual) positions are the
previous position plus the previous velocity times rela-
tive collision time: X;: F9 = F8 + E9*J8, X, X3, X4 alike.

Position differences are calculated by differences of
positions minus sphere diameter:

Vi:N9=G9-F9-d, V»,V; alike

Velocities, velocity differences
As a collision has happened, velocities and velocity dif-
ferences must be updated due to formulas (5) and (6) for
spheres involved (indicated by precalculated collision in-
dicator cind) or must be simply continued:
dy;: Q9 =IF (Y8="C12’; -e*Q8;
IF (Y8="C23;
Q8+(1+e)*m_1/(m_1+m_2)*R8; Q8))
dx;: JO=IF(Y8="C12;
J8+(1+e)*m_2/(m_1+m_2)*Q8; J8)

Next collision determination
The intersection formula (7) allows to calculate the time
spans until all next possible collisions

-~~tcr,1x2 : U9 = IF( N9=0; FALSE;

IF (Q9>=0; FALSE; N9/-Q9))
If the position difference Y; is not zero and the velocity
difference dy; is less than zero, the time span until next
collision t[;y;4, is calculated by the position difference
yi divided with the negative velocity difference dyi.

The collision indicator cind determines, which colli-
sion comes next:

Y9 = IF (U9=E10; ‘C12"; IF ( V9=E10; ‘C23";

IF (W9=E10;'C34’;'0")))

Indeed, there can be maximal two possible next collisions,
but there can be also no next (further) collision, so that the
sequence of collisions has ended (indicated by type ‘0").

The number of collisions n. can be easily determined
by counting the number of rows with detected collision
type or collision time

ne: B17 = COUNTIF (Y6:Y29;<>'0") or
ne: B17 = COUNTIF ( D6:D29; >=0)

In general, the implementation is straightforward, only
the case-by-case analysis with its nested IF constructs
seems to be laborious. The necessary number of rows
with recursive updates depends on the number of colli-
sions — which is not known in advance.

For simplicity, a maximal number of rows is imple-
mented, and if collisions stop, collisions type is set to
zero, and collision time is set to FALSE. (see Figure 4, row
19 and row 20).
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3 Task a - Time Domain Analysis

The first task concentrates on time domain analysis for
given values of the collision coefficient: first a classical
simulation showing the behaviour with numerous hits,
and second, the simulation-based analysis of specific col-
lisions cases — elastic collisions, quasi-plastic collision,
and inelastic collision.

3.1 Task al - Basic time analysis

The first task requires a graphical representation of the
position differences y;(t) for fixed collision coefficient
e = 0.2, and initial velocity of first sphere x;(0) = v, =
1, to be observed on time interval [0,15].

Figure 5 and Figure 6 show the positions and the po-
sition differences for the time-oriented approach.

8,00
700 —
6,00
5,00
4,00 =
3,00
2,00
1,00

0,00

Distance

10,

11,

125

135
4

Figure 5: Position differences over time
- time oriented approach.

Figure 6 displays the position differences for the event-
oriented approach — the time scale grid represents the
event times, and interpolation to a synchronous grid
shows only small differences to results of the time-ori-
ented approach. A more precise comparison is given in
Table 1, which lists the collision times and collision types
for both approaches (13 collisions in both approaches).
As expected, the collision times in case of the time-ori-
ented approach are delayed: the relative delay is less than
the time step, but absolutely the delay is aggregated.
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Distance

1461
14,74
1491

—_—1 —y? —3 me

Figure 6: Position differences over collision
- event-oriented approach.

Time-oriented Approach Event-oriented approach
Collision Collision Collision Collision
time Type time Type

1 1-2 1 1-2
2.7 2-3 2.67 2-3
4.85 1-2 4.75 1-2
5.5 3-4 5.44 3-4
6.85 2-3 6.83 2-3
7.6 1-2 7.63 1-2
8.95 3-4 9.15 3-4
9.2 2-3 9.5 2-3
9.25 3-4 9.73 3-4
9.3 2-3 11.79 2-3
13.05 1-2 14.61 1-2
13.1 2-3 14.47 2-3
13.2 1-2 14.91 1-2

Table 1: Comparison of collision times - time-oriented vs.
event-oriented approach.

A realistic collision takes time. This fact is not taken into
account in the event-oriented solution. However, in the
time-oriented solution this impact time is implicitly taken
into account by the delay error. Because of this, the solution
of the time-oriented approach seems to be more realistic.

3.2 Task a2 - elastic vs. quasi-plastic case
This task requires the simulation for special cases of the
collision coefficient e — the elastic case, and the quasi-
plastic case.

Elastic case. In the elastic case with e,; = 1 each col-
lision gives the full moment to the sphere hit, so that the
hitting sphere stops, and the sphere hit continues with full
velocity. Simple analytical considerations derive the re-
sults for the final velocities: the first three spheres are
stopped and do not move, so that x;(tend) = 0,i = 1,2,3,
and the 4" sphere moves on with the initial velocity
(x4(tend) = v, = 1). Simulation results (Table 2) coin-
cide with the expected values, also for the time-oriented
approach, because the collision time instants of the event-
oriented approach are a subset of the discrete time grid
for the chosen resolution At = 0.05.
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Final Velocities Time-oriented | Event-oriented
elastic case Approach approach
x;(tend),i = 1,2,3 0 0
x,(tend) 1 1

Table 2: Final velocities for elastic collisions.

Quasi-plastic case. While elastic collisions and ine-
lastic collision represent generic cases, the quasi-plastic
case lies in-between: all spheres move after some time
and after some collisions with the same velocity. These
movements with same velocity are result of a proper cho-
sen collision coefficient e, which forwards energy at
sufficient many collisions in that amount, that i) all
spheres move with same velocity, and so that ii) no fur-
ther collisions occur. The proper sequence of collisions
results in a dynamic equilibrium.

Simple guess and variation of the collision coefficient
could give sufficient accurate approximation of the value
for eg;,. Simulation trials indicate, that an appropriate col-
lision coefficient must be small — below 0.25 — and the
number of collisions rises above 10.

From algorithmic viewpoint, the search for an appro-
priate collision coefficient eg, is an optimisation prob-
lem, or boundary problem, resp. The boundary value, or
the goal function, resp., is expressed in terms of same ve-
locities for all spheres, or equivalently with zero velocity
differences for all spheres. An appropriate goal function
is for instance:

3

FE@ =) iltena)l =0 (10)
Excel provides as standard feature the Goal Seeking
Function in the What If Analysis — suitable for approxi-
mating the collision coefficient value eg,, for the quasi-
plastic case. Figure 7 shows the spreadsheet for this ap-
proximation. The cells B20-B23 contain the final veloci-
ties, cells B25-B27 the final velocity differences, and cell
B28 defines the goal function (10):

B28 = =ABS(B25)+ABS(B26)+ABS(B27)

The Goal Seeking Function needs as input the cell of the
parameter to be iterated — the value of the collision coef-
ficient e in cell B12, the goal function evaluation — for-
mula (10) in B28, and the goal value — zero in this case.

The Goal Seeking Function results in values given in Fig-
ure 7 (event-oriented approach), with tuning parameters

of a maximum of 1000 iteration steps and a deviation of
0.0001.

A B C D E F
1 |ARGESIM BENCHMARK €12 'Collision of Speres' Event-oriented Approac!
2
3 Parameters collision collision Positions
4 time abs. time rel
5 |a 1 tca tcr x1
6 d 1 0 0 0
7 v 1 1 1 T
g8 m.1 3 2,6896588| 1,6896588| 1,6896588
3 m.2 1 4,5524703| 1,8628116| 2,4499924
10 m_3 1 5,5446056| 0,9921353| 2,7571235
11 'm_4 1 6,6222959| 1,0776903| 3,0907395
12 fe 0,1836709 7,3578167| 0,7355208| 3,3184316
13 't 0 0 7,9460849| 0,5882682| 3,4705597
14 ‘tend 15 8,338899 0,392814| 3,5721426
15 8,5554333| 0,2165344| 3,6281391
16 Number Collisions 9,4994705| 0,9440372| 3,8722702
: 7 27 9,6974983| 0,1980278| 3,9234808
18 9,7075366| 0,0100383| 3,9260031
19 | Final Velocities 9,7198529| 0,0123163| 3,9290978
20 |dx1 0,2500068 11,378927 1,659074 4,344147
21 |dx2 0,2499916 11,688162| 0,3092356| 4,4215081
22 |dx3 0,250012 12,186975| 0,4988126| 4,5462957
23 |dx4 0,2499896 14,133557| 1,9465822| 5,0332705
24 |Goal Function FALSE
25 |dyl 1,518E-05
26 |dy2 -2,035E-05
27 |dy3 2,232E-05
28 sum_dy 5,784E-05

Figure 7: Spreadsheet for goal seeking of restitution
coefficient for quasi-plastic case

- event-oriented approach.

Approach Time-oriented Event-oriented
Collision

eqp = 0.191 eqp = 0.184
Coefficient ap qp
Final
Velocities xi(tend) = 025 | x;(tend) = 0.25
Collisions 17 17

Table 3: Collision coefficient for quasi-plastic case -
results of Goal Seeking tool.

Table 3 confronts the results for the two modelling ap-
proaches: the event-oriented approach results in a smaller
coefficient eg, = 0.184 than in the time-oriented ap-
proach with eg,, = 0.191 —caused by the delayed collision
times of the time-oriented approach. But both approaches
manage 17 collisions until the quasi-plastic equilibrium.

It is evident, that the inelastic case (plastic case) with
ep; = 0 results in spheres moving with same velocity. If
the first sphere hits the second, both stick together and
move on with half velocity — but double mass !, etc., so
that after three collisions all spheres stick together and
move with same velocity. The implementation does not
regard this special case with ‘increasing’ mass. On the
other hand, the inelastic case happens, if the collision co-
efficient is decreased until zero — with theoretically infi-
nite number of collisions — see results Task bl.
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4 Task b - Dependence on
Collision Coefficient

This task analyses the dependence of the number of col-
lisions and of the final velocities on the collision coeffi-
cient. Numerical problems for small values of the colli-
sion coefficient can be expected. Variation of the colli-
sion coefficient e in cell B12 requires recalculation of the
spreadsheet — here Excel macros are of help, which vary
the collision coefficient, perform a spreadsheet update
calculation, and write results into columns.

4.1 Task bl - Number of collisions

It is known, that the elastic case e,; = 1 produces three
consecutive collisions (n; = 3) — but with decreasing col-
lision coefficient e < 1, multiple collisions occur, so that
the number of collisions is increasing (n; > 3).
A simple Excel macro helps to determine the number
of collisions n.(e) dependent on the collision coefficient
and stores results (Figure 8):
i) increase of e by increment 0.001 in cell B12, and
store value in consecutive cell of x—axis columns
AAn for varying e (start with e = 0.15),

ii) update spreadsheet,

iii) store resulting number of collisions n, from cell
B17 in consecutive cell of y—axis column AFn for
storing function n.(e)

Figure 8 shows the results for n.(e) numerically in col-
umns AAn and AFn, and Figure 9 plots the corresponding
graph nc(e) — using the event-oriented approach. For a
collision coefficient e > 0.54, only three collisions are
occuring (n; = 3). With decreasing collision coefficient
e < 0.54 the number of collisions n.(e) is rising, for e -
0 the number theoretically increases monotonically to in-
finity: no — co. However, there is a limit in reducing the
collision coefficient due to general numerical computa-
tion limitations — for values e < 0.15 computations fail.

The event-oriented approach is able to calculate up to
nc = 48 collisions for a value of e = 0.17, for values be-
low e < 0.17 the results are not reliable (number of colli-
sions n¢(e) seems to decrase) or simply fail.

The time-oriented approach — plot in Figure 10 — is
faced with an additional erroneous behaviour. Because of
the delay in collision detection, collisions times not only
are delayed, but collisions themselves may vanish, if they
are to near to the previous ones. As consequence, the
time-oriented approach is able to calculate only up to
ne = 20 collisions for a value of e = 0.18; for values be-
low e < 0.18 the computations fail.
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A B CZ AA AB AC AD AE AF ¢/
1 ARGESIM BENCHMARK C12 'Collision of Speres' Event-oriented Approach
Parameters Varation Final Velocities nur.n.her
3 collisions
=
5 a 1 e | dxl | dx2 dx3 dx4 nC
6 d ¢ 0,15 025 0,25 0,25| 0,25 44
7 v 0 1 0,16 0,25/ 025 0,25 0025 48
8 m_1 1 0,17 0,25{ 0,25 0,25 0,25 48
9 m_2 1 0,18 0,25 0,25/ 0,25 0,25 21
10 m_3 1 0,19 025/ 025 025 025 13
11 m_4 1 0,20 0,25/ 025 025 0,25 13
12 je 1 0,21 0,25 025 0,25 0,25 9
13 t0 0 0,22 025/ 025 025 0,25 9
14 tend 15 0,23 0,25 025 0,25 0,25 9
15 0,24 024 026 026 024 6
16 Number 0,25 0,24/ 0,26 0,26| 0,24 6
17 [Collision 3 0,26 0,24, 0,26 0,26 0,25 6
18 0,27 024 025 025 026 6
83 0,92 0,04 004/ 004 088 3
84 0,93 0,03 0,03 0,03 0,90 3
85 | 0,94 0,03 003 003 091 3
86 0,95 0,02 0,02 0,02/ 0,93 3
87 096 002 002 002 094 3
88 097 001 001 001 096 3
89 0,98 0,01 001 001 097 3
90 0,99| 0,00 0,00, 0,00 0,99 3
(ch] 1,00 0,00 0,00 0,00 1,00 3

Figure 8: Spreadsheet with calculation of collisions
number final velocities dxi(e) for varying collision
coefficient e - event-oriented approach.

Figure 9: Number of collisions as function of collision
coefficient — time-oriented approach.

Figure 10: Number of collisions as function of collision
coefficient — time-oriented approach.

Delay error and vanishing collisions result in another erro-
neous phenomenon: the function n.(e) is not monotonous
— in Figure 10, for e~0.22 the number of collisions seem
to decrease (not only below the ‘numerical’ border e <
0.18). A smaller time step does not really help, because it
only shifts the errors in relation to the time step decrease.
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Both approaches coincide with the increase of the col-
lision number from n.(e) =3 to nc(e) =6 within the
range of e = 0.54 down to e = 0.45, simulating correctly
the first re-hits of the spheres (indicated by green rectan-
gles in Figure 9 and Figure 10).

For e — 0, the number of collisions is going to infin-
ity, so that from this viewpoint the plastic case, or the in-
elastic case resp., is associated with an infinite number of
collisions: the spheres do not stick together and move as
‘increased’ mass, the spheres get infinitely near to each
other. As consequence, a proper model for the plastic
case must follow the strategy of three collisions with in-
creasing mass of ‘multiple’ spheres.

The number of collisions indeed is increasing drasti-
cally. A benchmark solution with a high-accuracy com-
putation tool ([5]) results in n.(e) = 11216 for a collision
coefficient of e = 0.1715729. Interestingly, the number
of collisions does not really matter for very small values
of the collision coefficient — in any case, the result is the
quasi-plastic case; for instance, another high-accuracy
benchmark solution ([6]) reaches a minimal collision co-
efficient of e = 0.0811 (with limiting the collision num-
ber in the decreasing loop).

4.2 Task b2 -Final velocities

Task 1b already investigated the final velocities of the
spheres for the elastic case and for the quasi-plastic case.
For further analysis, the final velocities are now investi-
gated as function of the collision coefficient e. The de-
velopment of x;(e) is expected to be within the range of
the elastic case — x;(e =1) =0, x,(e =1) =1 — and
the quasi-plastic case — x;(e = 0.184) = 0.25.

As before, a simple Excel macro determines the final
velocities xf"?(e) dependent on the collision coefficient
and stores results. Figure 8 shows implementation and
the numerical results, Figure 11 plots the functions

%™ (e) generated by the event-oriented approach.

0,63

restitution coefficiente

Figure 11: Final velocity of each sphere as function of
collision coefficient - event--oriented approach.

Velocity

restitution coefficiente

Figure 12: Final velocity of each sphere as function of
collision coefficient - time-oriented approach.

The results for the time-oriented approach in Figure 12
show almost no difference to the results of the event-ori-
ented approach in Figure 11. The final velocities of the

first three spheres x/e"®

(e) tend towards zero with an in-
creasing collision coefficient e, and the final velocity of
the fourth sphere ™% (e) rises until one with increasing
collision coefficient.

For decreasing collision coefficient all velocities tend
towards the value x{*"%(e,,) = 0.25 and reach the value
at the slightly different collision coefficients for the
quasi-plastic collision case (red bar in Figure 11 for
event-oriented approach, yellow bar in Figure 12 for the
time-oriented approach). Interestingly, while the calcula-
tions for the number of collisions for collision coeffi-
cients below 0.15 fail in both approaches (see Figure 9
and Figure 10), calculations for the final velocities do not
fail as given in Figures 11 and Figure 12: although the
number of collisions may vary chaotically, the associated
changes of velocities are below any significant values.

Both approaches coincide in the changes of the veloc-
ities within the range of e = 0.54 down to e = 0.45, in ac-
cordance with the increase of the number of collisions
from nc(e) =3 to nc(e) =6 (indicated in figures 9-12
by the green rectangle).

5 Task ¢ — Boundary Value -
Stochastic Parameters

In most benchmarks, the last task is a challenging one:
complex experiments, sophisticated experiment control,
model extensions, etc. Also Benchmark C12 requires in
the third task elaborate experiments with the model: a
boundary value problem, and statistical parameter analy-
sis. But spreadsheet tools offer features for such tasks as
standard features. Here the various data analysis features
play an important role.
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5.1 Task cl1 - Velocity boundary value

This task requests the calculation of the collision coeffi-
cient e, ,, which results in half initial velocity for the fi-
nal velocity of the fourth sphere: ¢4 (e,,o /2) = ? = 0.5.

Excel provides as standard feature the Goal Seeking
Function in the What If Analysis — suitable for approxi-
mating the collision coefficient value e, ,,. Analogously

to task b2 a goal function has to be defined, in this case
simply

F(e) = |igend 2

The Goal Seeking Function needs as input the cell of the
parameter to be iterated — e in cell B12, the goal function

-0 B28==ABS(B25-v.0)

evaluation — the above formula in B28, and goal value zero.
The Goal Seeking Function gives as result the value
€y,/2 = 0.587 for the event-oriented approach, with four
collisions (first re-hit of C,, as fourth collisions). With
accuracy limited to three digits, the time-oriented ap-
proach gives the same result.

5.2 Task c2 - Statistical analysis

This task extends to some extent task b2, calculation of the
dependence of the final velocity on the collision coeffi-
cient. With given normally distributed stochastic values
for the collision parameter e, 5, the challenge is to calcu-
late the distribution function, the mean value, the standard
deviation and the confidence interval (with confidence
probability of 95%) for the final velocity 5% (e, ), 1 =
0.5,0 = 0.05 for a sufficient large sample size.

Excel provides many statistical functions, and again
Excel Macros perform the statistical parameter variation
and the storage of the final velocities in the spreadsheet
(similar as in Figure 7). The stored sample for the final
velocities is then statistically analysed by standard fea-
tures resulting in the following values:

100 10

Figure 13: Histogram of the final velocities of the fourth
sphere for normal distributed collision
coefficient — event-oriented approach.
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Mean value: ...u(x5"*) = 0.42313....
Standard deviation: o (k") = 0.041907805
Confidence interval: [0.420532527< u < 0.425727473]

Excel graphic features offer bar charts, used for Fig-
ure 13, the histogram for the final velocities of the fourth
sphere. Additionally, the formula for the density function
allows to plot the distribution approximation (orange
curve in Figure 13). With accuracy limited to three digits,
the time-oriented approach gives the same result.

6 Conclusion

A spreadsheet tool is definitely not a simulator — model-
ling features for ODEs, processes, events, etc. are miss-
ing. But spreadsheet programs are an excellent experi-
ment environment with statistical analysis, optimisation,
what-if analysis, date handling, etc. Of course, macros
and external programming could be used, but to some ex-
tent the standard features allow to implement discrete dy-
namic processes — recursive formulas for the develop-
ment of states along with the flow of time with sufficient
time resolution.

It is also possible to implement event-driven dynam-
ics, by calculating the time advance due to state-depend-
ent conditions. This implementation technique is used for
the event-oriented approach in this benchmark study. A
general disadvantage is the lack of accuracy in the Excel
standard configuration — possible but laborious to in-
crease. On the other hand, a spreadsheet tool is a very
suitable tool for education, so that this C12 benchmark
study is mainly intended for educational use.
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