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Abstract. A simple difference equation model is pre-
sented that describes the development of blood pres-
sure in the ascending aorta over time. Reflections both
at one and more sites in the arterial system as well as
re-reflections of reflected waves at the heart are con-
sidered. Model parameters include reflection magni-
tude, pulse wave velocity, reflection site positions and
heart rate. The model is discussed both analytically
and numerically by implementation in MATLAB. Compar-
ison of blood pressure curves generated by the model
and blood pressure curves measured in patients demon-
strates that themodel is able to represent reality to some
extent. Results can be improved by adding reflection
sites which warrants further research.

Introduction
Hypertension (elevated blood pressure) is a major cause

of death mainly but not only in developed countries.

According to the World Health Organization [1] hyper-

tension accounts for about 12.8% of the annual deaths

worldwide. In order to improve diagnosis and preven-

tion it is crucial to understand the underlying dynamics

in the cardiovascular system.

Mathematical models can help with this. In different

types of models, many aspects of blood pressure have

been considered by previous researchers. Traditional

models are often based on fluid dynamics [2, 3] or use

the analogy between the cardiovascular system and an

electric circuit [4]. New approaches, however, are pos-

sible.

A large number of models involve the description of

wave reflections [5], a phenomenon that occurs when

blood pressure waves coming from the heart (forward
waves) arrive at parts of the arterial system where vessel

properties change, such as bifurcations. The forward

waves are reflected and produce backward waves. This

idea has been further extended by researchers [6, 7] who

argued that backward waves are re-reflected at the heart.

However, only few models exist that address this issue

and it is poorly understood so far.

In this paper a simple difference equation model

for aortic blood pressure is presented that focuses on

the characterization of pulse wave reflections and re-

reflections. The properties of the model, such as the

influence of various parameters on the results, are dis-

cussed.

1 The Model

Model Design. Even though blood pressure dynam-

ics are time-continuous, time-discrete difference equa-

tions are a valuable tool to describe reflection effects

from a finite number of reflection sites. Blood pressure

at a fixed point in time and space can be calculated as

the sum of blood pressure values at previous times, de-

termined by the choice of reflection sites.

The arterial system is considered a single uniform

tube with the heart, connected to the system via the aor-

tic valve (AV), on one end and an elastic closed bound-

ary, referred to as (single) distal reflection site (RS), on

the other, see Figure 1. This idea has been applied in

many different models and has been proved to be a rea-

sonable approach by different authors [8]. It has even

been used to model repeated reflections in the arterial

system [7]. A measuring site (MS) is fixed in the as-

cending aorta, close to the aortic valve. This so-called

aortic root is of particular interest because it allows to
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assess the interaction of reflections in the vascular sys-

tem and the heart [9].

AV RS

MS

Figure 1: Tube model of the arterial system as presented
above. AV - aortic valve, MS - measuring site, RS -
distal reflection site.

The distance between measuring site and distal reflec-

tion site will be named effective length in this paper,

a terminology that expresses the reduction of multiple

reflection effects to one. Analogously, the distal reflec-

tion site is also named effective reflection site. Often

[8, 10] the aortic bifurcation is mentioned as the princi-

pal bifurcation site, the physiological counterpart of the

effective reflection site.

Previous tube models have considered at least one

spatial dimension and take into account the elastic prop-

erties of the tube wall [11]. The model presented in

this paper, however, is dimensionless, only depending

on time. It describes the development of blood pressure

P at the fixed measuring site over time. Therefore all

spatial information has to be transformed into temporal

information.

Model Parameters. The parameters of the model

describe both the heart and the arterial system.

Reflections are described by real-valued reflection

coefficients, 0 < RD < 1 for the distal reflection site and

0 ≤ Rav ≤ 1 for the aortic valve. The reflection coeffi-

cients include information on the elasticity properties of

the arterial bed and the damping of pulse waves as they

propagate through the blood [12]. While RD is assumed

to be constant, reflection at the aortic valve can be cho-

sen to be time-dependent [13], i.e. Rav =
(
Rav

k

)
k∈N with

the time index k where the length of a time step will

be given by the step size τ . Typically, different values

are chosen during systole, when the valve is open, and

diastole, when the valve is closed.

The number of time steps it takes a pressure impulse

to travel from the measuring site to the distal reflec-

tion site and back will be denoted by the time constant

tb ∈ N. It includes information on both the distance be-

tween measuring site and reflection site and pulse wave

velocity. In a more complex description of reflection

phenomena the time of return of the reflected wave is

also affected by the phase shift that occurs during re-

flection [14]. Due to the simplification of the reflection

coefficient in this paper this time delay must be included

in the time constant. The choice of the time constant is

coupled with the choice of the reflection coefficient RD
[14, 15, 16].

Analogously, the number of time steps it takes a

pressure impulse to travel from the measuring site to

the aortic valve, denoted by t f ∈ N, is coupled with the

choice of Rav. Since the measuring site is very close to

the valve there holds t f � tb.

Not only does the heart serve as a reflection site, it

also is the driving force for pressure dynamics. During

systole blood is pumped into the system, increasing the

pressure. This phenomenon is represented by the dis-

crete function
(
Pin

k

)
k∈N.

Model Equations and Solutions. In order to for-

mulate the model equations total pressure Pk (at the

measuring site, at time k) is split into its forward and

backward components P f
k and Pb

k , i.e. Pk = P f
k + Pb

k .

Using all the aforementioned parameters the difference

equation system

P f
k = Pin

k +Pb
k−2t f

Rav
k−t f

, k ∈ N>2t f , (1)

Pb
k = P f

k−tb
RD, k ∈ N>tb (2)

can be obtained. Figure 2 illustrates the idea behind

equation (1).

Figure 2: Backward pressure is reflected at the
time-dependent aortic valve (AV) as described in
equation (1) and returns to measuring site (MS).

Inserting (1) into (2) and vice versa yields the two inde-

pendent equations

P f
k = Pin

k +P f
k−2t f −tb

RDRav
k−t f

, k ∈ N>2t f +tb ,

Pb
k = Pin

k−tbRD +Pb
k−2t f −tbRDRav

k−tb−t f
, k ∈ N>2t f +tb .

Obviously both equations are of order N where N =
2t f + tb. Since they only define a recurrence relation
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for k > N, initial values P f
k and Pb

k , k = 1, . . . ,N are re-

quired. Then standard literature [17] guarantees the ex-

istence of unique solutions for the resulting initial value

problems. The initial values are chosen as P f
k = Pin

k ,

k = 1, . . . ,N, Pb
k = 0, k = 1, . . . , tb and Pb

k = Pin
k−tb

RD,

k = tb + 1, . . . ,N. Using a solution method for linear

difference equations of fixed but unknown order [18]

yields the solutions

P f
k =Pin

k +

⌊
k−1

2t f +tb

⌋

∑
j=1

Pin
k− j(2t f +tb)

R j
D

j

∏
m=1

Rav
k−(m−1)(2t f +tb)−t f

and

Pb
k = Pin

k−2tbRD +

⌊
k−tb−1
2t f +tb

⌋

∑
j=1

(
Pin

k− j(2t f +tb)−tb
R j+1

D

j

∏
m=1

Rav
k−(m−1)(2t f +tb)−t f −tb

)

for k ∈ N>2t f +tb .

Model Properties. Using stability theory for linear

difference equation systems [17] it can be shown that all

the solutions are stable and bounded under the assump-

tion Rav ≡ 1. For this purpose both independent equa-

tions of order N have to be transformed to an equivalent

difference equation system

uk+1 = Auk +bk+1

of order one with system matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . . . . 0
... 0 1

. . .
...

...
...

. . .
. . .

. . .
...

...
...

. . .
. . . 0

0
...

. . . 1

RD 0 . . . . . . . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
N×N .

Then, for any matrix norm ‖ · ‖ there holds

lim
k→∞

‖Ak‖= 0.

Let Ã be the system matrix of the equivalent difference

equation system of order one with variable Rav. Be-

cause of

‖Ãk‖ ≤ ‖Ak‖.
for any matrix norm ‖ ·‖ the same result is valid for this

system.

Both functions
(
Rav

k

)
k∈N and

(
Pin

k

)
k∈N are periodic

with the same period length K that equals the duration

of one cardiac cycle, i.e. the sum of systole and diastole

duration. Therefore, also the solutions of the model be-

come periodic with period length K after a certain set-

ting time that depends on the choice of the reflection

coefficient RD.

Under the assumptions made for the model it is pos-

sible to set t f = 0, i.e. shift the measuring site towards

the heart, without major changes in the results. The so-

lution then simplifies to

Pk =P f
k +Pb

k =Pin
k +

⌊
k−1
tb

⌋

∑
j=1

Pin
k− jtbR j

D(R
av
k +1)

j−1

∏
m=1

Rav
k−mtb

for k ∈ N>2t f +tb . In order to simplify analysis this will

be done in the rest of the paper.

2 Implementation and Results

After theoretical discussion the model is implemented

in MATLAB. Numerical analysis is conducted by com-

paring plots of generated curves where one parameter is

varied while the others are held constant. Both the in-

fluence of parameters on the shape of the curve and on

the minimum (diastolic pressure) and maximum (sys-

tolic pressure) values are analyzed.

Parameter Values and Implementation. Pa-

rameter ranges are determined according to previous

studies. Systole duration typically is 0.3 seconds, and

diastole duration typically is 0.7 [19]. They are in-

cluded in the model via the choice of the input function

Pin and the reflection at the heart Rav.

The distal reflection coefficient should be chosen

around RD = 0.5. Different authors give different values

that are computed using different methods [14, 16, 20].

The same goes for the return time from the distal re-

flection site where both effective length and pulse wave

velocity can be determined in various ways [14, 16, 21].

A typical value is 145 milliseconds which is much

shorter than systole duration [22]. This time constant

can be transformed to a discrete number of time steps
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using the number of time points per second 1/τ . Im-

plementation of the model using the previously defined

parameters and initial values in MATLAB is straightfor-

ward.

Input Function and Reflection at the Heart.
Two different functions are compared for Pin. Both

functions are zero during diastole when the valve is

closed and the heart produces no output. During sys-

tole a half sine that is motivated by other authors’ re-

sults [2, 13] is compared to the much simpler constant

one function. The half sine (see Figure 3) that considers

the opening and closing time of the aortic valve yields

more realistic results than the strongly simplified con-

stant function (see Figure4).

Figure 3: Generated pressure curve (solid) with
corresponding input function (dotted). A half sine
is chosen during systole. Reflection at the heart is
zero during systole and one during diastole. End of
systole is indicated by a vertical line. One cardiac
cycle.

For modeling reflection at the heart three different func-

tions can be compared. A step function assumes zero

during systole when the valve is open and all waves

are absorbed and one during diastole when the valve

is closed and all waves are reflected. As before, moti-

vation for this function is given by other authors [13].

Instead, the simpler constant functions zero and one can

be used. They produce smoother curves with less dis-

tinct spikes, see Figure 5. In the following analysis the

reflection is assumed to be a step function.

Results. Figure 6 compares a curve generated by the

model (solid) with a measured blood pressure curve

(dotted) taken from a data set that was collected for a

previous study [23]. Both curves are normalized to the

Figure 4: Generated pressure curve (solid) with
corresponding input function (dotted). The
constant one function is chosen during systole.
Reflection at the heart is zero during systole and
one during diastole. End of systole is indicated by
a vertical line. One cardiac cycle.

same pulse pressure (amplitude) to increase compara-

bility. The focus of this paper is the shape of blood

pressure curves, not their absolute values. For the gen-

erated curve the input function Pin is chosen as a half

sine during systole and zero during diastole. Reflection

at the heart, Rav, is chosen as the constant one function

during systole and zero during diastole. A vertical line

indicates the end of systole.

Figure 6: Comparison of a modeled (solid) and a measured
(dotted) blood pressure curve. End of systole is
indicated by a vertical line. One cardiac cycle.

Even though the modeled curve shows more spikes and

is generally less smooth, the main characteristics of an

aortic blood pressure curve [24] are represented. There

is a (relatively) fast systolic upstroke, a notch at the end

of systole and a slow diastolic decay.

Increasing the reflection coefficient RD significantly
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(a) Rav is step function. (b) Rav is constant one function. (c) Rav is constant zero function.

Figure 5: Comparison of different shapes of Rav. Input function is a half sine during systole and zero during diastole. End of
systole is indicated by a vertical line. One cardiac cycle.

increases systolic pressure and the prominence of spikes

while diastolic pressure remains close to zero, yielding

an increase in pulse pressure, i.e. the amplitude of the

wave. The curves look realistic only for a sufficiently

small value of RD where the threshold depends on the

choice of other parameters.

In assessing the influence of systole and diastole du-

ration one must distinguish between two cases. One

can either vary them individually, resulting in a variable

heart rate or hold the heart rate fixed which means vary-

ing them together. Only the first case that is physiolog-

ically more relevant is analyzed in the paper. Systolic

pressure increases with systole duration while diastolic

pressure remains the same, yielding an increase in pulse

pressure, see Figure 7. The prominence of spikes de-

creases. Both for too low and too high values of systole

duration the curve does not resemble a measured one.

The thresholds depend on the values of the other pa-

rameters. Diastole duration does not have a significant

influence on the shape of the modeled curves.

Figure 7: Generated blood pressure curve for four different
values of systole duration. One cardiac cycle.

Return time tb negatively influences systolic and

pulse pressure while diastolic pressure remains zero.

All spikes occurring during diastole become wider and

more prominent with increasing return time, see Fig-

ures 8 and 9. The width of spikes during diastole equals

the return time, therefore representing the single reflec-

tions.

Figure 8: Return time 95ms. End of systole is indicated by a
solid vertical line. Return times are indicated by
dotted vertical lines. One cardiac cycle.

Choosing a return time that is larger than systole dura-

tion does not lead to realistic results.

3 Model Refinement
The curves’ shapes can be improved by adding more

reflection sites. It has been argued before that at least

two peripheral reflection sites are necessary to model

the entire arterial system - one for the upper and one for

the lower body half [25, 26].

The Model. While modeling two reflection sites is

often accomplished with an asymmetric T-tube model
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Figure 9: Return time 170ms. End of systole is indicated by a
solid vertical line. Return times are indicated by
dotted vertical lines. One cardiac cycle.

[27], the reflection sites in the present paper are as-

sumed to be completely independent from each other.

The equations are

P f
k = Pin

k +Pb
k−2t f

Rav
k−t f

, k ∈ N>2t f ,

Pb
k = P f

k−t1
b
R1

D +P f
k−t2

b
R2

D, k ∈ N>t2
b

where R1
D and R2

D are the reflection coefficients of the

two reflection sites. Their respective return times are t1
b

and t2
b with t1

b < t2
b .

Inserting each of the equations into the other one and

prescribing initial values P f
k and Pb

k for k = 1, . . . ,N =
2t f + t2

b yields two initial value problems. Standard lit-

erature [17] guarantees the existence of unique solu-

tions. They cannot be expressed explicitly. It is pos-

sible, however, to prove analytically that the solutions

of the homogeneous problems are bounded as long as

R1
D +R2

D < 1. In the following, t f = 0 will be assumed.

Results. Comparison with the original model reveals

that the prominence of spikes during diastole is de-

creased significantly, see Figure 10. In particular, blood

pressure does not decrease to zero after each spike, pre-

sumably a result of the superposition of reflected waves.

The main characteristics of a blood pressure curve are

represented.

It can be observed that the generated curves are both

bounded and periodic after a certain setting time, even

for R1
D +R2

D ≥ 1.

Again, the influence of different parameters can be

assessed. While the general effects are the same as in

the model with only one reflection site, the different in-

Figure 10: Comparison of a measured curve (dotted), a
curve modeled with one reflection site (dashed)
and a curve modeled with two reflection sites
(solid). End of systole is indicated by a vertical
line. One cardiac cycle.

fluences of the two reflection sites can be compared.

The reflection coefficients have similar influences on

systolic and diastolic pressure as long as both are small.

When they exceed a certain threshold that depends on

the choice of the other parameters, R1
D increases sys-

tolic blood pressure and R2
D increases diastolic blood

pressure more significantly. Physiologically meaning-

ful results can only be obtained when the sum R1
D +R2

D
does not exceed some threshold value that depends on

the return times. Each of the reflection coefficients has

to be chosen smaller than the reflection coefficient in

the original model.

The influence of systole and diastole duration is the

same as can be observed in the original model with one

reflection site. The same is valid for the influence of

both return times.

4 Conclusion and Outlook

All the results obtained by theoretical and numerical

analysis correspond to effects observed in reality and

therefore indicate that modeling aortic blood pressure

with difference equations is a reasonable approach.

Instead of a variable reflection at the heart constant

functions can be chosen. If the heart is considered to be

a total reflector during the entire cardiac cycle, or equiv-

alently, Rav ≡ 1, estimating formulas for systolic and di-

astolic pressure can be found, enabling further theoreti-

cal analysis. In fact, choosing Rav close to 1 is necessary
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if physiologically meaningful absolute values, i.e.

diastolic pressure : pulse pressure ≈ 2 : 1,

are desired. This indicates that re-reflections at the aor-

tic valve should not be neglected in methods of arterial

pulse wave analysis.

The model can be further refined by adding more

distal reflection sites. Also, more complex functions

to model reflections at the heart can be chosen. These

could be step functions but also piecewise linear func-

tions that consider opening and closing of the valve.

Another possibility is to find a model to describes the

ventricle. During systole this model is linked with the

arterial system while during diastole reflection is as-

sumed to be total.

Once the model has been improved to a desired level

of exactness, it can be fit to measured curves by deter-

mining the correct parameter combination. From this

point, a variety of applications can be considered, such

as implementing a wave separation [6] or wave tracking

[28] algorithm.
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