
S N E T E C H N I C A L N O T E

SNE 28(4) – 12/2018 149

Generating of Task-Based Controls for
Joint-Arm Robots with Simulation-based

Reinforcement Learning
Georg Kunert*, Thorsten Pawletta

Wismar University of Applied Sciences, Fac. of Engineering, Research Group CEA,
Postfach 1210, 23952 Wismar, Germany; georg.kunert@cea-wismar.de

Abstract. The paper investigates how a robot control for
a pick-and-place application can be learned by simulation
using the Q-Learning method, a special Reinforcement
Learning approach. Furthermore, a post-optimization ap-
proach to improve a learned strategy is presented. Finally,
it is shown how the post-optimized strategy can be auto-
matically transformed into an executable control using
the simulation-based control approach.

Introduction
The conventional robot oriented programming focuses
on a special type of robot and on one explicit control
problem. That means, one special program is developed
to solve one problem. Typical programming approaches
according to [1] are: (i) offline programming with a spe-
cific robot programming (RP) language, (ii) teach-in pro-
cedures, (iii) master-slave procedures and (iv) play-back
procedures. In conjunction with the RP there are different
manufacturer-specific and non-proprietary Computer-
Aided-Robotics (CAR) systems, such as KUKA-Sim or
EASY-ROB.

Another approach is the specification of the Robot
Operating System (ROS) - Industrial for robot controller,
which was driven by the administration of the ROS con-
sortium. ROS-Industrial defines a layer model and an in-
terface standard. The layer model supports the integration
of CAR systems and the application of different abstract
programming approaches.

One abstraction approach established in robotics is
the task-oriented programming. Using this approach,
tasks that are specified are robot independent. A trans-
formation method is required to execute the task-based
control.

Already before ROS-Industrial was launched, the Re-
search Group Computational Engineering and Automa-
tion (RG CEA) at Hochschule Wismar started the devel-
opment of the open Robotic Control and Visualization
(RCV) Toolbox for MATLAB (RCV Tbx., www.cea-
wismar.de, accessed 05/2018; [3], which supports manu-
facturer-independent control development.

The RCV toolbox provides a set of abstract robot-ori-
ented commands in MATLAB in analogy to an RP lan-
guage and a robot control can be developed virtually. In
addition, the RG CEA proposed a specific framework
and procedure model, called Simulation Based Control
(SBC) approach [4]. Robot controls can be developed
type independent, task-oriented, and model-based using
the SBC approach in conjunction with the use of ROS-
Industrial or the RCV toolbox.

The usage of a Reinforcement Learning (RL) method
in conjunction with a simulated process model to develop
a real robot control is investigated in this paper. The ap-
proach is illustrated by a typical pick-and-place problem
(PP). The PP problem is mapped to a simulation model
according to the requirements of the learning algorithm.
The control strategy is learned offline using the RL
method and then transformed into an executable robot
control using the SBC approach. This research is seen as
a first step to learn and generate executable robot controls
using the SBC approach and integrated learning methods
for whole problem classes, such as the class of assembly
problems.

SNE 28(4), 2018, 149 - 156, DOI: 10.11128/sne.28.tn.10442
Received: October 25, 2018; Revised November 15, 2018;
Accepted November 24, 2018
SNE - Simulation Notes Europe, ARGESIM Publisher Vienna
ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Kunert et al. Controls for Joint-Arm Robots with Simulation-based Reinforcement Learning

150 SNE 28(4) – 12/2018

TN
The basics of RL and a special approach, the Q-

Learning method [5, 6], are explained with the help of an
example at the beginning. Thereafter, it is pointed out
how a learned behavioral strategy can be improved by a
post-optimization. Then it is shown, how a learned and
post-optimized strategy can be automatically trans-
formed into an executable robot control using the SCB
approach. Finally, an outlook on future work is given.

1 Reinforcement Learning
Besides the supervised and unsupervised learning, the RL
forms an independent group of learning methods [6]. The
aim of RL is to learn a behavior strategy to propose ac-
tions to reach a given target state.

The advantage of this learning approach is that no
prior knowledge in the form of training data and no
teacher is needed. An RL method is training itself by the
trial-and-error principle.

1.1 Basics of Reinforcement Learning
Figure 1 shows the basic structure of the RL approach.
An RL method comprises the environment and at least
one agent.

Figure 1: Basic structure of the RL approach.

The environment can enter a finite number of states s S.
The environment communicates its start state st to the
agent. The agent then reacts with an action a. Based on
the action a of the agent, the environment sends a reward
r and shifts into a following state st+1. The reward r is a
feedback on the action a of the agent. The interaction be-
tween agent and environment is repeated until the envi-
ronment reaches a successful or unsuccessful target state
starget S. In RL, this iteration until the environment
reaches a target state is called an episode.

For Markov-processes of first order the environment
generates a reward according to Equation 1 and calcu-
lates the following state st+1 S according to Equation 2.

 (1)

(2)

The reward model R and the state transition model T
are functions of the current state of the environment und
the current action of the agent. The following state can
also be identical to the state before. The reward is a scalar
value. The range of the rewards of the environment is of-
ten given by r {- , -1, 0, +1}. A negative infinity means
that the action of the agent was not allowed.

A minus one means that the environment is in an un-
successful target state. If the environment is in a success-
ful target state, the reward is plus one. Actions that are
rewarded with a zero, are allowed but did not lead to a
target state. These states are states between start state and
target state. The agent saves all states s S he receives
from the environment in a data structure DS (see Fig-
ure 5). In this way he collects knowledge about the envi-
ronment. Through the ability of saving states, the agent
can identify states that he has previously explored. Other
parts of the agent as shown in Figure 1 are described later.
Q is explained in Section 1.2, while RR and RS are ex-
plained in Section 3.

The training phase of the RL consists of a multitude
of episodes. At the beginning, the agent explores the en-
vironment solely using the trial-and-error method. In
later episodes, the actions of the agent are evaluated
based on the collected knowledge using a learning
method.

An often used learning method is the Q-Learning. The
objective is to reach the target state with as little as pos-
sible numbers of state changes of the environment. The
result of the learning phase is a learned behavior strategy

 of the agent. According to Equation 3, is a function
of the current state of the environment and returns a tar-
get-oriented action a.

 (3)

While learning, the agent is in the so called exploration-
exploitation-dilemma. Exploitation means learning based
on the acquired knowledge and exploration means the
study of unknown strategies by trying random actions.

Often, the RL needs many episodes for a successful
iterative learning. The computing time depends signifi-
cantly on the complexity of the state space and the reac-
tion time of the environment. Due to the reaction time,
the possibility of learning in the real environment is often
not practicable for robotic applications. Therefore, the
behavior of the environment is simulated using a model
and learning takes place offline.

 Kunert et al. Controls for Joint-Arm Robots with Simulation-based Reinforcement Learning

SNE 28(4) – 12/2018 151

T N
1.2 Q-Learning
As described before, the goal of the RL is to learn the best
possible behavioral strategy according to Equation 3 to
achieve - in the simplest form - a target state.

Q-Learning is a special feature of RL for solving op-
timization problems. It is based on the idea of learning
with the help of a memory matrix W(a,st), called Q-Ma-
trix for Q-Learning, as introduced by Watkins [7]. The
method of Q-Learning exists in different forms [5, 6]. In
the following, the approach of value based learn-
ing (VBL) will be briefly introduced. According to Akh-
tar [6], VBL represents a special approach to Q-Learning.

With VBL, the agent does not have an internal model
of the environment at the beginning. He initially investi-
gates by purely random actions a A the states s S as
well as rewards r of the environment and learns, based on
this information, iteratively his internal model of the en-
vironment, the so-called Q-function Q(st,a). The Q-func-
tion describes the expected benefit, the Q-value, of an ac-
tion a in the state st. The Q-function is mapped inside the
agent using a dynamically growing matrix called Q-Ma-
trix. Each row of the Q-Matrix represents an explored
state s S of the environment and each column represents
a possible action a A of the agent. That means that the
Q-Matrix stores the iteratively learned knowledge of the
agent.

At the beginning of the training phase, that means at
the start of the first episode, the Q-Matrix is a 0 x n ma-
trix. The column dimension corresponds to the number
of possible actions. For each newly investigated state
s S the Q-Matrix is extended by one row and all ele-
ments of the new row are initialized with 0. The calcula-
tion of the Q-value of a current state-action-pair (st,a) can
be fulfilled in several ways. Equation 4 shows a simple
Q-Learning approach.

 (4)

As described in the previous subsection, the environment
responds to an action a of the agent with a following state
st+1 and a reward r according to Equation 1 and Equa-
tion 2. The benefit Q(st,a) is given by Equation 4 from
the sum of the current reward of the state-action-pair
(st,a) and the weighted maximum benefit of all follow-up
actions. The latter is calculated from the previously es-
tablished Q-Matrix values. For this purpose, all columns

 in the row of the following state st+1 of the Q-Ma-
trix are analyzed.

The weighting factor is called the discounting fac-
tor. It ranges between 0 and 1 and controls the impact of
expected future rewards on the current decision.

Extended Q-Learning methods additionally introduce
a learning rate parameter . They have the possibility of
weighting between the already learned value Q(st,a), the
current reward and the expected future rewards [5,8].

Regardless of the specific Q-Learning method, a large
number of episodes are executed in the training phase.
An episode starts with a random or known initial state s
 S of the environment. Subsequently, in each episode

randomly (exploration) or on the basis of already known
Q-values (exploitation) actions a A are tried on the en-
vironment in order to improve the internal model of the
agent in the form of Q-values. An episode ends when a
target state of the environment has been reached. The
agent recognizes this by evaluating the returned reward
value. An additional parameter may be used for an explo-
ration-exploitation-weighting. This feature can be used
for example to decrease the exploration rate as the num-
ber of episodes increases.

After the training phase the Q-Matrix represents the
learned behavior strategy . Therefore, in the case of Q-
Learning, Equation 3 can be concretized as follows.

 (5)

The agent gets the initial state from the environment as
the current state st. According to Equation 5, the agent
looks in the row associated with the current state st in the
Q-Matrix for the maximum Q-value and determines the
argument of the column. This represents the best action a
in the state st. The determined action a is executed and
the following state st+1 is received. Thereafter, st+1 is re-
garded as the current state st and the next action a accord-
ing to Equation 5 is determined. The iteration is contin-
ued until the following state st+1 transmitted by the envi-
ronment corresponds to a target state. The agent detects
the end of the episode by evaluating the reward value r.
In this case, rows of the Q-Matrix that represent a target
state remain zero, because the agent does not execute any
actions after reaching the target state.

The Q-Learning approach is based on a backpropaga-
tion algorithm. It is not certain that the learned strategy is
optimal, because it is not sure, that the shortest state se-
quence has been found from a start state to the target
state. This problem is discussed in more detail in Sec-
tion 3. Before, Q-Learning will be illustrated with an ex-
ample in the next section.

Kunert et al. Controls for Joint-Arm Robots with Simulation-based Reinforcement Learning

152 SNE 28(4) – 12/2018

TN
2 Application Example
As an application example, the game Towers of Hanoi
(ToH), a single player application, has been chosen. This
corresponds to a typical pick-and-place application for
joint-arm robots. The rules of the game ToH are simple
and will be explained in the following.

There are three bars. On one bar an arbitrary number
of different sized discs are stacked on each other. They
are sorted by size and start at the bottom with the largest
disc. The aim of the game is to relocate the discs to an-
other bar, whereby only one disc has to be moved per
turn. Furthermore, it is not allowed to put a larger on a
smaller disc. The storage options are defined by the bars.
For the purposes of the RL, the bars and discs form the
environment and the player, later the robot, is the agent.
The states of the environment result from the positions of
the disks on the bars. The movement of discs are actions
of the agent that lead to state transitions of the environ-
ment. Figure 3 shows all possible states of a two-disc
game.

The rules of the game are to be modeled in state tran-
sition model T of the environment. According to Equa-
tion 2, T generates the following state st+1 as a reaction
on an action a. If an action a was not allowed, the follow-
ing state st+1 returned by T remains the current state st.

Figure 3 shows the state transition diagram for an en-
vironment with two discs. The numbering of the states
corresponds to the numbering in Figure 2. Furthermore,
a reward model R according to Equation 1 is specified in
the environment.

The rules of the game provide rewards r {0, 1, - }.
The reward r = 1 represents, that the target state s9 as de-
picted in Figure 2 has been reached.

Figure 2: All states of ToH with two disks.

Figure 3: State transition diagram for ToH with two discs.

Illegal actions a receive the reward r = - . The reward
r = 0 stands for reaching a following state st+1, which is
not a target state.

A reward r = -1 is not used here because there is no
target state that is considered to be a failure. Moving a
disc to another bar is an action a. As shown in Figure 4,
the agent at ToH always has a choice of six actions. The
restriction of the action set A to these six actions implies
that: (i) a picked up disk can only be placed on one of the
other two bars and (ii) only one disk can be taken at a
time.

From the action set A shown in Figure 4, one can de-
rive that the Q-Matrix of the agent has the column dimen-
sion of six. The number of rows grows dynamically dur-
ing learning. At the start of the training phase no state is
known for the agent.
Figure 2 shows the fixed initial state s1, for ToH. This
state is communicated to the agent as the first state s1 of
the environment.

Figure 4: Actions set A of the agent at ToH.

 Kunert et al. Controls for Joint-Arm Robots with Simulation-based Reinforcement Learning

SNE 28(4) – 12/2018 153

T N
Each state st is characterized by the positions of the

two discs on the three bars, which can be mapped to six
attributes. The current values of the state attributes are
stored in the agent in the data structure DS, as shown in
Figure 5. The attribute values have the following inter-
pretation: 0 no disc; 1 small disc; 2 big disc.

The first element (attribute) of each line describes the
existence or size of the upper disk of the first bar and the
second the existence or size of the lower disk of the first
bar. The third to sixth elements of each row similarly de-
scribe the states of the second and third bars.

 Figure 5: Possible development of the Q-Matrix and the

data structure DS of the agent at beginning of
the training phase.

During the training phase, each following state st+1 S
communicated by the environment is analyzed in the
agent. If the state is not yet contained in DS, then: (i) the
state is stored in DS and (ii) the Q-Matrix is extended by
one row in which all elements are zero. If the state was
already known or was newly recorded, then according to
Equation 4 the utility Q of the last state action pair (st,a)
is calculated.

For this, the reward r communicated by the environ-
ment is evaluated. In this example, a discount factor of
0.8 was chosen. As shown in Figure 5, at the beginning
of the training phase, often only new states are recorded.
Thus, new states are building up the Q-Matrix with zero
elements. The iterative learning of the utility values
Q(st,a) takes place in subsequent episodes.

Figure 6 shows examples of Q-Matrices calculated in
different episodes. Ideally, in the first episode, all states
s S of the environment are explored by the agent. As
shown in Figure 6, the Q-Matrix then has the row dimen-
sion nine.

After completion of episode 1, the Q-Matrix further
shows that the state-action-pair (s8,a1) with utility value 1
leads to the target state (see Figure 2 and Figure 4). The Q-
Matrix of episode 2 shows a possible learning progress.

Figure 6: Possible development of the Q-Matrix during the
training phase.

Due to the backpropagation algorithm, the learning phase
in ToH is completed, when an element of the first row of
the Q-Matrix has a value greater than zero. This case is
shown in the Q-Matrix of episode n.

After the training phase the learned behavioral strat-
egy is derived from the Q-Matrix according to Equa-
tion 5. The example in Figure 7 shows the generation of
actions based on . E stands for the environment and Ag
for the agent. The example refers to the states s S in
Figure 2, the actions a A in Figure 4, and the Q-Matrix
of episode n in Figure 6.

From the example results the sequence of state-ac-
tion-pairs:

[(s1,a12), (s2,a13), (s3,a21), (s5,a32), (s8,a12), (s9, cancel)].

A comparison with the state transition diagram in Figure 3
shows that no optimal was learned, because the shortest
‘path’ from the start to the target state was not found.

Kunert et al. Controls for Joint-Arm Robots with Simulation-based Reinforcement Learning

154 SNE 28(4) – 12/2018

TN

Figure 7: Example for the generation of actions based on .

3 Post-Optimization of the
Behavior Strategy

The goal of post-optimization is to search for a shorter
sequence of state-action-pairs that map the shortest path
from the start to the target state (Figure 3). For this it is
reasonable to save all rewards r and following states st+1
communicated by the environment in the agent during the
training phase. For this purpose, two more matrices RR
(Received-Reward) and RS (Received-followingState)
are set up dynamically in the agent (Figure 1). Figure 8
shows the RS and RR matrices of the considered ToH ex-
ample. Their structure corresponds to the Q-Matrix. The
row index represents the states explored by the agent and
the columns correspond to the action set A. In RS, as in
the example of ToH, a deterministic behavior of the en-
vironment is assumed.

The post-optimization is based on an iterative recal-
culation of the Q-Matrix using the knowledge stored in
the matrices RR and RS. Listing 1 shows the algorithm as
pseudocode and Figure 9 shows the resulting Q-Matrix
after the first, second and last (ninth) iteration.

Figure 8: RR- and RS-Matrix after the training phase.

Listing 1: Pseudocode of the post-optimization algorithm.

Figure 9: Q-Matrix after first, second and ninth iteration.

At the beginning of post-optimization, all elements of the
Q-Matrix are set to zero. The formula for the recalcula-
tion of utility values in Listing 1 is of the same structure
as Equation 4. The reward of a state-action-pair (st,a) re-
sults from the RR matrix. The following state st+1 is de-
termined from the RS matrix.

The innermost loop iterates over all actions of a state
and the middle loop over all known states. This is a single
recalculation of all elements of the Q-Matrix. The outer
loop implements the backpropagation approach. The util-
ity values are thereby developed from the target state to
the start state, as shown partly in Figure 9.

 Kunert et al. Controls for Joint-Arm Robots with Simulation-based Reinforcement Learning

SNE 28(4) – 12/2018 155

T N
The number of repetitions of the computation of all

Q-Matrix elements results from the number of known
states (row dimension of Q-Matrix). Finally, a scaling of
the Q-Matrix values can optionally be done.

All nine states were explored during the ToH example
in the training phase. The result of post-optimization is
the Q-Matrix after the ninth iteration, as shown in Fig-
ure 9. Analogous to the generation of actions on the basis
of the learned behavior strategy in Figure 7, the follow-
ing shorter sequence of state-action-pairs is identified us-
ing the post-optimized Q-Matrix:

[(s1,a13), (s4,a12), (s7,a32), (s9, cancel)].

4 Generating a Robot Control
With a previously defined behavior strategy , an execut-
able control specification can be generated automatically.
It is based on the structure of the Simulation Based Con-
trol (SBC) approach in [4], as shown in Figure 10.

The control problem is mapped to the control and pro-
cess model in a task-oriented way. For simple problems
such as the ToH example, a separate process model can
be dropped.

The interface model (IM) implements a robot type in-
dependent task transformation and is implemented with
the Robotic Control and Visualization (RCV) Toolbox
for MATLAB [3]. An interpreter on the controller of the
respective robot acts as the robot type dependent layer
according to [3].

The ToH application can be specified using three
tasks: (i) move(EulerC), (ii) pick(), and (iii) place(). The
task move takes a vector with the six Euler coordinates of
the position to proceed to as the parameter EulerC. The
other two tasks are for picking and placing a disc. The
three tasks are implemented as reusable software compo-
nents. Due to the simplicity of the tasks, the IM was re-
alized as an integral part of each task.

For the automatic generation of the control specifica-
tion, a state-action-sequence

[(st, a A), (st+1, a A), ... , (starget, cancel)]

must be calculated using the behavior strategy . This is
done as explained in Section 2 in Figure 7 using the sim-
ulated environment. The task-oriented control specifica-
tion is then derived from the state-action-sequence.

Figure 10: Principle control structure based on the

SBC approach.

The ToH application is a typical pick-and-place applica-
tion. Each state-action-pair (st, a A) can be executed by
the same task sequence:

move(EulerC) pick() move(EulerC) place().
The parameter EulerC encodes the x- and y-coordinates
of a bar and the z-coordinate for picking or placing the
disc. The x- and y-coordinates of a task result from the
action a (Figure 4) and the z-coordinate from the state st
(Figure 2). The angle positions are constant.

In Section 3, the post-optimized state-action-se-
quence: [(s1, a2), (s4, a1), (s7, a5), (s9, cancel)] was calcu-
lated for two discs. The four state-action-pairs are trans-
formed into a control, consisting of three task sequences,
each of the following form:

move (...) pick () move (...) place ().
In order to execute the generated control, the coordinates
of the bars, the constant angles and the parameters of the
disk geometry must be passed to the control program.

The practical implementation took place in the labor-
atory of the RG CEA with a joint-arm robot of the type
KUKA Agilus, as shown in Figure 11. For technical con-
venience, the discs were replaced by numbered cubes.
The learning program has been implemented for any
number of discs. On a standard PC, the training phase for
four discs took about two seconds.

Kunert et al. Controls for Joint-Arm Robots with Simulation-based Reinforcement Learning

156 SNE 28(4) – 12/2018

TN
5 Conclusion
It has been shown, that a task-oriented control for a joint-
arm robot can be learned offline and simulation-based us-
ing an RL method. The control is put into operation by
using the SBC approach. Furthermore, it has been shown
how the solution of a classic learning process can be im-
proved by post-optimization. For the chosen application
example, a typical pick-and-place application, a task-
based control has been successfully learned, generated
and executed.

In future work, it will be investigated whether the im-
plemented RL method and the control generation can be
applied directly to similar problems or to an entire prob-
lem class. Furthermore, applications with human-robot
collaboration will be investigated. For those applications,
often a complete simulation model of the environment
cannot be created and learning has to take place partly
online. Hence, it will be examined whether it is possible
to learn proactively after the training phase.

In the context of applications with human-robot- or
robot-robot-collaboration, RL methods with multiple
agents should be investigated.

References
[1] Weber W. Industrieroboter – Methoden der Steuerung und

Regelung (Industrial Robots – Methods of Control and
Feedback Control). Carl Hanser Verlag, München, 2008.

[2] ROS.org. wiki.ros.org/Industrial, accessed 03/2018
[3] Deatcu C, Freymann B, Schmidt A, Pawletta T.

MATLAB/Simulink Based Rapid Control Prototyping
for Multivendor Robot Applications.
SNE – Simulation Notes Europe. 2015; 25(2): 69-78.
doi: 10.11128/sne.25.2.1029.

[4] Freymann B, Pawletta S, Schmidt A, Pawletta T. Design,
Simulation and Optimization of Task-Oriented Multi-
Robot Applications with MATLAB/Stateflow. SNE –
Simulation Notes Europe. 2016; 26(2): 83-90. doi:
10.11128/sne.26.2.1033.

[5] Sutton RS, Barton AG. Reinforcement Learning:
An Introduction. 2nd Edition. Cambridge/MA: MIT
Press; 2012. 334 p.

[6] Akhtar SMF. Practical Reinforcement Learning.
1st Edition. Birmingham/UK: Packt Publishing Ltd.;
2017. 320 p.

[7] Watkins CJCH. Learning from Delayed Rewards Ph.D.
thesis, Cambridge Univ. / UK; 1989. 241 p.

[8] Kramer O. Computational Intelligence. 1st Edition.
Berlin, Heidelberg/DE: Springer Pub.; 2009. 158 p.

Figure 11: Experimental setup in the laboratory of the RG CEA.

