
S N E T E C H N I C A L N O T E

SNE 28(4) – 12/2018 141

A Learned Polyalphabetic Decryption Cipher
Chaminda Hewage1*, Ambikesh Jayal1, Glenn Jenkins1, Ryan J. Brown1

1 Cardiff School of Technology, Cardiff Metropolitan University, Llandaff Campus, CF5 2YB, Cardiff, UK;
*chewage@cardiffmet.ac.uk

Abstract. This paper examines the use of machine learning al-
gorithms to model polyalphabetic ciphers for decryption. The
focus of this research is to train and evaluate different machine
learning algorithms to model the polyalphabetic cipher. The al-
gorithms that have been selected are: (1) hill climbing; (2) ge-
netic algorithm; (3) simulated annealing; and (4), random opti-
misation. The resulting models were deployed in a simulation
to decrypt sample codes. The resulting analysis showed that
the genetic algorithm was the most effective technique used in
with hill climbing as second. Furthermore, both have the poten-
tial to be useful for larger problems.

Introduction
Stamp [1] states that: ‘Cryptology is the art and science
of making and breaking “secret codes”’. Martin [2] de-
fines cryptology as a loosely used term to describe, ‘the
design and analysis of mechanisms based on mathemati-
cal techniques’ to secure data and information.

There are two types of studies in cryptology. “Cryp-
tography” describes the fundamentals of securing data by
using such mechanisms to design an algorithm [2][15].
“Cryptanalysis” is the opposite of cryptography and uses
an ‘analysis of such mechanisms’ to decrypt its encryp-
tion [2][14]. Cryptology is therefore a way of transform-
ing an original message into cipher text that an intercep-
tor may not be able to read and understand. However, the
true recipient of the message could transform the mes-
sage back to its original readable message by using a suit-
able decryption technique.

The purpose of cryptanalysis is to uncover or exploit en-
crypted information, it is a study and science of recovering
the original plaintext without knowing the key [3]. Crypta-
nalysis is perceived today as ‘code-breaking’ or ‘hacking’,
but maybe better known as an ‘attack’ [3][13]. Its primary
concern is identifying and attacking the vulnerabilities in
weak methods to gain knowledge of the plaintext [4].

As a cryptanalyst, it is important to understand what
type of algorithm is used before attempting to unravel the
cipher and give meaning to the content. According to
Schneier [3] if a cryptanalyst cannot break the algorithm
used, having known the background information of the
algorithm, then they are unlikely to be successful at
breaking it. Therefore, before any cryptanalyst can ‘at-
tack’ an encrypted message, it is important to discover and
analyse the type of method used for the cryptosystem.

The primary aim of this research is to explore the ap-
plication of machine learning algorithms to the modelling
polyalphabetic substitution ciphers for decryption. The
focus of this paper is the application of well-known ma-
chine learning techniques as a first step to exploring more
sophisticated machine learning techniques. The paper is
structured as follows, first literature related to the cryp-
tography techniques and machine learning algorithms are
considered. Next the methodology used in is reported fol-
lowed by the results. These are discussed and conclu-
sions drawn in the final section.

1 Machine Learning Algorithms
Machine Learning is a branch of artificial intelligence,
and its purpose is finding out if a computer can develop
a model without prior learning and then improve this
model, just like a human. The computer learns over time,
which helps in finding a better solution to a problem [5],
i.e. improving the model. More importantly, it learns
‘without being explicitly programmed’, which means
that it has the ability to learn (create a model) based one
dataset and apply this model to other datasets, the result
is more flexible solutions [5]. Machine Learning research
is a popular approach to problems today, such as: discov-
ering new medicines and accurately diagnosing patients;
working out better solutions to a specific problem (e.g.
the travelling sales man); and finally, using machine
learning to better understand cryptology.

Some machine learning algorithms are inspired by
nature as these can provide a useful way of looking at a
particular problem.

SNE 28(4), 2018, 141 - 148, DOI: 10.11128/sne.28.tn.10441
Received: November 20, 2018; Revised: December 6, 2018;
Accepted: December 8, 2018
SNE - Simulation Notes Europe, ARGESIM Publisher Vienna
ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Hewage et al. A Learned Polyalphabetic Decryption Cipher

142 SNE 28(4) – 12/2018

TN
This means that nature-inspired algorithms can be

employed to achieve solutions to difficult tasks [6][12].
For example, the ant colony optimisation is a nature in-
spired algorithm analysing ants ‘social behaviour in find-
ing shortest paths’ [6]; this type of algorithm could also
help by solving other real world issues that require find-
ing the shortest route.

This research takes into consideration three main ma-
chine learning nature-inspired algorithms. These are out-
lined below.

1.1 Hill Climbing Algorithm
This algorithm is inspired by nature as it ‘resembles try-
ing to find the top of Mount Everest in a thick fog while
suffering from amnesia’ [7]. The purpose of this type of
algorithm is to find and improve on the best local solution
to the problem after each step, checking whether the
neighbouring results are better or worse than the current
position (also known as a ‘local search’) [9]. A problem
with this algorithm, is that it can reach a local maximum
quite quickly. It may have found a good enough solution,
but not the best (global maxima). Ways in which to re-
solve these issues include using multi-starts or simply al-
lowing the algorithm to accept negative moves [8]. In
turn, the hill climbing algorithm has more scope with the
data, and has a better chance of finding a best solution.

1.2 Genetic Algorithm
Genetic Algorithm (GA) is another well-known nature
inspired method; it is also known as an evolutionary ap-
proach. In particular, GA is inspired by biological evolu-
tion. For example, in the gene selection stage it takes both
parents genes to produce a mutation or crossover to a new
set of genetic composition [6]. It is a very useful algo-
rithm for solving ‘local search, optimisation and machine
learning problems’ [6]. This type of algorithm works by
finding the best successor (result) from a combination of
parents that are modified in ways of either mutation or
crossover [7].

1.3 Simulated Annealing
The simulated annealing algorithm is based upon the

process of heating up metals and glass to very high tem-
peratures and slowly cooling them to the shape required
[7]. This is quite similar to the hill climbing algorithm,
but is implemented to prevent reaching a local maximum.

While the temperature is still high the probability al-
lows the annealing process to accept worse answers, as
well as a better ones.

This improves the scope in which the algorithm can
search and as it leads towards a good solution the proba-
bility of accepting worse solutions are discarded.

2 Methodology
The aim of this research was to ascertain which of the
selected machine learning algorithms were best at mod-
elling this type of encryption. The following sections
introduce the encryption algorithm used, test data se-
lected, machine learning algorithms and metrics.

2.1 Encryption
A message from Winston Churchill to Franklin D. Roo-
sevelt was used to create a sense of realism to the projects
goal of uncovering sensitive data. For this to work, all
grammar and spaces were removed from the text when
encrypting, making the output text (cipher text) a single
block of unreadable script. This ensured that the text is
more difficult to comprehend and provided slightly more
protection.

Encryption used a polyalphabetic cipher (Vigenere
cipher) to encrypt the message, implemented based on
well known sources [2,9]. This encryption focused on
using a stream cipher to look at each individual bit of
character of the text, and changed it to a new correspond-
ing letter. An alternative method considered used an ar-
ray of alphabetic letters that linked to an index; however,
this method seemed to be less practical and consequently
was not used.

2.2 Decryption
The procedure of decryption is very similar to encryp-
tion, as it performs a sequential search through each char-
acter of the cipher text, discovering the cipher text and
keys represented decimal numbers of ASCII at each iter-
ation. The outputted cipher text was used for decrypting
to help analyse the machine learning algorithms, check-
ing whether the cipher text can be decrypted. The purpose
of the research was to find out whether the algorithms
used can decrypt the cipher text with the same key as en-
crypted. Therefore, getting the algorithm to understand a
way of finding the best decryption key. It is also worth
pointing out that the key size has been hard coded into
the program enabling the algorithms to work at an effi-
cient rate, and focus on the decryption of the cipher text.

 Hewage et al. A Learned Polyalphabetic Decryption Cipher

SNE 28(4) – 12/2018 143

T N
Algorithm Parameter

Name Description Value

Hill
Climbing

Repeats Number of times to re-
peat the experiment.

10

Genetic
Algorithm

Repeats Number of times to re-
peat the experiment.

10

 Population
Size

Size of the population
of each generation.

100

 Mutation
Probability

Probability of mutation. 0.6

 Elite Proportion of popula-
tion used for crossover.

0.4

 Iterations Number of generations
over which to evolve
the population.

120

Simulated
Annealing

Repeats Number of times to re-
peat the experiment.

10

 Initial Temp. Initial temperature. 1.0 x
105

Random
Optimization

Repeats Number of times to re-
peat the experiment.

10

 Iterations Maximum number of
training iterations.

1000

Table 1: The training parameters of the experiment.

2.3 Scoring
To test the algorithms, it was important to utilise a scor-
ing method, which could assess each of the algorithms
performances in modelling the key. The fitness of the
decrypted text was scored using quad grams [9]. Quad
grams were chosen over trigrams or bigrams in order to
reduce the time taken for assessing score for the selected
scope and length of the cipher text. This provided a met-
ric to assess results of the English language decryption of
the cipher text. Big O notation [11], provides a measure
of complexity and gives an indication of how well an al-
gorithm will scale. This was used to analyse the machine
learning techniques and provide an indication of the al-
gorithms potential.

2.4 Machine Learning Algorithms
The machine learning algorithms were implemented based
on the work of Segaran [10], the training parameters used
(shown in Table 1) were identified by experimentation.

3 Results
The results reported below are based on the the cipher
score. Here each key modelled by the selected machine
learning techniques is used to decrypt the cipher text and
find its fitness score (closer to 0 represents the English
language). The results showing the key used, completion

time and the number of keys identified throughout the
process (i.e. the number of times the best key changed).
Each experiment was repeated ten times to ensure con-
sistency of the results, these are recorded individually be-
low so the keys can be visually compared.

3.1 Random Hill Climbing
The hill climbing algorithm has had the ability to get very
close to the correct key. For example, this can be shown
in repeat five of Figure 1, where the best score is a model
with the an output (WINSTUN). This bares close resem-
blance to the key used (WINSTON) to encrypt, and the
decrypted text will have close similarity to the text used.
Considering all the outputs from this algorithm in Table
2, they all reasonably close. This would suggest that us-
ing these keys for decryption would help a cryptanalysis
to identify some words or letters in the cipher text. Con-
sequently, this type of algorithm has fared considerably
well in the short amount of time taken to nearly decrypt
the message. This suggests that if this runs longer period
of time, it could potentially model the key used and un-
cover the original plaintext.

The results in Table 2 suggests that this algorithm has
the capability produce the best result due to the number
of good models it can find in quite a short period. For
example, repeats 8 with an output of ‘ACNSTON’ has
the shortest completion time of 48.30 (s), but has found
more than six thousand better models throughout the pro-
cess. This implies that with only two letters wrong in this
key that this decryption could be somewhat successful as
some words or letters would be recognisable.

Also, due to the nature of this algorithm constantly striv-
ing to find a better result it has nearly achieved its full po-
tential. Although it did not find the correct key within the
repeats tested, it nevertheless came close to solving it.

The graphs in Figure 1 represent each of the repeats
from Table 2. It is interesting to note that the graphs can be
represented as sound waves, but are a collection of all the
different hill climbing points within the scope.

All the lowest points in the graphs represent the start-
ing point from where the algorithm grows to a better result,
which is shown at the peaks throughout the processes.

Fascinatingly, it is not clear where the best result will
be found and image 5 of Figure 1 clearly shows this, since
within the process a sudden move to the best result noted.
This is better than any other keys that have been found.
Observing these graphs has helped to clarify the progress
of the algorithms at each repeat.

Hewage et al. A Learned Polyalphabetic Decryption Cipher

144 SNE 28(4) – 12/2018

TN

Assessing the implementation of the algorithm the com-
plexity is of quadratic-time O(N2). This suggests a in-
crease in the size of the input (the key size) would results
in a significant increase in complexity and therefore time
to complete. This suggests that while the algorithm is suit-
able for the small keys used in this research there may be
issues when scaling to larger keys.

3.2 Genetic Algorithm
The genetic algorithm results shown in Table 3, produces
an accurate model of the key on three occasions. It can
find the key used to encrypt the polyalphabetic cipher.
Also, considering the other keys, it has a success rate cor-
rectly modelling at least five out of seven letters of the
key. This largely suggests that using any of these keys
could uncover some words or phrases in the decrypted text.

The results also show that for each repeat the number of
best solutions has been reasonably consistent, this is as-
cribed to the underlying algorithm and its implementation.
As shown in Table 3, this algorithm finds a good number
of best solutions in a short period on average 23.40 (s).

The below graphs from Figure 2 represent the data
collected in Table 3. There is a clear pattern to the graphs,
the results demonstrate a consistent improvement in the
result. For example, repeat 1 in Figure 2 has a rapid
growth of finding the best result after 1000 other better
solutions. However, a plateau appears once it has found
its best solution.

This rectangular shape is a fluctuation between one
best solution and another, and suggests that it cannot im-
prove beyond this point (as shown in all other repeats).
Looking back at the data in Figure 2 shows that once it is
found what it thinks is the best solution of best keys, it does
not have the capabilities to be able to progress beyond that.

Hill Climbing Data Table
Rp.
No. Best Key Cipher

Score
#best
sol.

Time
(s)

1 WINI-
MON

-5531.01 6719 51.10
2 AED-

STON
-5835.32 6764 49.35

3 HER-
STON

-5892.45 6858 50.01
4 LCNSTO

N
-5579.58 6900 50.73

5 WINSTU
N

-4852.16 6816 53.18
6 ARN-

STON
-5498.92 6828 49.72

7 HINMT
ON

-5802.73 6893 48.58
8 AC-

NSTON
-5479.97 6793 48.30

9 HIN-
STOR

-5374.43 6773 50.32
10 CIN-

STEN
-5548.68 6794 49.75

Average -5539.52 6813 50.11

Figure 1: Random Hill Climbing Graphs
(Y-axis: Score; X-axis: No. of Best Solutions Found).

Table 2: Random Hill Climbing data.

 Hewage et al. A Learned Polyalphabetic Decryption Cipher

SNE 28(4) – 12/2018 145

T N

Nevertheless, the scores that have been collected prove
that this algorithm has the efficiency and reliability to
find a solution to this problem in a small amount of time.
The number of best solutions found throughout this pro-
cess make this algorithm reliable.

Looking at the implementation of this algorithm the
complexity is quadratic-time O(N2). This again suggests
that this algorithm might be better suited to modeling
shorter keys.

3.3 Random Optimisation
The random optimisation algorithm performs reasonably
well for a random search, though it should be noted it is
not as reliable as the other algorithms. The results in Ta-
ble 4, demonstrate some reasonable results. It is also clear
that it takes on average less time to complete and can get
some good results. This can be shown by looking at the
best keys, where some of the letters represent the original

key used to encrypt: thus, it is quite close to finding the
correct key. Not once though has the algorithm com-
pleted the process successfully. The data show that it has
the potential to search a much wider scope if the number
of repeats were increased in the algorithm. The best keys
here could have the potential to uncover some small
phrases, which could be useful to a cryptanalysis.

As mentioned previously, the inconsistency of this al-
gorithm is what makes it weak, and ultimately unusable.
On the other hand, when observing the graphs in Figure
3, they all show an improving state; and one which rep-
resents the hill climbing event, where it tries to find a bet-
ter solution to find its best result within the scope. Each
repeats has a different climb and different number of best
solutions found (as displayed in Figure 3). Interestingly,
they all bare similar qualities of aiming for better solu-
tions.

Hill Climbing Data Table
Rp.
No. Best Key Cipher

Score
#best
sol.

Time
(s)

1 WINI-
MON

-5531.01 6719 51.10
2 AED-

STON
-5835.32 6764 49.35

3 HER-
STON

-5892.45 6858 50.01
4 LCNSTO

N
-5579.58 6900 50.73

5 WINSTU
N

-4852.16 6816 53.18
6 ARN-

STON
-5498.92 6828 49.72

7 HINMTO
N

-5802.73 6893 48.58
8 AC-

NSTON
-5479.97 6793 48.30

9 HINSTOR -5374.43 6773 50.32
10 CINSTEN -5548.68 6794 49.75

Average -5539.52 6813 50.11

Figure 2: Genetic Algorithm Graphs
(Y-axis: Score; X-axis: No. of Best Solutions Found).

Table 3: Genetic Algorithm data.

Hewage et al. A Learned Polyalphabetic Decryption Cipher

146 SNE 28(4) – 12/2018

TN

However, they do this through different paths because of
its randomness and unreliability. For smaller problems,
this algorithm could be useful, although it has shown many
weaknesses within this research; and for larger keys used,
the chance of solving them is minimal.

Due to its simplicity the random optimisation algo-
rithm has a complexity is of linear-time O (N) which
means that for input (keys) there would be a proportional
increase in the complexity and therefore the time taken.

3.4 Simulated Annealing
The simulated annealing algorithm struggles to model

the keys, as shown in Table 5, all the best keys do not
bare any resemblance to the key used (WINSTON) to en-
crypt the text. Simulated annealing does not produce any
good results: the average cipher score implies that a text
deciphered using a key with this score would result in a
failure, since the message would still be unclear and not

readable English. It is noteworthy that even though this
algorithm was not successful it has the ability to find
many different though weak solutions throughout the
process in a reasonable amount of time.

The graphs in Figure 4 show an alternative view of
the performance of the algorithm. Each have a bad start,
with some results getting worse like repeats 6. However,
towards the end of the process the algorithms are now
adjusting themselves to only accept better results. This is
because the probability is less likely to accept the worse
results; thus, it gradually ascends to a result that is better
than the others. A good example of this can be shown in
repeats 6 (Figure 4). It starts off unpredictable but at the
end a curve appears where it begins to increase only using
the conditions to accept better results. As it is shown in
Figure 4, that all of the repeats exceed during the end of
its process.

Random Optimise Results
Rp.
No. Best Key Cipher

Score
#best
sol.

Time
(s)

1 JYNYTOA -6591.53 10 10.01

2 IKERTON -6659.19 9 9.24

3 WINSKGM -6325.53 23 9.63

4 BEPSTON -6147.19 4 9.18

5 WEHSTOT -6085.54 6 9.28

6 EFUSTOJ -6573.54 11 9.73

7 ZETSTEN -6743.52 6 9.22

8 WCNQION -6488.86 7 9.17

9 HXNVTON -6500.34 11 9.21

10 FINKTOR -6383.89 8 9.21

Average -6449.91 9.5 9.39

Figure 3: Random Optimisation graphs
(Y-axis: Score; X-axis: No. of Best Solutions Found).

Table 4: Random Optimisation Results

 Hewage et al. A Learned Polyalphabetic Decryption Cipher

SNE 28(4) – 12/2018 147

T N

In consequence, it can be suggested that with larger
sized inputs this algorithm works a lot more efficiently in
finding better solutions. Although, this is something that
could be tested in further research in this area. The im-
plementation of this algorithm has a complexity of O(N),
this is linear-time, and implies that the increase in perfor-
mance is dependent upon the size of the input given.
Therefore, this could make this algorithm work more
functionally with larger problems.

3.5 Discussion
Comparing the results for the algorithms tested as dis-
played in Figure 5, as well as analysing the results of all
the tests, it has been shown that the genetic algorithm has
been the most effective and efficient way for finding the
correct solutions.

It has been the only algorithm to successfully find a
correct solution. Finding the solution however is not the
only factor and the time taken and number of best solu-
tions found in the process are considered. Thus, due to all
these contributors the genetic algorithm has been the
most effective.

This is shown in Figure 5, as it illustrates that the ge-
netic algorithm has nearly found the best solutions in un-
der processing 1000 better solutions. On the contrary, the
other algorithms are took longer to produce worst keys,
and did not get the best result possible. However, it must
be acknowledged that the hill climbing algorithm also
performed well, nearly achieving the correct solution
through widening the search scope. In this respect, it can
also be considered a very effective algorithm and could
be useful for discovering other solutions.

Simulated Annealing Results
Rp.
No. Best Key Cipher

Score
#best
sol.

Time
(s)

1 JVNITAC -6930.51 3817 66.28

2 IGGHTEJ -7192.06 3762 75.85

3 AYGOTOC -6858.18 3842 67.73

4 YVAFTZZ -7214.97 3878 68.61

5 WUJOEOD -7012.83 3865 70.50

6 COZETAN -6897.47 3811 66.40

7 HMNOIOC -6899.66 3867 66.27

8 WBSDIOB -7210.67 3885 66.38

9 FBCHTOC -6919.98 3826 66.49

10 EOFOEBU -7559.53 3819 67.14

Average -7069.59 3837 68.17

Figure 4: Simulated Annealing Graphs
(Y-axis: Score; X-axis: No. of Best Solutions Found).

Table 5: Simulated Annealing Results

Hewage et al. A Learned Polyalphabetic Decryption Cipher

148 SNE 28(4) – 12/2018

TN
4 Conclusion
This paper has investigated
the use of machine learning
algorithms for decrypting
polyalphabetic substitution
ciphers. Four well known
machine learning algo-
rithms were applied; hill
climbing, genetic algo-
rithms, simulated annealing
and random optimisation.

It can be concluded that
the genetic algorithm has
been the most effective al-
gorithm used in this re-
search, with hill climbing
as second. Furthermore,
they both have the potential to be useful for larger prob-
lems. The main reason why genetic algorithm has per-
formed best is that it has achieved the correct key used in
three out of ten repeats, with an average time of 23.40 (s),
and a consistent number of best solutions found.

It is possibly the nature by which the algorithm works
that makes it so successful; however, this would be an
ideal opportunity to exploit this algorithm further in ex-
tended research.

Throughout this work the polyalphabetic technique has
been adopted for use of encryption and decryption. Using
this difficult type of cipher demonstrates the power of the
algorithms used, though some are clearly superior to oth-
ers. While every effort was made to optimise the imple-
mentation of the machine learning algorithms, further im-
provements may be possible. Limited experimentation was
undertaken to identify suitable training parameters and ad-
ditional experimentation may yield improved results.

References
[1] Stamp M. Information security: Principles and practice.

2nd edition. Oxford: Wiley, John & Sons, 2011.
[2] Martin KM. Everyday cryptography: Fundamental

principles and applications. Oxford: Oxford University
Press, 2012.

[3] Schneier B. Applied cryptography, second edition.
2nd ed. John Wiley & Sons, 1996.

[4] Bergmann K. Cryptanalysis Using Nature-Inspired
Optimization Algorithms. Master of Science. University
of Calgary, 2007.

[5] Bell J. Machine learning. 1st ed. Indianapolis, Indiana:
John Wiley & Sons, Inc., 2015.

[6] Zang H, Zhang S, Hapeshi K. A Review of
Nature-Inspired Algorithms. Journal of Bionic
Engineering, 7, pp. S232-S237, 2010.

[7] Russell S, Norvig P. Artificial intelligence. 3rd ed.
Pearson, pp.120-129, 2016.

[8] Lones M. Metaheuristics in nature-inspired algorithms.
Proceedings of the 2014 conference companion on
Genetic and evolutionary computation companion -
GECCO Comp '14, 2014.

[9] Practical Cryptography. Quadgram Statistics as a Fitness
Measure. Available at: http://practicalcryptog-
raphy.com/cryptanalysis/text-characterisation/quad-
grams/#a-python-implementation (Accessed: 13 Febru-
ary 2017), 2009.

[10] Segaran T. Programming collective intelligence: Build-
ing smart web 2.0 applications. United States: O’Reilly
Media, Inc, USA, 2007.

[11] Bell R. A beginner's guide to Big O notation. Rob-
bell.net (open access article). Available at: https://rob-
bell.net/2009/06/a-beginners-guide-to-big-o-notation/
(Accessed: 12 April 2018), 2018.

[12] Conway D, White JM. Machine learning for hackers.
Sudbury, MA, United States: O’Reilly Media, Inc, USA,
2012.

[13] Kahn D. The codebreakers: The comprehensive history
of secret communication from ancient times to the Inter-
net. New York, NY: Simon & Schuster Adult Publishing
Group 1997.

[14] Churchhouse RF. (2001) Codes and ciphers: Julius Cae-
sar, the enigma and the internet. Cambridge: Cambridge
University Press, 2001.

[15] Gollmann D. Computer security. 3rd ed. Chichester,
United Kingdom: Wiley, John & Sons, 2010.

Figure 5: Comparing the graphs for a single repeat of each technique.

