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Abstract. Rhythmic activities were widely observed in
many brain regions. Human EEG recording revealed
several frequency modulation of the oscillation reflecting
internal brain states such as attentional modulation in
visual systems. On the other hand, in vivo intracellular
recordings suggested that individual neurons showed
persistent membrane fluctuations and global oscillation
originated from the activity of the neuronal fluctuations.
Furthermore, it was found that some types of neuron
showed membrane resonance in their subthreshold
level. However, functional roles of the subthreshold
resonance in a recurrent neural network are still un-
known. Here, we computationally examined the behavior
of resonator network driven by external inputs and or-
ganized through the spike-timing-dependent plasticity
(STDP) under oscillatory background and noise. As a
result, it was shown how the resonator network modified
its responsiveness depending on frequency modulation
and its connectivity through the STDP.

Introduction

Oscillatory activities in brain often reflect internal
states. For example, attentional level in visual systems is
characterized by the intensity of gamma frequency
component in oscillation. In a sleep stage classification,
rapid-eye-movement (REM) sleep and non-REM sleep
are typically defined by theta and delta powers in EEG.
On the other hands, several intracellular recordings
demonstrated membrane potential fluctuations in indi-
vidual neurons. Importantly, theoretical and experi-

mental studies revealed that the fluctuation did not mean
a disadvantage but lead to high advantage of neural
computation.
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In addition, it is well known that synaptic plasticity
is a key factor of brain computation such as learning and
memory. Recent experimental study reported the STDP
that potentiates transmission efficacy if pre-synaptic
neuron elicits a spike before post-synaptic neuron. On
the other hand, the STDP depresses it when post-firing
proceeds pre-firing [1]. The STDP is considered as an
important neural basis of transformation between spa-
tial- and temporal-information because the plasticity
includes relative timings of spikes. In addition, theoreti-
cal studies suggest that the STDP has computational
advantage [2].

Furthermore, recent intracellular recording study re-
ported that some types of neurons in hippocampus and
entorhinal cortex showed a relatively strong response to
specific frequency when they receive sinusoidal current
injection whose frequency changes in time-dependent
manner such as a chirp current. The response property
of a resonator neuron in isolated condition was well
examined and ionic mechanism on the generation of
resonance was identified. However, how the resonators
behave in recurrent networks, especially with synaptic
learning, is still unclear.

Here, we performed numerical simulation of the
network with subthreshold resonance. In our previous
study, the frequency selectivity of network connectivity
and automatic tuning for optimal noise intensity were
already demonstrated under the fixed timing of external
inputs [3]. In the present study, we examined how much
the network organization was robust for the external
stimuli with various temporal jitters and randomness.
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Figure 1. Neuronal response to oscillatory inputs.

1 Method

1.1 Neuron model

We employed the resonator neuron model described by
Acker, et al. [4]. The resonator neuron exhibits sub-
threshold resonance under isolated conditions due to its
intrinsic properties such as persistent sodium, slow and
non-inactivating potassium, hyperpolarization-activated
cation channels. Dynamics of the membrane potential is
described with the Hodgkin-Huxley formalism.

1.2 Network organization

Our network included 100 excitatory neurons. All the
neurons had excitatory synapses mediated by first order
kinetics and all-to-all connectivity in the initial state.
Self-excitation was prohibited and all synaptic weights
were modified through the STDP. The STDP potentiat-
ed or depressed individual synapses depending on the
temporal order between pre- and post-synaptic firings.

1.3 Input currents

Our model network receives four types of input cur-
rents. All neurons in the network receive a bias current,
lapp, in order to generate subthreshold resonance the
same as the original model. Background oscillatory
activity, lyave, i described as sinusoidal current injection
whose frequency is modulated, corresponding to the
internal state of a brain. Background noise, |ngs, is
given as the Gaussian white noise with a diffusion con-
stant D. External stimulations, lgjm, are applied onto 20
neurons, and their timing is 2 millisecond-earlier than
every peaks of the lyae In some simulations, we intro-
duced temporal jitters to these stimuli in the time-fixed
or stochastic manner.
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Figure 2. Synaptic weights after the STDP learning.

2 Result

2.1 Responsiveness of single neuron to
oscillatory inputs

Neuronal responses to oscillatory inputs with various
frequencies and amplitudes are shown in Figure 1. Each
panel indicates an input current (upper), membrane
potential as output (middle), and response amplitude
(lower) (Figure 1A). The response to different frequen-
cies is indicated in Figure 1B. Upper and lower panel
respectively shows the time course of the membrane
potential driven by 30 Hz and 40 Hz with the same
amplitude. The neuron showed supra-threshold re-
sponse, that is, spike firings in some parameter ranges.
Figure 1C shows spike outputs for various parameters of
oscillation. The heat map indicates the number of
spikes. The x-axis is frequency and the y-axis the ampli-
tude of the oscillatory current. Difference in responsive-
ness is most prominent in the modulation between 40Hz
or 50Hz of oscillation.

2.2 Synaptic learning through the STDP

Figure 2 indicates the synaptic learning of the network
driven by the external inputs under oscillation and
noise. Through the STDP learning, the model network is
gradually modified such that the synapses from the
stimulated neurons (SN) to the non-stimulated neurons
(non-SN) are potentiated. On the other hand, synapses
from non-SN to SN are depressed (Figure2A, B;
A=2uA, f=40Hz, jitter=-2msec). Furthermore, such an
asymmetric connectivity was alternated through the
frequency modulation of oscillatory background.
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The model network showed the automatic tuning of
frequency selectivity for noise intensity such that 1)
asymmetric connectivity or symmetric connectivity was
organized frequency-independently under extremely
weak or strong noise, respectively, 2) asymmetric and
symmetric connectivity was frequency-dependently
organized under the moderate noise intensity. Such the
frequency selectivity robustly appeared even with the
temporal jitter of external stimuli that proceeded to
peaks of oscillation. On the other hand, if the timing of
external stimuli had delay from the peaks, the frequency
selectivity disappeared (Figure 2C).

3 Disucussion

The present computational study demonstrates several
properties of a resonator network. Through the for-
mation of non-uniform connectivity, the resonator net-
work could store the spatial information of external
stimuli in frequency-dependent manner. Furthermore,
such the selectivity of frequency was automatically
tuned for moderate noise even under the redundancy of
external stimuli such as temporal jitter. It is possible to
expect that frequency-dependent neural processing such
as attentional modulation in visual systems had a neural
basis shown in present study.
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