SNE SOFTWARE NOTE

MbedTarget - A Simulink Target for

Cortex-M Microcontrollers
Olaf Hagendorf

HS Wismar, Research Group CEA,; olaf.hagendorf@hs-wismar.de

SNE 28(2), 2018, 75 - 80, DOI: 10.11128/sne.28.sw.10417
Received: April 15,2018 (Selected ASIM GMMS/STS 2018
Postconf. Publ.), Accepted: May 15, 2018

SNE - Simulation Notes Europe, ARGESIM Publisher Vienna,
ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Abstract. The MATLAB/Simulink add-ons for C and C++
code generation, MATLAB Coder, Simulink Coder and
Embedded Coder, are a widely used and well established
technologies for rapid prototyping, model based design,
real-time simulation and similar technologies. Math-
works provides the prerequisites for code generation for
many Simulink blocks and MATLAB functions. Missing is
the direct support of peripheral functions like digital and
analog input/outputs, communication functionalities and
other microcontroller features when the goal is to exe-
cute a Simulink model within a small embedded system.
To extend the above coders to support these functions,
several add-on toolboxes exists, delivered by Mathworks
itself or by third-party suppliers. In the following, the
programming of microcontrollers is shortly introduced
and their resource utilization is compared, starting with
assembler up to code generation by a Mathworks coder
products. After introducing and comparing different
Cortex-M coder toolboxes, the MbedTarget toolbox as an
open source alternative is presented. With examples and
code snippets, the principle of the code generation pro-
cess, the work flow of MbedTarget together with the
principle to define a Simulink block is shown.

Introduction

MATLAB/Simulink is widely used in the engineering
education, among others in control theories. Other top-
ics of the student education are microcontroller (MCU)
programming and the integration of these into physical
processes. Main tools for implementing the algorithms
are C and C++ compiler.

The interaction with physical systems makes
knowledge about control theory often necessary. But the
media break between Simulink at one side and C and
C++ programming at the other side can make this com-
plicated.

With MATLAB, Simulink and Embedded Coder,
toolboxes to create C and C++ code out of Simulink
models or MATLAB programs are provided.

To combine both topics, the direct support of pe-
ripheral functions like digital and analog input/outputs
and other MCU features to interact with a physical sys-
tem within a Simulink model is necessary. For this,
additional packages to extend the coder toolboxes exist,
as MATLAB or third-party Add-Ons.

After a short introduction of MCU programming
variants in Chapter 1 and their resource comparison, the
next chapter describes a few coder toolboxes. In chap-
ter 3, the new MbedTarget is introduced as an alterna-
tive coder toolbox.

1 Cortex Microcontroller

Cortex MCUs are 32- and 64bit microprocessors, divid-
ed into three subfamilies Cortex-M, -R and -A. They are
licensed by ARM Holding. The licensees are producing
MCUs with the Cortex microprocessor core but compa-
ny specific peripheral components.

1.1 Cortex-M family overview

Members of the Cortex-M family are 32bit MCUs with
a broad range of processing power, memory sizes, pe-
ripheral components, etc. Since the introduction of the
first variant, the Cortex-M3 core was released in 2005
and first silicon products were sold in 2006 [1], other
variants with more or less powerful cores, e.g. Cortex-
M7 and -MO, were introduced. The Cortex-M MCUs
have been become a widely used technology, a huge
amount of manufacturers are delivering variants. The
distributor mouser [2] has ca. 6800 variants of Cortex-
M MCUs in its catalog. At all, it lists ca. 40000 MCUs.

Olaf Hagendorf MbedTarget - A Simulink Target for Cortex-M Microcontrollers E!I!I

1.2 Programming

The following subchapters are shortly introducing and
comparing typical embedded programming principles.

Assembler

Since the invention of microprocessors, assembly lan-
guage has been used [3]. To have the full control over
them and their periphery, it is still common to use as-
sembly language. The importance of it decreased over
the time in comparison to other languages, but it is still
under the 10 most used [4].

C/C++ with HAL library

Many MCU producing companies not only provide the
silicon chip but also deliver software libraries. Experi-
ences show that unlike with previous 8 and 16bit pro-
cessors, the programming of current 32bit MCUs with-
out these libraries considerably increases the overhead.
As an example, STM32Cube by STMicroelectronics
(STM) [5] is introduced. The software consists of two
parts:

e STM32CubeMX A tool for C code generation for
initialization of hardware functions, adding and con-
figuring of middleware libraries like TCP/IP stack,
RTOS, USB, file systems etc. and finally the genera-
tion of project files for several integrated develop-
ment environments (IDEs).

e STM32 MCU packages These packages implement a
hardware abstraction layer (HAL) to provide stand-
ardized API calls for all STM MCU families. An ad-
ditional part of the packages are middleware libraries
like TCP/IP stack, RTOS, USB, file systems and
graphical libraries.

Mbed library

The Mbed project was started in 2005 by two ARM

employers, Simon Ford and Chris Styles, who are help-

ing out in undergraduate and after-school projects. Both

were not satisfied with the current situation and devel-

oped the idea to ease the MCU development [6]. Among

others, main ideas of this are [7]:

e open source MCU debugging and programming

e hardware

« online toolchain object oriented HAL with adaption
layer to different company specific HAL libraries

The object oriented HAL is a C/C++ MCU software

platform containing object oriented peripheral and li-

brary APIs, C adaption layers and startup code for 232

MCUs [7].

Additionally, several Python tools are part of Mbed,
providing functions for compiling, testing library man-
agement, exporting project files to several IDEs etc.

Mbed significantly reduces the effort of getting
started with ARM based MCUs. A drawback is the
amount of additional software layers which leads to an
increase of binary sizes. The possibility to compile the
same code for different MCUs is advantage and a dis-
advantage at the same time.

Data flow oriented programming

This programming paradigm, i.e. visual programming,

has some advantages in comparison to the above men-

tioned imperative, text based languages [8, 9]:

o the depiction of a real world object succeeds particu-
larly well

e challenging concepts of imperative languages like
variables and dynamic data structures are not rele-
vant

e it provides parallel execution without the need of
explicit instruction

o the clarity eases prototypical implementation

Conclusion

As a comparison of the different programming princi-
ples, the hello world of MCU programming, a LED
blinking application, is compared in its resource usage
(sizes of read-only and read/write memory) [10]. The
effort to program the application, can only be qualita-
tively estimated. The effort decreases from the usage of
assembler language, over a general C and HAL pro-
gramming and Mbed. The data flow oriented program-
ming will produce the lowest cost in terms of time to
create the application. But it also has the highest re-
source utilization as can be seen in Table 1.

2 MATLAB/Simulink Targets for
Cortex-M Controller

Simulink is a widely used data flow oriented develop-
ment tool. To program MCUs with it, beside the
MbedTarget, introduced in this paper, several other
targets exist. They are provided by the Add-Ons manag-
er of MATLAB, or are available as third-party tools.
Three of these: Embedded Coder Support Package for
STMicroelectronics Discovery Boards [11], Simulink
Coder Support Package for STMicroelectronics Nucleo
Boards [12] and STM32-MAT/TARGET [13] are intro-
duced in the following.

— B

Olaf Hagendorf

MbedTarget - A Simulink Target for Cortex-M Microcontrollers

Programming RAM size
principle Flash size (byte) (byte)
assembler 88 0
C without library 716 1632
MCU specific HAL ~ 1392" 1032*
2852° 1032°
Mbed HAL 22576° 1432°
37716 484"
Data flow oriented® 58932 8060

" low layer library used [5]
? high layer library used [5]
? without RTOS
* with RTOS (default config.)
* MbedTarget v1
Table 1. Resource comparison of programming
principles using the blinking example [10].

2.1 Embedded Coder Support Package for
STMicroelectronics Discovery Boards

STM32 Discovery kits are low cost solutions for the
evaluation of STM32 Cortex-M MCUs by STM. Beside
the MCU and the necessary infrastructure to use it, the
kits contains additional peripheral items like displays
and sensors. Mouser [2] lists 20 kits in its catalog, the
support package can handle three of them:
STM32F746G-DISCO, STM32F7691-DISCO and
STM32F4-Discovery.

For the STM32F4-Discovery the old, no longer sup-
ported standard peripheral library is used, the other two
boards are using the Mbed library.

The only supported compiler is GNU GCC.

For the STM32F4-Discovery board, Simulink blocks
for analog in, digital in/out, audio in/out and Interrupt
handling are available. All MCU pins are usable.

For the other boards, blocks for analog in, digital
in/out, serial communication, timer, TCP, UDP and
audio in/out are available. The MCU pin usage is re-
stricted to 22 pins.

The supported MCU hardware functionality for all
three variants is very basic, the pin usage is partly re-
stricted.

To generate, compile and link the C Code of a Sim-
ulink model a single step — Deploy to Hardware — is
necessary.

The package requires the Embedded Coder toolbox.

Figure 1 shows an example, an alternating digital
pin.

STM32F4

H I?I —» convert —» Pin 12 I l I I
(ANE

Convert to logical GPIOD

LED4 (Green)
(GPIOD, Pin 12, Pull-up, 50MHz)
Figure 1. Example with Embedded Coder Support
Package for STM Discovery Boards.

2.2 Simulink Coder Support Package for
STMicroelectronics Nucleo Boards

STM32 Nucleo kits are the lowest cost solutions for the
evaluation of STM32 Cortex-M MCUs by STM. Beside
the MCU and the necessary infrastructure to use it, the
kits does not contain additional peripheral items except
a few kits with Ethernet connectivity.

Mouser [2] lists 38 kits in its catalog, the support
package supports 9 of them: Nucleo-F401RE, Nucleo-
F103RB, Nucleo-F302R8, Nucleo-F031K6, Nucleo-
L476RG, Nucleo-L053RS8, Nucleo-F746ZG, Nucleo-
F411RE and Nucleo-F767ZI.

For all boards the Mbed library is used.

The only supported compiler is GNU GCC.

For all boards, Simulink blocks for analog in, digital
in/out, serial communication and timer are available.
The MCU pin usage is restricted to 22 pins. The sup-
ported MCU hardware functionality is very basic.

To generate, compile and link the C Code of a Sim-
ulink model a single step — Deploy to Hardware — is
necessary.

The package requires the Simulink Coder toolbox.
Figure 2 shows an example, an alternating digital pin.

MBED

UL

Pin: 13

Figure 2. Example with Simulink Coder Support
Package for STM Nucleo Boards.

2.3 STM32-MAT/TARGET

This packages is provided by STM. It is based on-
STM32Cube. The Simulink package supports allSTM32
MCUs.

All compiler supported by STM32CubeMX can
beused: EWARM, Keil MDK V4 and V5, TrueSTU-
DIO,SW4STM32 and GNU GCC.

Olaf Hagendorf MbedTarget - A Simulink Target for Cortex-M Microcontrollers E!I!I

Blocks for analog in/out, digital in/out, serial com-
munication, timers, watchdogs are provided. The block
set uses the code generation utility STM32CubeMX.
Because of this, the supported MCU hardware function-
ality is considerably large.

To generate, compile and link the C Code of a Sim-
ulink model, two steps are necessary: executing the
Simulink function: Deploy to Hardware and project
building in the chosen IDE.

The package requires the Embedded Coder toolbox.
Figure 3 shows an example, an alternating digital pin.

STM32Fxx m‘ STM3z ‘,’
: D1
STM32F407VGTx M B Pin1a GPIOD
ST GPIO_Write

Figure 3. Example with STM32-MAT/TARGET.

2.4 Conclusion

Whereas the provided functionality of the support pack-
ages introduced in Chapter 2.1 and Chapter 2.2 is very
basic, the other package offers nearly as much functions
as the MCU hardware provides.

All packages are free of charge. But the main disad-
vantage of all is: they are closed source. Own extensions
are difficult to realize or even not possible. The support-
ed MCU depends on the manufacturer, mainly STM32
products are supported. Mathworks and third parties
offers some more targets supporting e.g. NXP KL25Z
and Ko64F, Infineon XMC, Nordic Semiconductor
NRF51 and BBC micro:bit. Although the number of
Cortex-M MCUs is huge, the selection of Simulink
targets and supported MCUs is restricted.

3 MbedTarget

MbedTarget is completely open from both sides: all
code and configuration files i.e. MATLAB code, tem-
plates, configurations etc. as well as all MCU libraries
are available free of charge and as source codes. It is
based on MbedOS 5, therefore all MbedOS 5 compati-
ble microcontrollers can be used to run Simulink mod-
els. MbedTarget uses internally GNU GCC to compile
the generated source code. Additionally, project files for
all Mbed supported IDEs can be generated. With these
project files, the generated code can be manually com-
piled and/or debugged when the Simulink model does
not run or own blocks are developed.

The Simulink block library contains two groups of
blocks:
o for Mbed functionality
o for sensors, actors, .. based on additional libraries

The first group contains blocks for analog in/out,
digital in/out, user LEDs, user buttons, serial communi-
cation, timers, Ethernet, RTOS etc.

The second group contains blocks for external ana-
log to digital converter, digital to analog converter,
external digital in/out chips, several sensors and actors
like temperature, pressure, motion, magnetometer,
range, motor control, display, etc. Additionally, MCU
specific blocks for encoder, input capture, random num-
ber generator and counter are provided.

MbedTarget supports both available coder toolboxes
with Simulink model code generation capabilities, Sim-
ulink Coder and Embedded Coder.

To generate, compile, link and flash the C Code of a
Simulink model a single step — Deploy to Hardware — is
necessary.

Figure 4 shows an example, a blinking LED.

‘ —>|| convert J—b{ LED1

Figure 4. Example with MbedTarget.

3.1 Principle of MbedTarget code generation

The principle workflow when processing a Simulink
model to an executable binary is shown in Figure 5.

Simulink/Embedded
Coder

libraries

output: model.rtw

output: model.cpp + Makefile ¥

Matlab Run-time interface
support ¢fcpp/h files

Figure 5. Principle of the MbedTarget code generation.

Simulink or Embedded Coder are generating an rtw file
from the model. That is a specific textual representation
of the model. Together with tlc files (target language
compiler files) which are part of MATLAB and of the
specific Simulink target, the target language compiler
(TLC) generates several c/cpp/h files and a Makefile
meanwhile the process can be influenced by hook calls.

— B

Olaf Hagendorf

MbedTarget - A Simulink Target for Cortex-M Microcontrollers

MbedTarget uses the code generation principle
based on tlc files: mbed.tlc for the Embedded Coder or
mbed_grt.tlc for Simulink Coder as the starting points.

The TLC offers several hooks to customize the code
generation process i.e. the transformation process from
rtw to c/cpp files. Mainly two hooks are used by
MbedTarget: before calling_make for code handling
processes and after_calling_make for the compiling and
flashing process.

The whole procedure can be summarized by the fol-
lowing steps:

1. The TLC uses the current MATLAB working path to
store all generated files in a folder with a name con-
structed using the Simulink model name and ‘slprj’,
e.g. blinky_slprj. During this process Simulink tlc
files where used for each standard Simulink block,
for each non-Simulink block another tlc file is
provided by MbedTarget. Beside the c/cpp/h files
generated out of tlc files, also a makefile is created
based on template makefiles mbed.tmf or
mbed_grt.tmf. This makefile needs an additional
make include file, generated within the hook func-
tion, described in step 2.

2. After step 1, during the hook call before calling_
make, a target specific folder is created. Into this
folder, all generated files are copied and a Mbed spe-
cific make include file is generated. This include file
is very similar to a standard gcc makefile used by
Mbed.

3. After executing the hook before_calling_make make
is called and a bin file is created.

4. During the hook call after_calling_make, the bin file
is flashed to the target MCU.

3.2 MbedTarget Simulink block usage

This chapter describes shortly the components of an
MbedTarget Simulink block. The Digital Output block
is chosen because it is one of the simplest blocks. It has
only a single input port to write a digital value to MCU
pin and is depicted in Figure 6.

I

Digital Output

JPinAD

Figure 6. MbedTarget Digital Output block.

With a double click onto the block, a configuration
dialog opens as shown in Figure 7. The block has 4
parameters which has to be configured in the dialog:

(*&l Block Parameters: Digital Output
mbed Digital Output
Sends the digital value to the specified port.pin.

The pin behaviour (pullup, pulldown, opendrain, ...) can be
configured.

An input of 1 sets the pin high and 0 sets the pin low.

Parameters

Port Name: A * Pin Number: 0
Output Mode PullDefault
Sample time (-1 for inherited):

-1

II Cancel Help Appl

Figure 7. Parameter dialog box.

e Port Name and Pin Number to choose a digital port,
e.g. PAO

¢ Output Mode for pull up, pull down, open drain, ... -
options are corresponding to Mbed options of the
DigitallnOut C++ class for digital in/out pins.

e Sample time defines the time period, how often the
digital value is written to the MCU pin. The value
has to be a multiple of the global step size.

3.3 MbedTarget Simulink block creation

To implement custom Simulink blocks, the following

elements are necessary:

¢ a block mask

¢ a S-function

¢ a tlc file consisting of a mixture of target language
and C/C++ code

The block mask defines the outlook of the block as
shown in the Simulink model editor, defines the input
items available in the block mask dialog. It also defines
block title, block help text and the help menu entry.

The block parameters connect the block with a S
function, i.e. a binary mexw64 file implemented in C,
and a tlc file witch has the identical name. In MbedTar-
get, the S-function mainly describes the behavior of the
block: number and type of input and output ports,
checks parameters and prepares the transfer of these to
the TLC.

A tlc file is a mixture of tlc code, a script like lan-
guage, and C/C++ code in a form of snippets. The script
code controls the usage of the C/C++ snippets and how
and where they are put into a generated C/C++ file. The
tlc file contains mainly three functions: Setup, Start and
Output.

Olaf Hagendorf

MbedTarget - A Simulink Target for Cortex-M Microcontrollers

Setup controls the inclusion of additional headers
and source files, where Start is executed once to gener-
ate initialization code and Output is called once in every
simulation loop. Even if the name is output, the function
has to handle also input values, send by Simulink to
input ports.

In the following, snippets of the Start function are
described in detail as an example:

1. %assign nPort-
Name=LibBlockParameterValue (PortName, 0)

2. %assign nPin-
Num=LibBlockParameterValue (PinNumber, 0)

3. %assign
pname="P"+FEVAL ("char", nPortName+64)

4. %assign
pname=pname+" "+FEVAL ("int2str",nPinNum-1)
Lines 1 and 2 fetches the variables entered in the block
mask dialog. Lines 3 and 4 creates from these a pin

name, e.g. PA 0 as used for STM32 MCUs.
5. %assign name = FEVAL("strrep",
LibGetFormattedBlockPath (block),"/"," ")
6. %$assign name = FEVAL("strrep",name," ;, ")
7. %assign name = FEVAL("strrep",name,"-",6" ")
Lines 5 to 8 create a unique name based on the com-
plete block name, e.g. blinky Digital Output for a
block Digital Output in a model blinky. The Simulink
path contains characters, e.g. /°, spaces and ‘-’, which
are replaced by ©_’ to create a valid C identifier.
8. %openfile declbuf
9. DigitalInOut $%<name> (%<pname>) ;
10. %closefile declbuf
11. %assign srcFile = LibGetModelDotCFile ()
12. %<LibSetSourceFileSection(srcFile, "Decla-
rations", declbuf) >
Finally, lines 8 to 12 create a single line in the dec-
laration section of the generated source file, shown in
line 13:
13. DigitalOut blinky Digital Output (PA 0);
The line 13 is the necessary Mbed code to create a
digital output.
A few more lines in the tlc file, using the same prin-
ciple, are creating the remaining, necessary C code.

3.4 MbedTarget main function

The MbedTarget supports the single task model of Sim-
ulink. To create the main function, the target contains
template file: mbed srmain.tlc and mbed grt main.cpp.
The creation of multithreaded application by Simulink
is not yet supported, but can be done manually with
MbedTarget RTOS blocks.

4 Conclusion

MbedTarget was developed to improve and ease the
MCU usage in several modules like robotics, sensor/
actor systems and embedded control systems of student
education. A common characteristic of all these mod-
ules is the intensive usage of MATLAB/Simulink in the
theoretical part. The practical implementation of the
theoretical knowledge is time consuming and errorprone
when using typical programming languages like C/C++.
By using MbedTarget, the media break between Sim-
ulink and C programming could be removed. The dis-
advantage of an increased resource usage does not play
a role in the prototypical implementations in this appli-
cation field, enough MCU resources are available with-
out problems.

MbedTarget is published at GitHub [14] and will be
continuously developed there.

References

[1] YiuJ. Definitive Guide to ARM Cortex-M3 and Cortex-
M4 Processors. Newnes, UK, 2013.

[2] https://www.mouser.de (accessed 01.2018)

[3] Kusswurm D. Modern X86 Assembly Language Pro-
gramming. Springer, USA, 2014.

[4] https://www.tiobe.com/tiobe-index/ (accessed 12.2017)

[5] STM32Cube: http://www.st.com/en/embedded -
software/stm32cube-mcu-packages.html (accessed
12.2017)

[6] https://os.mbed.com/handbook/Foundersinterview (ac-
cessed 12.2017)

[7] https://www.mbed.com/en/ (accessed 12.2017)

[8] Keltsch C. Ein visuelles Programmiersystem zur Model-
lierung deskriptiver Untersuchungen in der Datenanaly-
se. Diplomarbeit, Diplomica Verlag, 1998.

[9] Maydl W. Komponentenbasierte Softwareentwicklung
fiir datenfluBorientierte eingebettete Systeme. Disserta-
tion, University Passau, Germany, 2005.

[10] https://github.com/ATM-HSW/ASIMFachtagung2018
(accessed 01.2018)

[11] https://de.mathworks.com/hardwaresupport/st-discovery-
board.html?s tid=AO_HS info (accessed 01.2018)

[12] https://de.mathworks.com/hardwaresupport/st-
nucleo.html?s_tid=AO_HS info (accessed 01.2018)

[13] http://www.st.com/content/st_com/en/products/develop
ment-tools/software-developmenttools/stm32-software-
developmenttools/stm32-utilities/stm32-mat-target.html
(accessed 01.2018)

[14] https://github.com/ATM-HSW/mbed_target (accessed
01.2018) 130 Proc.

