SNE TECHNICAL NOTE

Modeling and Simulation-based Development of
Autonomy Features for Drones

Shihui Chen”, Umut Durak*?, Sven Hartmann?

Tu Clausthal, Institute of Informatics; *shihui.chen@tu-clausthal.de
2German Aerospace Center (DLR), Institute of Flight Systems

SNE 28(2), 2018, 55 - 60, DOI: 10.11128/sne.28.tn.10413
Received: April 15,2018 (Selected ASIM GMMS/STS 2018
Postconf. Publ.), Accepted: May 15, 2018

SNE - Simulation Notes Europe, ARGESIM Publisher Vienna,

ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Abstract. In the last decade, more and more aerial
robotics researchers show interests in developing au-
tonomy features for drones to solve problems in differ-
ent areas. But the development of autonomy features is
complex and labor intensive. Accordingly, model-based
design and simulation-based verification is becoming an
industry standard in development of autonomous air-
borne systems. This we call modelling and simulation-
based development. However, commercial model-based
design and simulation tools and supporting testing envi-
ronments require a considerable amount of investment.
In oder to provide a more economic and efficient solu-
tion, this paper investigates a pipeline for modeling and
simulation-based development of autonomy features for
drones using open source software and hardware stacks.
In this context, a generic drone architecture is being
designed based on open source hardware platforms,
namely CC3D and Raspberry Pi. In the software stack,
LibrePilot, an open source software suite to control mul-
ticopters is extended to support the designed architec-
ture. The design of the autonomy features is developed
using the model-based design in Scilab/Xcos. Xcos Re-
useable and Customizable Code Generator is utilized for
automatic code generation. The software stack will also
include a generic plant model. The workflow starts from
autonomy feature modeling and ends with flight testing
through Model-in-the-Loop (MiL) testing, Software-in-the-
Loop (SiL) testing, target deployment, Hardware-in-the-
Loop (HiL) testing. The approach is demonstrated with a
simple case study about an autonomous landing feature.

Introduction

Overview

An aircraft without a human pilot aboard is called an
unmanned aerial vehicle (UAV), commonly known as a
drone. A UAV is regarded as an essential part of an
unmanned aircraft system (UAS). The other parts of the
system are ground control system (GCS) and the com-
munication system between the UAV and GCS. The
usage of UAS has increased sharply in the recent years.
Varies researchers have developed different autonomy
features of drones to solve problems in many fields,
such as health care emergency response. Especially in
some dangerous situations, UAS that incorporate a high
level of autonomy has the ability to accomplish the
missions more efficiently without risking lives.

The architecture of autonomous systems is very im-
portant. It is regarded as a method to structure the algo-
rithms for creating functionalities. Figure 1 depicts the
general autonomy architecture [15] for UAS.

Deliberative layer

Functional layer

b s ™\

High-level
Architecture

Ground
Control
Station (GCS)

- [EE=a)

v,

b

mm maonitoring D
\ J

Figure 1. General autonomy architecture for UAS
(Adapted from [15]).

A& S

The low-level architecture implements the basic func-
tions like navigation and control algorithms that keep
the UAV stable in the air and listen to commands from
the high level. In this paper, the low-level architecture is
realized using OpenPilot CC3D controller [5].

Chen et al. Modeling and Simulation Based Development of Autonomy Features for Drones

Clough [4] and Merz [13] have elaborated the dif-
ference among automatic, autonomous and intelligent
systems. An automatic system will exactly do as the
programmings say while an autonomous system has the
capabilities to make decisions for achieving the mis-
sions. An intelligent system can do whatever an auton-
omous system does and it can produce the goals by its
own motivations without any instructions and influence
from the outside world. In this paper, system develop-
ment towards autonomous drones will be discussed.

Modeling and simulation-based
development

Model-based design [8] and simulation-based verifica-
tion are becoming an industry standard in development
of autonomous airborne systems. This we call modeling
and simulation-based development (Figure 2).

[.manl
Maodeling
fl‘;‘on[rouer
Modeling

Figure 2. Modeling and simulation based development.

A plant [9] is often desired with a transfer function
which indicates the relation between the input signals
and the output signals of a system without feedback,
commonly determined by physical properties of the
system. Usually a plant model is identified by collecting
and processing raw data from the real world. We could
define the plant model by using mathematical equations
or creating a block diagram model that implements
known differential-algebraic equations governing plant
dynamics. This is called plant modeling.

The mathematical model conceived from the plant is
applied to identify dynamic characteristics of the sys-
tem. According to those characteristics, a control algo-
rithm that can be executed under the condition which
the physical processes are controllable is derived and a
suitable controller is chosen. The controller has two
levels, the supervisory control that determines the mode
transition structure and the lowlevel control that decides
the time-based inputs to the plant [12]. For UAS, low-
level controller corresponds to low-level architecture and
supervisory control is a part of high-level architecture.

To verify the system flexibility, we use simulation-
based verification. Each unit and subsystem should be
tested and finally achieve a Model in-the-Loop (MiL)
testing. Then it leads to Code Generation (CG) [7].
Software in-the-Loop (SiL) testing follows CG to verify
the generated code by checking its conformance to the
model. Then it comes to the Hardware in-the- Loop
(HiL) testing where the generate code is tested using the
target hardware.

1 Autonomy Feature
Development Pipeline

1.1 Architecture

This paper aims at proposing a process to enable devel-
oping complex autonomy features for drones by using
open source software and hardware.

(o -__"\
(__normal mode

communicate via UART

.. PN

Figure 3. Testbed architecture.

In this paper, regarding their availability, accessibility,
cost and flexibility, 250mm class racing drones are used
as testbeds. Figure 3 illustrates the testbed architecture.
CC3D running the LibrePilot firmware is utilized as the
Flight Controller (FC). In the normal mode, users can
give command to the Remote Controller (RC) to control
the drone. Once the flight mode is switched to experi-
ment mode, Raspberry Pi 3, the target hardware plat-
form of the testbed, will take charge of the controlling
while the RC will be disabled. Scilab/Xcos will be uti-
lized as the modelbased design and simulation environ-
ment. Xcos Reuseable and Customizable Code Genera-
tor [16] is used for generating Scilab scripts from Xcos
model. For the use case, the generated Scilab script for
the autonomous landing feature is deployed to Raspber-
ry Pi 3. It gets data from ultrasonic distance sensor and
CC3D controller, computes the next command and send
it to CC3D controller as the new command.

Chen et al. Modeling and Simulation Based Development of Autonomy Features for Drones

The communication between Raspberry Pi 3 and
CC3D is physically established by Universal Asynchro-
nous Receiver/Transmitter (UART) interface where Sci-
Py [11] is used to execute Scilab scripts on target plat-
form through. Related Python libraries are used for
interface implementations. UART can control the series
device that attached to the computer interface. It pro-
vides the computer with the RS-232C Data Terminal
Equipment (DTE) interface so that it can "talk" to and
exchange data with modems and other serial devices.

1.2 Open source software and hardware
stacks

Scilab/Xcos Scilab [3] is a open source software for
numerical computation providing a powerful computing
environment for engineering and scientific applications.
It is a platform to be utilized for model simulation, load-
ing, design, saving and compilation using a graphic
editor called Xcos. Xcos has some core features like
standards palettes and blocks, model building and modi-
fication, model customization and simulation. For some
special requirement blocks which are not provided in
the Xcos palette browser, users can create their own
module by toolbox skeleton to achieve the specific
goals.

LibrePilot LibrePilot [17] is an open source research
project which focuses on research and development of
software and hardware to be utilized for different appli-
cations like vehicle control and stabilization, unmanned
autonomous vehicles and robotics.

LibrePilot includes hardware and software elements
(Figure 4). In the hardware side, UAV is manly con-
trolled by a RC called transmitter. The transmitter has a
paired receiver for signal receiving. This receiver also
connects with the FC and directly control the actuators.
The role of FC is to interpret the control command from
RC and runs control algorithm and flight code on the
aircraft. If FC is connected to PC where runs LibrePilot
Ground Control Station (GCS), users are able to moni-
tor and log flight telemetry data of their vehicle in a
real-time environment. This is the software system of
LibrePilot which includes GCS software and flight
firmware. The flight firmware is implemented in C and
C++ using the FreeRTOS [1] embedded real time oper-
ating system and typically runs on ARM architecture
micro controllers. The communication between GCS
and FC is implemented via UAVTalk protocol.

GCS Flight firmware

Settings UAVObjects
{collaboration, configuration...)
-synchronised at connect
-sent to flight controller and stored in|

Flash-on Change g

s e
7 UAVTalk
< telematry 3 "
_\ pratocol |

Settings UAVObjects
{collaboration, configuration, ..}

-persistent

-can be exported/imported to Disk -loaded from Flash at startup

Data UAVObjects
(sensor data, systemn state...)

Data UAVObjects
(sensor data, system state...)

-periodically received from -transiant
flight controlier -RAM only

Figure 4. Elements of LibrePilot (adapted from [6]).

UAVTalk is a highly efficient, extremely flexible and
completely open binary protocol designed specifically
for communication with UAVs [6]. It implements the
low level communication between the GCS and the
autopilot. It acts as a transportation tool for the data
structures defined by the UAVObjects, a data container
written in XML format for all of the telemetry data.
This protocol does not need to know the details of the
data structure, its mission is to send byte arrays and
routing received byte arrays to specified object for deal-
ing with the data. For example, all of the RC commands
are stored in an UAVObject called ManualControl-
Command. Meanwhile, the states of the vehicle can be
easily accessed from UAVObjects including accelerate
states and attitude states. This is also the way to establish
the communication between CC3D and Raspberry Pi 3.
Raspberry Pi Integration. Raspberry Pi [14], series
of small single-board computers, could be equipped
with operating system. Raspberry Pi 3 Model B is the
third generation of Raspberry Pi family. It has the quad
core 64bit CPU that has the best performance. To physi-
cally connect Raspberry Pi and CC3D, we use the main
port of CC3D which can be configured as a serial port
and GPIO pin module of Raspberry Pi as it shown in
Figure 5. Moreover, To achieve an autonomous system,
we utilize an ultrasonic distance sensor to measure dis-
tance between the drone and the at ground. An ultrason-
ic distance sensor transmit from and receive an ultrason-
ic wave with a single ultrasonic transmitting and receive
element to measure proximate distances such as vehicle
floor heights or distances to obstacles or pedestrians
approaching relative to a vehicle [10]. For the testbed, a
low-cost sensor called HC-SR04 is selected. However,
The ECHO pin of the sensor is rated at 5V while the
GPIO input pins are rated as 3.3V. Therefore two resis-
tors are added to protect the GPIO module. To access
the telemetry data in Python, UAVTalk protocol is ap-
plied. For instance, below is a code excerpt to get atti-
tude state of the drone.

Chen et al. Modeling and Simulation Based Development of Autonomy Features for Drones

CC/CC3D

oPIDTT

arozT

Griozs

—]

oe
oC
oc ™
oc
1o
D9
2024
() D

8 g
g
2) 3

[
5
§

9

°
:]
]
-
H]
w
2]

.
(=]

GPIOZ0

010000
NOIOT - 1601 -]

Figure 5. Hardware connection diagram.

self.objMan.AttitudeState.metadata.telemetry
Update-
Mode=UAVMetaDataObject .UpdateMode .PERIOD
IC
self.objMan.AttitudeState.metadata.telemetry
UpdatePeriod.value=50
self.objMan.AttitudeState.metadata.updated()

Yaw=self.objMan.AttitudeState.Yaw.value
Pitch=self.objMan.AttitudeState.Pitch.value
Roll=self.objMan.AttitudeState.Roll.value

Until here, all of the open source hardwares are inte-
grated together for data communication between the
Raspberry Pi 3 and the CC3D.

2 Demonstration

2.1 Workflow

To demonstrate the pipeline that promotes modelling
and simulation-based development using open source
software and hardware stacks, we developed an auton-
omous landing controller.

A generic Scilab/Xcos quadcopter model called Ge-
neric Quadcopter Simulation (GQS) that employs a
proportional-derivative flight controller as a low-level
architecture is used as a plant model. GQS model is
based on [2].

Sofial : Gnd / Pwr | Tx | Rx FlexiPort
Ground i} : Gnd /| Pwr | Sci | Sda

MainPort Serial : Gnd / Pwr/ Tx /| Rx
Sbus : Gnd | Pwr / Nc / Rx

| | | GRA/Pwr/Tx/

This generic model can be tailored using parameters
to represent a specific platform. The high level architec-
ture is designed in a model-based fashion using Scil-
ab/Xcos. MiL testing is to optimize and verify the con-
troller design for the autonomy feature. Xcos Re-
useable and Customizable Code Generator [16] per-
forms as a mean of generating code for the autonomous
landing model and to evaluate how good the generated
code functions are, a SiLL simulation will be tested. For
HiL testing, Raspberry Pi 3 executes the code that au-
tomatically generated from code generator, A second
Raspberry Pi 3 is used as a realtime simulation comput-
er target that enables an UART communication between
the plant model and the controller. Finally, to verify the
autonomy feature, all of the hardwares stacks is assem-
bled on the drone and flight testing is conducted.

Figure 6 explains the modeling and simulation based
workflow applied:

(MiL Testing) [SiL Testing } (HiL Testing) (nng.unng)

GOS Modsl GOS Modsl Wmm_} [==E
Aucimet sty Autciand Sclat
usestion haiion
UART

Auoland Codo Autoland
Madel Generation Scilab function

s TR

\ S . .,

Figure 6. Demonstration workflow.

CEI0 inacieet

-
[b p—

command

.

"

Chen et al. Modeling and Simulation Based Development of Autonomy Features for Drones

2.2 Model in-the-loop testing

In order to verify the autonomous landing controller, a
MiL simulation (Figure 7) is conducted.

(State)
Theta
Phi
(Input) Psi
Theta {Command) 4
Ph Theta Y
Psi L of Autoland 1t 0 Lol cos | z
Throttle Controller Pa x_dot
x_doubledot Throttle y._dot
y_doubledot z_dot
x_doubledat
y_doubledot
r_doubledat

Figure 7. MiL simulation.

We prepared eight scenarios to test that in different
situations this system will be working. Figure 8 shows
the results for one of the scenarios.

0.2
Phi o) —
02

02f.
Theta o o
02

0 02 04 06 08 1 12 14 16 1B 2 22 2.4 26 28 3
t

Psio

0 02 04 06 08 1 12 14 18 18 2 22 24 2.628 3 32

Zo [— _

o ——
t
Figure 8. MiL simulation result.

The system can land for all the eight scenarios that
means the designed autonomous landing controller is
working properly.

2.3 Software in-the-loop testing

After MiL testing, the next step for evaluation is to
generate source code out of autonomous landing con-
troller model. As mentioned before, we use Xcos Re-
useable and Customizable Code Generator for generat-
ing Scilab scripts. The auto generated code is then rein-
troduced in MiL schema. The same eight scenarios are
executed and the results are compared with the MiL
results.

2.4 Hardware in-the-loop testing

The HiL testing is essential a further step in testing the
autonomous landing feature.

UART

= channel Raspbery Pi 3
o Computer
Autoland GQS simulation .
Scilab function in Scilab/Xcos Test execution

Figure 9. HiL simulation process.

Figure 9 depicts the test setup. The middle Raspberry Pi
3 runs the GQS simulates the drone with controller
while the target Raspberry Pi 3 on the left side will
execute the Auto Land Scilab function for further verifi-
cation. It is quite convenient for two Raspberry Pis to
establish UART communication by GPIO using RX and
TX pins. To achieve UART between Pi and Xcos mod-
el, a ATOM toolbox named serial Xcos 10 module [18]
is used. This module provides a Xcos block to interface
real hardware platform for a Xcos simulation via serial
ports. It can also be applied into HiL simulation. Origi-
nally, the block supports Arduino and provides the bidi-
rectional way to receive C structure input signal from an
embedded system and then send back a C structure
output signal to the embedded system. On the other
hand, to execute autonomous landing Scilab function in
Raspberry Pi, a python module called Scilab2Py [19], a
mean to seamlessly call Scilab functions and scripts
from Python is applied. The result for HiL simulation
for the same eight scenarios matched with the MiL
results.

Keep reading telemetry
data

Flight Mode

Pi take control of
ManualControlCommand

v

Keep reading -
distance sensor

call siclab
function

- False
Send the computing result

to FC as new
ManualControlCommand

Ture

RC take control of
ManualControlCommand

Figure 10. Target execution logic.

Chen et al. Modeling and Simulation Based Development of Autonomy Features for Drones

2.5 Flight testing

Figure 10 describes the execution logic of auto generat-
ed Scilab script on the target platform for achieving the
autonomous landing.

Raspberry Pi is listening to the flight mode from FC,
once the flight mode changes to experiment mode, Pi
will take control of the drone and receive the required
system states which are sent to Scilab function for com-
puting the movement of autonomous landing. When
landed, RC will take back the control of FC.

Once the code is running on the testbed platform the

Figure 11. Flight testing.

3 Conclusion

Since the usage of drones is sharply growing while the
modeling and simulation based development gets popu-
lar in many fields as well, it is quite meaningful to in-
vestigate a methodology to combine those two.

In this paper, we utilize the free open source soft-
ware stacks including Scilab/Xcos which serves as a
model design and simulation environment and LibrePi-
lot. We also use open source hardware stacks like Rasp-
berry Pi, HC-SR04 sensor and CC3D. They are sold
with low price tags in the market and easy to acquire.
The result shows that the pipeline is able to be used for
simple autonomy feature design. However, since of all
the resources are open source and low-end, the whole
system does not perform perfectly. For example, the
sensor can be easily broken so that the sensed data is not
correct. For the future work, we will be using more
reliable products with this pipeline to expect better
performance.

After building the pipeline for the Simulation and
Model-based development of autonomy features for
drones using only open source software and hardware,
more students who have interests in aerospace domain
can take this pipeline as an guidance for developing
their own autonomy features.

References

[1] Barry R. Using the FreeRTOS real time kernel: a practi-
cal guide. Real Time Engineers, 2010.

[2] Bouabdallah S. Design and control of quadrotors with
application to autonomous flying. PhD thesis, 2007.

[3] La Vern Campbell S, Chancelier JP, and Ramine Nikou-
khah. Modeling and simulation in Scilab/Scicos. Spring-
er, 2006.

[4] Clough BT. Metrics, schmetrics! how the heck do you
determine a uav’s autonomy anyway. Technical report,
Air Force Research Lab, 2002.

[5] LibrePilot/OpenPilot community. Coptercontrol/
cc3d/atom hardware setup, 2016.

[6] LibrePilot/OpenPilot community. Librepilot documenta-
tion, 2017.

[7] Erkkinen T. Model style guidelines for flight code gen-
eration. In ATAA Modeling and Simulation Technologies
Conference, 2005.

[8] Erkkinen T, Potter B. Model-based design for do-178b
with qualified tools. In AIAA Modeling and Simulation
Technologies Conference and Exhibit, 2009.

[9] Franklin GF, Powell JD, Emami- Naeini A. Feedback
control of dynamic systems, volume 3. Addison-Wesley
Reading, MA, 1994.

[10] Iwabuchi M, Ohzawa S. Ultrasonic distance sensor,
April 17 1990. US Patent 4,918,672.

[11] Jones E, Oliphant T, Peterson P. {SciPy}: open source
scientific tools for {Python}. 2014.

[12] Lee EA, Seshia SA. Introduction to embedded systems:
A cyber-physical systems approach. MIT Press, 2016.

[13] Merz T. Building a system for autonomous aerial robot-
ics research. In Proc. of the IFAC Symp. on Intelligent
Autonomous Vehicles, 2004.

[14] Raspberry Pi—Teach. learn, and make with raspberry pi.
Raspberry Pi, 2016.

[15] Viguria A. Autonomy architectures. In: Encyclopedia of
Aerospace Engineering. 1-14, 2016. Proc.

[16

[17

[18

[19

https://forge.scilab.org/index.php/p/xcos-code-generator/
https://www librepilot.org
https://atoms.scilab.org/toolboxes/wgserialxcosio

— o

https://pypi.python.org/pypi/scilab2py

