
39

S N E B E N C H M A R K N O T E

A Solution to ARGESIM Benchmark C21 ’State
Events and Structural-dynamic Systems’ based on

Modelica Components
Jan-Philipp Disselkamp, Peter Junglas*, Alexander Niehüser, Phillip Schönfelder

Department of Engineering “Dr. Jürgen Ulderup”, PHWT Vechta/Diepholz, Schlesierstr. 13a, 49356 Diepholz, Germany
*peter@peter-junglas.de

SNE 28(2), 2018, 39-48, DOI: 10.11128/sne.28.bn21.10411

Received: March 10, 2018 (Draft); Revised May 15, 2018 (Final)

Accepted: May 20, 2018

SNE - Simulation Notes Europe, ARGESIM Publisher Vienna,

ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Abstract. The ARGESIM C21 benchmark ’State Events and
Structural-dynamic Systems’ adresses difficulties that appear
in the modelling and simulation of discrete systems with state
and structure-changing events. The solution presented here
uses Modelica and a component based approach. It shows
that even though Modelica may have conceptual problems
modelling such systems, it is capable to deal with all the tasks
of the benchmark in a straightforward way.

Introduction
The ARGESIM C21 benchmark [1] deals with sys-

tems showing state events or even structural-dynamic

behaviour. It requires to investigate three different ex-

amples: a bouncing ball, an RLC circuit with a diode

and a rotating pendulum with a free flight phase. The

solution shown in the following applies a component

based modelling approach using the Modelica language

[2] and its standard library MSL.

Since the benchmark is quite complex and consists

of several subtasks, we concentrate here on the concrete

tasks defined in the benchmark itself. The definition of

the studied example systems in full detail can be found

in [1]. Different approaches all based on Modelica com-

ponents have been compared in [3], together with a

discussion of underlying conceptions and encountered

problems.

With Modelica one has a choice between several

simulation programs. The results presented here have

been obtained using MapleSim 2017-3 from Maplesoft

under Kubuntu 16.04. Using Dymola from Dassault

Systemes leads to identical results in most cases. Some

implementation problems that showed up in one or both

systems as well as minor numerical deviations are de-

scribed in [3].

The models and scripts necessary to reproduce all

results presented here are available from [4].

1 Case Study Bouncing Ball
The Bouncing Ball example is a model for a falling

mass with or without air resistance that is reflected

when hitting the ground. The reflection is either de-

scribed as a simple timeless event or as a continuous

process using a spring-damper model for the deforma-

tion of the ball.

1.1 Event contact model

Description of model implementation. The

‘bouncing ball’ model uses concepts and compo-

nents of the Mechanics.Translational and

Blocks parts of the MSL. One creates a component

for each force acting on the falling mass, including

a Hardstop component that is responsible for the

bounce (cf. Figure 1). Except for the hardstop all

components are standard or easily implemented and

produce the continuous equations of the system.

For the implementation of the hardstop two different

versions have been studied: A simple one, based on [5,

p. 57], is defined by the following Modelica code:

model Hardstop1d

parameter Real mu = 0.9;

Position s;

SNE 28(2) – 6/2018



40

Disselkamp et al. A Modelica Solution to ARGESIM Benchmark C21

Figure 1: Bouncing ball with event contact

Velocity v;

Flange_a flange_a;

equation

s = flange_a.s;

v = der(s);

flange_a.f = 0;

when s <= 0 then

reinit(v, -mu * pre(v));

end when;

end Hardstop1d;

The when construction is the basic method in Modelica

to create an event, the reinit restarts the solver with

new initial values. This implementation leads to the no-

torious fall through problem near the Zenon point.

To cope with this one has to define another event

flying (like in [2, pp. 96f]) and add a counter force

at the hardstop

flying = not (s <= 0 and v <= 0);

flange_a.f = if flying then 0 else -m*g;

The resulting Hardstop1dA components works prop-

erly, the mass comes to rest after a large (but finite)

number of bounces.

Simulation until last bounce – scattering preven-
tion. With the given parameters for the free fall case

one computes from [1, eq (16)] the bouncing time limit

tB,∞ = 27.1290 s. Using Hardstop1dA and standard

solver parameters the simulation gives tB,∞ = 27.1287 s.

Adding air resistance results in tB,∞ = 25.5894 s.

For the defective case of Hardstop1d the bench-

mark suggests adding a maximal height event and stop-

ping the bouncing accordingly. This can be imple-

mented in Modelica in the following way:

isFalling = v < 0;

isAtTop = edge(isFalling);

when isAtTop and s <= stopHeight then

reinit(s, 0);

reinit(v, 0);

flange_a.f = -m*g;

elsewhen s <= 0 then

reinit(v, -mu * pre(v));

flange_a.f = 0;

end when;

The resulting limit time of course depends on the value

of the parameter stopHeight. Interestingly, the sim-

ulation works even for the value stopHeight = 0 and

reproduces the former result with air resistance, while

in the free fall case the bounces stop earlier at tB,∞ =

27.1166 s.

Testing accuracy of event handling. To determine

the bounce times the Hardstop1dB component con-

tains variables for the number and time of the last

bounce that are updated at the bounce event. Figure 2

shows the difference between the theoretical values and

the simulation results for a model without air resistance.

0 20 40 60 80 100
no. bounce

0

2

4

6

t [
s]

10 -11

Figure 2: Accuracy of bounce times

Compensation of linear model deviation. This task

asks to compensate for the later bouncing of the linear

model (i. e. the one without air resistance) by introduc-

ing an initial velocity v0. Doing so for the linear model

one cannot reach identical final bounce times, because

a simple calculation shows that it is bounded below by

tmin
B,∞ =

2

1−μ

√
2x0μ

g
= 27.09s

for the given values.

Therefore one has to introduce an initial velocity

into the nonlinear model. To compute it, one can solve

its ODE analytically (which is easily possible outside

the bounces), use a small Matlab script to add up the

bounces and compute the final bounce time as function

SNE 28(2) – 6/2018



41

Disselkamp et al. A Modelica Solution to ARGESIM Benchmark C21

of v0. Finally an application of fzero gives the requested

value

v0 = 4.39563m/s

Figure 3 shows the solutions of the original linear

and the shifted nonlinear model.

0 5 10 15 20 25 30
t [s]

0

5

10

s 
[m

]

air resistance
no air resistance

Figure 3: Compensation of linear deviation.

1.2 Model with continuous contact

Description of model implementation. The imple-

mentation of the bouncing ball model with continuous

contact is very similar to the event based model, only

the Hardstop component has been exchanged by an

ElastoGap component (cf. Figure 4).

Figure 4: Bouncing Ball with continuous contact.

The MSL library already contains an ElastoGap,

but it is more complicated in order to cope with unphys-

ical situations. It is easy to adapt it to the benchmark

requirements by using the following equations:

equation

s_rel = flange_b.s - flange_a.s;

v_rel = der(s_rel);

y = s_rel + w;

hasContact = (y <= 0);

fc = if hasContact then

-c*s_rel - d*v_rel else 0;

flyRestarted = (fc <= 0);

der(w) =

if (hasContact and not flyRestarted)

then -v_rel else -(c/d)*w;

flange_a.f = fc;

flange_b.f = -fc;

The events are defined implicitely through the if
expressions and the corresponding logical variables. As

always in Modelica the complete set of equations of

the model is collected from all components and con-

nections, then preprocessed and simplified. Only after

these transformations the simulation program chooses

appropriate state variables. This procedure makes it dif-

ficult to compare it with the general approaches defined

in [1]. But since the total number of variables and equa-

tions is fixed in a Modelica model, one would probably

describe it best as a ’maximal state space approach’.

Dependency of results from algorithms.
MapleSim offers the choice of three variable-step

solvers, which are all well known: the Runge-Kutta-

Fehlberg solver RKF45, a Cash-Karp solver CK45

and a Rosenbrock solver ROS of third-fourth order.

They have all been adapted by Maplesoft to cope with

DAE systems. The model has been simulated with

all three solvers and the following parameters: εabs
= 1e-6, εrel = 1e-6, Nplot = 30001. Reference values

with higher accuracy have been created using RKF45

and the parameters εabs = 1e-12, εrel = 1e-12. Using a

different solver for the reference values leads to almost

identical results. Creation of additional output points

at events has been switched off to get output values at

fixed times.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t [s]

-8

-6

-4

-2

0

2

4

s 
[m

]

10 -4 ROS: error in s_rel

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

v 
[m

/s
]

ROS: error in v_rel

Figure 5: Errors for solver ROS.

All error plots are very similar, a typical result is

SNE 28(2) – 6/2018



42

Disselkamp et al. A Modelica Solution to ARGESIM Benchmark C21

shown in Figure 5. The much higher error of the veloc-

ity is due to its large slope together with deviations in

the event times (cf. Figure 6).

4.215 4.22 4.225 4.23 4.235 4.24
t [s]

-0.6

-0.4

-0.2

0

0.2

v 
[m

/s
]

Ref
ROS

Figure 6: Velocity results near a bounce.

The maximal errors against the reference solution

are given in Table 1. The standard solver CK45 is

the worst here, one should use the ROS solver instead,

which is generally recommended for stiff problems, and

gives much better results than the other two. This is no

surprise, since DAEs generally require stiff solvers.

RKF45 CK45 ROS

s [1e-3 m] 3.7940 11.8984 0.7023

v [m/s] 2.3443 2.6007 0.5104

Table 1: Absolute errors for different solvers.

Investigation of contact phase. In order to output

values of the maximal height hmax und maximal depres-

sion wmax the component ElastoGapA has been ex-

tended to create additional output events. For a closer

look at the contact phase the model is simulated with

higher accuracy (εabs = 1e-10, εrel = 1e-10, Nplot =

100000) using the Rosenbrock solver.

The results of the state and output variables (includ-

ing the contact force) can be seen in Figure 7 and Figure

8 for the first and second contact phases and in Figure 9

for the second flight phase.

Table 2 shows the values for the maximal height and

maximal depression. After the first 10 bounces the ball

doesn’t reach another flight phase, but oscillates while

remaining in contact phase.

Parameter studies. Increasing k by a factor 100

leads to much more bounces since the contact time and

the energy loss per bounce are small. Decreasing k by

100 leads to a sticking behaviour, the energy loss is too

1.433 1.434 1.435 1.436
t [s]

-10

-5

0

5

x/
y 

[m
]

10 -3

x
y

1.433 1.434 1.435 1.436
t [s]

-10

-5

0

5

10

v 
[m

/s
]

1.433 1.434 1.435 1.436
t [s]

0

0.005

0.01

w
 [m

]

1.433 1.434 1.435 1.436
t [s]

0

5000

10000

f c [N
]

Figure 7: First contact phase.

2.862 2.863 2.864 2.865
t [s]

-4

-2

0

2
x/

y 
[m

]

10 -3

x
y

2.862 2.863 2.864 2.865
t [s]

-5

0

5

v 
[m

/s
]

2.862 2.863 2.864 2.865
t [s]

0

2

4

6

w
 [m

]

10 -3

2.862 2.863 2.864 2.865
t [s]

0

2000

4000

6000

f c [N
]

Figure 8: Second contact phase.

high for a second flight phase. A decrease or increase

of d by a factor 10 leads to similar results for the same

reasons (cf. Figure 10).

The results for changing d by a factor F and chang-

ing k by a factor 1/F2 are almost identical (cf. Figure

11). This can be explained easily by solving the simple

contact equation [1, eq. 21] analytically, which shows

that the percentage of energy loss per bounce depends

on k/d2 [6].

Bouncing Ball on Mars. Due to the lower gravity the

bouncing ball behaviour on Mars is stretched in time,

but otherwise similar (cf. Figure 12). The small differ-

ences are due to the different air resistances.

SNE 28(2) – 6/2018



43

Disselkamp et al. A Modelica Solution to ARGESIM Benchmark C21

1.5 2 2.5 3
t [s]

0

1

2

3

x/
y 

[m
]

x
y

1.5 2 2.5 3
t [s]

-10

-5

0

5

10

v 
[m

/s
]

1.5 2 2.5 3
t [s]

0

5

10

w
 [m

]

10 -3

1.5 2 2.5 3
t [s]

0

5000

10000

f c [N
]

Figure 9: Second flight phase.

0 10 20 30 40
t [s]

0

5

10

s 
[m

]

ref
low k
high k

0 10 20 30 40
t [s]

0

5

10

s 
[m

]

ref
low d
high d

Figure 10: Variation of k and d.

2 Case Study RLC Circuit with
Diode

The second example is a simple RLC circuit with a

diode, where different diode models are to be investi-

gated. It is constructed easily with standard components

from the Electrical.Analog part of the Modelica

Standard Library (MSL) (cf. Figure 13), which even

contains two simple diode components. This model is

used throughout this section, only the implementation

of the diode component is changed.

Description of model implementations. To sim-

plify the construction of electrical components, the

n hmax [m] wmax [mm]

1 10.00000000000 9.87387827

2 2.49466100656 4.97183608

3 0.63276017545 2.51178619

4 0.16058207486 1.26910129

5 0.04046397059 0.64031534

6 0.01002858933 0.32201325

7 0.00239917584 0.16085257

8 0.00053012002 0.07922586

9 0.00009490838 0.03783789

10 0.00000588204 0.01701446

11 -0.00000660874 0.01123246

12 -0.00000917794 0.01009085

13 -0.00000968520 0.00986545

14 -0.00000978536 0.00982095

15 -0.00000980527 0.00981176

Table 2: Maximal heights and depressions.

0 0.5 1 1.5 2
t [s]

0

5

10

s 
[m

]

k 0 /100
10 d 0

0 5 10 15 20 25 30 35
t [s]

0

5

10

s 
[m

]

100 k 0
d0 /10

Figure 11: Comparison of k and d changes.

MSL contains a partial model OnePort that defines

external connection points and the internal variables i
und v. One creates a concrete model by inheriting from

OnePort and adding the equation that defines the con-

nection between i and v. This mechanism will be used

in the following for all diode models.

The shortcut diode can be implemented using the

IdealDiode from MSL. A simpler version can be

SNE 28(2) – 6/2018



44

Disselkamp et al. A Modelica Solution to ARGESIM Benchmark C21

0 2 4 6 8
t [s]

0

5

10

s 
[m

]

Earth
Mars

0 2 4 6 8
t [s]

-15

-10

-5

0

5

v 
[m

/s
]

Earth
Mars

0 2 4 6 8
t

0

5

10

s 
[m

]

Earth (time stretched)
Mars

Figure 12: Bouncing ball on Earth and on Mars.

Figure 13: RLC circuit with diode.

found in [5, p.56], which uses a standard trick to cope

with the non-functional relation between i and v:

model DIsc1 "short-cut diode"

extends OnePort;

Real s;

Boolean off;

equation

off = s < 0;

v = if off then s else 0;

i = if off then 0 else s;

end DIsc1;

The Shockley diode DIshu1 is even simpler, it de-

fines parameters IS and UT and the equation

i = if v < 0 then 0 else IS*(exp(v/UT)-1);

For the implementation of the approximated Shock-

ley diode one writes a simple linear interpolation func-

tion and has

model DIas1 "approximated Shockley diode"

extends OnePort;

parameter Real IS = 1e-8;

parameter Real UT = 26e-3;

parameter Integer N = 10;

parameter Voltage uMax = 3.84e-2;

Real up[N] = linspace(0, uMax, N);

Real ip[N] = IS*(exp(up/UT) - ones(N));

Boolean off;

equation

off = v < 0;

i = if off then 0

else linInterp(v, up, ip);

end DIas1;

The final model is the ‘explicit Shockley diode’,

which is defined by differentiating the algebraic equa-

tion of the complete RLC model. In the context of a

component based environment used here, one can only

differentiate the i-v relation to get the explicit compo-

nent DIesu1 defined by the equations

off = v < 0;

if off then

i = 0;

else

der(i) = (Is/UT)*exp(v/UT)*der(v);

end if;

The events are again defined implicitely by the if-

expressions. According to the terminology of [1], one

may call this a ‘switching model parts’ approach. The

only noteworthy detail is in the explicit diode, where

the variable i is a state variable (differentiated) in one

branch, and a simple algebraic variable in the other.

Such a situation often presents problems for the simula-

tion environment, but MapleSim works nicely here. The

well-known Dymola program can’t cope with this com-

ponent and stops the simulation, when the first locking

phase appears, claiming to hit upon a singular linear

system of equations. The obvious workaround – substi-

tute i = 0 by der(i) = 0 – makes i a state variable

always and saves the day of the Dymola user.

SNE 28(2) – 6/2018



45

Disselkamp et al. A Modelica Solution to ARGESIM Benchmark C21

Dependency of results from algorithms. The gen-

eral procedure (using reference values of high accuracy)

and the general solver parameters are the same as in

Section 1.2.

For the interesting variables iL, uC, iD and uD rela-

tive errors have been computed by comparing to the ref-

erence solution and scaling by maximal absolute values

of the variable. The results for the different solvers are

displayed in Table 3 for the shortcut diode and in Table

4 for the Shockley diode.

RKF45 CK45 ROS

εiL 425.90 440.30 305.94

εuC 4.65 3.48 4.13

εiD 549.64 328.32 243.72

εuD 254.71 163.66 19.29

Table 3: Shortcut diode: Relative errors [in 1e-6].

RKF45 CK45 ROS

εiL 521.08 494.31 42.67

εuC 5.59 5.97 5.82

εiD 215.95 199.58 18.82

εuD 283.15 302.26 27.23

Table 4: Shockley diode: Relative errors [in 1e-6].

Again the Rosenbrock solver gives the highest ac-

curacy, but in the shortcut model the difference to the

other solvers is only marginal (except for uD), whereas

it is an order of magnitude in the Shockley model.

The behaviour of the errors over time is similar for

all variables and both models. An example for the short-

cut diode and variable iD is shown in Figure 14.

3.2 3.22 3.24 3.26 3.28 3.3 3.32 3.34 3.36 3.38 3.4
t [s] 10 -4

-6

-4

-2

0

2

4

iD

10 -4

RKF45
CK45
ROS

Figure 14: Shortcut diode: Relative errors for iD.

Comparison of shortcut and Shockley diode model.
Figure 15 shows the behaviour of the relevant variables

for models with shortcut resp. Shockley diode over two

switching periods starting at 0.3 ms to get rid of initial

effects. The very small values of the diode current iD
for the Shockley diode are due to its rather large value

of UT leading to a high resistance in conducting phase.

3 3.02 3.04 3.06 3.08 3.1 3.12
t [s] 10 -4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

i L [A
]

10 -3

shortcut
Shockley

3 3.02 3.04 3.06 3.08 3.1 3.12
t [s] 10 -4

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

uC
 [V

]

shortcut
Shockley

3 3.02 3.04 3.06 3.08 3.1 3.12
t [s] 10 -4

-2

0

2

4

6

8

10

12

14

16

18
i D

 [A
]

10 -5

shortcut
Shockley

3 3.02 3.04 3.06 3.08 3.1 3.12
t [s] 10 -4

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

u D
 [V

]

shortcut
Shockley

Figure 15: Comparison of shortcut and Shockley diode.

Simulation times have been obtained by perform-

ing seven runs each and computing mean values of the

last five, thereby minimizing initial loading time ef-

fects. MapleSim outputs timing values for different

stages of the computation, which shows that the largest

part here is not the integration itself, but a task de-

scribed as ‘preparing for integration’. This part is done

much faster for the Shockley model than for the short-

cut model, reducing the total computation time by 44%.

Approximation of Shockley diode model. The

model using the approximated Shockley diode with dif-

ferent numbers of interpolation points almost repro-

duces the results of the Shockley diode, the only no-

table difference being the diode current iD (cf. Fig-

ure 16). The corresponding plot of the absolute errors

nicely shows the approximation points. Relative errors

for the other variables are small, a typical behaviour is

displayed in the lower plot.

SNE 28(2) – 6/2018



46

Disselkamp et al. A Modelica Solution to ARGESIM Benchmark C21

Figure 16: Comparison of Shockley and approx. Shockley
diode.

Relevance of choice of algebraic state. It’s easy

to use the inverse relation v(i) for the Shockley diode

writing

if v < 0 then

i = 0;

else

v = UT * log(i / IS + 1);

end if;

This leads to identical simulation results. But inter-

estingly, the computing times are different drastically:

The new variant is 25 times slower in MapleSim. In

Dymola the simulation times do not differ at all.

Investigation for real-time simulation. MapleSim

provides a few fixed-step solvers, in the following the

RK4 solver is used with a step size of 1e-8. Furthermore

the constraint projection has been switched off and the

number of event iterations set to 1. Compared to the

standard solver parameters this leads to identical results

for the shortcut and shockley diodes, whereas the model

using the “explicit Shockley” diode DIesu1 differs in

the diode current iD: It drifts to negative values during

the locking phases (cf. Figure 17).

As described above the equation used inside the

diode component is

der(i) = (Is/UT)*exp(v/UT)*der(v);

The alternative component DIesi1 uses the derivative

of the inverse relation v(i) and leads to slightly different

deviations. Figure 17 compares both explicit versions

with the correct Shockley diode.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t [s] 10 -4

-1

-0.5

0

0.5

1

1.5

2

2.5

i D
 [A

]

10 -8

Shockley
DIesu1
DIesi1

3 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.1
t [s] 10 -4

-4

-2

0

2

4

6

8

10

12

14

i D
 [A

]

10 -9

Shockley
DIesu1
DIesi1

Figure 17: Comparison of Shockley and explicit Shockley
diodes.

3 Case Study Rotating Pendulum
With Free Flight Phase

The last example is a point mass with air resistance on

a rope of fixed length. Its movement switches between

swinging and free fall phases according to the direction

of the force acting on the mass.

Description of model implementations. The im-

plementation of the rotating pendulum consists of sep-

arate blocks for the two different system configurations

and a SystemSwitch that alternatively activates one

or the other system, depending on the state of the ac-

tive system (cf. Figure 18). The block below computes

some additional plot variables.

The switch contains the event functions hF , hS as

defined in [1] and computes the initial state at a system

change:

h1 = -g*m*cos(state1[1])+m*l*state1[2]^2;

h2 = l^2 - state2[1]^2 - state2[2]^2;

when h1 < 0 then

active1 = false;

SNE 28(2) – 6/2018



47

Disselkamp et al. A Modelica Solution to ARGESIM Benchmark C21

Figure 18: Rotating pendulum model.

elsewhen h2 < 0 then

active1 = true;

end when;

active2 = not active1;

new1[1] = atan2(state2[1],state2[2]);

new1[2] = (state2[2]*state2[3]

- state2[1]*state2[4])/l^2;

new2[1] = l*sin(state1[1]);

new2[2] = l*cos(state1[1]);

new2[3] = l*state1[2]*cos(state1[1]);

new2[4] = -l*state1[2]*sin(state1[1]);

To facilitate the implementation of the two systems a

partial model SwitchableSystem has been defined

that contains the state, the inputs and outputs and the

triggering:

partial model SwitchableSystem

parameter Integer N = 2

parameter Real[N] s0 = {pi/4, 15};

RealInput[N] newState;

BooleanInput active;

RealOutput[N] sOut;

Real[N] state(start=s0, each fixed=true,

each stateSelect=StateSelect.always);

equation

when active then

reinit(state, pre(newState));

end when;

sOut = if active then state else zeros(N);

end SwitchableSystem;

Using this the implementation of a concrete system

only needs the definition of the state equations, usually

in form of an ODE. Even a graphical approach is possi-

ble [3], but MapleSim cannot cope with such a model.

Finally one adds a few lines of explicit Modelica

code to identify the (inherited) state variable with

corresponding variables from the concrete model. For

the pendulum this is as simple as

state[1] = pi/2 - revolute.phi;

state[2] = -revolute.w;

The attribute stateSelect=StateSelect.always

of state guarantees that these variables will be used by

the solver as the actual states.

This model looks exactly like a hybrid decomposi-

tion (cf. Figure 13 of [1]) and for the purpose of con-

structing the model it really is one: Both submodels can

be created independently and almost in the same way as

standalone systems. But formally this again is a max-

imal state space approach: The variables of an inac-

tive system are simply ignored or their derivatives set

to zero. In any case they always exist, enlarge the total

state space and have to be computed always albeit triv-

ially. On the other hand Modelica compilers routinely

handle large systems with lots of trivial equations, so

this should not be a large burden.

0 1 2 3 4 5 6 7 8
t [s]

-200

-100

0

100

200

 [°
]

Angle 

0 1 2 3 4 5 6 7 8
t [s]

-1

-0.5

0

0.5

1

x,
y 

[m
]

Position (x,y)

x
y

0 1 2 3 4 5 6 7 8
t [s]

0

100

200

300

400

h F [N
]

Rope force h F

0 1 2 3 4 5 6 7 8
t [s]

0

0.2

0.4

0.6

h S
 [m

2
]

Rope slack h S

Figure 19: Results of pendulum model.

SNE 28(2) – 6/2018



48

Disselkamp et al. A Modelica Solution to ARGESIM Benchmark C21

Basic simulation of phases. Using a simple when
construction the basic model can be easily extended to

stop after the amplitude is below π/10. This happens at

t = 7.5962714 s, the corresponding values of state and

event variables are displayed in Figure 19. The angle ψ
shown there is measured against the lower equilibrium

point and reduced to the interval [−π,π]

Dependency of results from algorithms. The pro-

cedure for comparing results that has been used twice

before is employed again. The maximal absolute errors

for the variables x, y and ψ are given in Table 5. They

show that the Rosenbrock solver again has the high-

est accuracy, while the default solver CK45 performs

worst. Figure 20 displays exemplary plots of the error

over time.

RKF45 CK45 ROS

x [10−6 m] 0.4804 0.8476 0.1080

y [10−6 m] 0.2597 0.5187 0.1941

ψ[10−6 rad] 0.4879 0.8801 0.2020

Table 5: Absolute errors (compared to reference solution).

0 0.5 1 1.5 2 2.5 3
t [s]

-1

-0.5

0

0.5

1

x 
[m

]

10 -6 x error for CK45

0 0.5 1 1.5 2 2.5 3
t [s]

-1.5

-1

-0.5

0

0.5

1

1.5

x 
[m

]

10 -7 x error for ROS

Figure 20: Absolute errors in x for two solvers.

External energy supply. To add the events necessary

for the addition of the ‘kick’ – i. e. a jump of the angular

velocity by a factor γ at the lowest point – one needs a

when-elsewhen construction. This did not work due

to a bug in MapleSim, but a simple workaround could

be found [3].

The kick value γ is defined by the initial conditions

ψ0 = 0 and (unknown) ω0 and given end conditions ψ f
and ω f . To find it a simple model RPkiAux1 has been

used that integrates the time inverted pendulum ODE

until the (initial) point ψ = 0 is reached. γ is then given

by the ratio of ω0 and the known value of ω before the

kick. Table 6 shows the final values defining the three

cases in [1] and the corresponding values of γ .

The definition of case (iii) “the swinging phase

makes two rotations” is ambiguous, it could mean any-

thing between 1.5 to 2.5 rotations before a fall from the

top. The given value corresponds to the shortest path.

case ψ f ω f γ

(i) −(5/4)π 15 -21.9911

(ii) −π
√

g/l -10.1501

(iii) −3π
√

g/l -14.1982

Table 6: Final values and kick factor.

References
[1] Körner A, Breitenecker F. State Events and

Structural-dynamic Systems: Definition of ARGESIM

Benchmark C21. Simulation Notes Europe. 2016;

26(2): 117–122. doi: 10.11128/sne.26.bn21.10339.

[2] Modelica Association. Modelica R© - A Unified
Object-Oriented Language for Systems Modeling -
Language Specification Version 3.4, April 10, 2017.
Online:

https://modelica.org/documents/
ModelicaSpec34.pdf (called 2018-05-23).

[3] Disselkamp JP, Junglas P, Niehüser A, Schönfelder P.

Implementing the Argesim C21 benchmark with

Modelica components. In Loose T, editor.

Tagungsband Workshop 2018 ASIM/GI-Fachgruppen;

2018 Mar; Heilbronn. 197–202.

[4] Junglas P. Argesim C21 models and scripts. Online:

http://www.peter-junglas.de/fh/
simulation/argesimc21.html (called

2018-05-23).

[5] Fritzson PA. Principles of Object-Oriented Modeling

and Simulation with Modelica 3.3. Wiley & Sons,

New York, 2015.

[6] Nagurka M, Huang S. A mass-spring-damper model

of a bouncing ball. In Proc. American Control Confer-
ence; 2004 Jul; Boston. 499–504.

SNE 28(2) – 6/2018


