
S N E  B E N C H M A R K  N O T E  

   SNE 28(1) – 3/2018 35 

An Object-oriented Approach to  
ARGESIM Benchmark C14 'Supply Chain'  

using MATLAB 
Matthias Wastian1*, Stephan Reichl2 

1dwh Simulation Services, Neustiftgasse 57-59, 1070, Vienna; Matthias.Wastian@dwh.at 
2MMS- Mathematical Modelling and Simulation, Inst. of Analysis and Scientific Computing, TU Wien,  

Wiedner Hauptstraße 8-10, 1040 Vienna, Austria;  

 

 

Abstract.  ARGESIM Benchmark C14 ‘Supply Chain Man-
agement' allows different modelling approaches, from 
classical simulation approaches with discrete event sys-
tems or process modelling to directly programmed sys-
tem evaluation. The tasks require a classical feedforward 
planning mechanism, without implicit feedback loops. An 
intrinsic property of the supply chain is a bi-directional 
flow, a material flow from factory via distributor to 
wholesaler, and an order flow from wholesaler via dis-
tributor to factory. Some simulation systems provide 
special modules for supply chain integrating these bidi-
rectional flows, otherwise ‘twin’ modules must be de-
fined, with reverse flow and intracommunication. Direct-
ly programmed modules for the flows may be an effi-
cient approach, but the model flow descriptions are hard 
to read and not really suitable for understanding of the 
process. This solution tries an alternative approach using 
a fully object-oriented modelling approach for the mod-

ules fatory, distributor, and wholesaler – defined in 
MATLAB in order to make use of efficient vector and 
matrix structures. 

 Simulator
MATLAB – MATrix LABoratory – is a commercial 
platform independent software by MathWorks Inc. and 
used for solving mathematical problems, rather numeri-
cal calculations in the context of matrices. The syntax of 
MATLAB is adapted to common object oriented pro-
gramming languages like JAVA or C#.  

Hence, it is easy for programmers, who are used to 
common object oriented languages, to get familiar with 
the syntax.  

MathWorks introduced class and method structures, 
combined with property definitions. However, 
MATLAB must not be mistaken with these program-
ming languages. The underlying concept is different and 
designed for performing matrix calculations. The simu-
lator program has to be implemented by capitalizing 
from these advantages.  

2 Modelling 
According to task assignments a supply chain manage-
ment problem has to be simulated. There are three dif-
ferent types of active participants who are categorized to 
factories, distributors, and wholesalers.  

While the number of the first two groups is fixed to 
four in each case, the number of wholesalers is summa-
rized in a group. Figure 1 shows the simulation setup, to 
be mapped into object-oriented MATLAB structures. 

Classes are defined for factories, distributors and 
wholesalers containing properties for matrices repre-
senting the stock as well as ordering status. The general 
structure is: 

 
classdef Factory < handle 
% FACTORY  
   % - constructor 

% - order(factory object, and the curren order) 
% - produce (factory object and the current  
             simulation tic) 
% - proof (factory object and current order) 
% - storage (factory object, MAT on 
    finished products) 

% getter/setter methods 

SNE 28(1), 2018, 35 - 38, DOI: 10.11128/sne.28.bn14.10407 
Received: August 10, 2016; Revised August 15, 2017;  
Accepted: December 10, 2017 
SNE - Simulation Notes Europe, ARGESIM Publisher Vienna, 
ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org 



Wastian et al.  Benchmark C14: Object-oriented Approach using MATLAB 
 

 36 SNE 28(1) – 3/2018 

BN

 
Figure 1. Simulation setup for chain supply with classes. 

In general the simulation is tried to be implemented by 
considering the matrix theorem of MATLAB in order to 
get higher performance.  

In order to boost the simulation speed, the simula-
tion setup is utilized. It defines intervals of seconds 
which are multiples of 100. Hence these intervals are 
discretized to intervals of 100 seconds. This method 
reduces the simulation time by accepting slight changes 
in the randomized results which can be disregarded.  

The basic supply methodology is the following. Fac-
tories produce day and night 12 types of products. Each 
factory produces only six products of the assortment. 
The choice for the produced product as well as the inter-
arrival time at the distributor randomly distributed (uni-
form and exponential). In the simulation the inter-arrival 
time is calculated and after is passed the distributor’s 
storage gets filled.  

The distributors have specific factories assigned 
which they order goods from. The orders are placed at 
the beginning of the day. The group of wholesalers 
order from the distributors. The order time and the se-
lected distributor are randomly chosen (uniformly dis-
tributed). The ordering mechanism is varied to three 
types Simple, Demand, Order-Delay ordering mech-
anisms. 

The production matrix defines the products which 
are produced by certain factories: 

 
 ProdMAT= 
 [[1,1,1,1,1,1,0,0,0,0,0,0]; [0,0,0,0,0,0,1,1,1,1,1,1]; 
  [0,0,0,1,1,1,1,1,1,0,0,0]; [1,1,1,0,0,0,0,0,0,1,1,1]]; 

 
The production matrix is allocated to a specific factory 
instance: 

  FA=Factory(ProdMAT(1,:), 'A');  
 

The distributors instances are initialized with the certain 
run initial values like, time of distribution, the factory 
matrix where goods can be ordered and the ordering 
strategy: 

 
 DistributorA= Distributors([16,22,20,12], 
                 FactoryMAT, 'A', OSTRATEGY); 

 
The wholesaler instance receive the distributor matrix 
on the distributors: 
   Wholesaler(DistributorMAT);  

 

3 Results Task a –  
Simple Order Strategy  

In Task a – Simple Order Strategy - the simple ordering 
mechanism is used in between the distributor and the 
factories after the preordering – 10 pieces per product. If 
the distributor sells at least one piece of a product he 
orders two pieces of the same product.  

In Figure 2 the evolution of distributor 1’s stock is 
shown during 30 days. On the seventh day the distribu-
tors start to order 10 pieces of every product which 
arrive until day 8. Hence, distributor 1 has a stock of 
120 products. On day 9 the wholesalers start to buy 
products which result in a reduction of the stored prod-
ucts. This is marked by the red line in Figure  2. After-
wards the stock increases due to the ordering strategy.  
 

 
Figure 2. Stock status evolution for distributor 1 

- Task a – Simple Order Strategy. 
 



  Wastian et al.   Benchmark C14: Object-oriented Approach using MATLAB 
 

   SNE 28(1) – 3/2018 37 

B N 
The following Matlab code above shows the procedural 
calls of the functions for this task: 

 

 for 
  DAYSEC=1+((DAY1)*DAYLENGTH):1:DAYLENGTH*DAY  
  factoryProduction(FA,FB,FC,FD,DAYSEC); 
  factoryOrder(DistributorA,DistributorB,   
          DistributorC, DistributorD,DAYSEC); 
  wholesalerOrder(WholesalerG, DAYSEC); 
 end 

 

First the factory production is triggered that starts the 
day production. Second, the distributors submit their 
order of the day. Last, the wholesalers send their orders. 
FA, FB, FC, and FD represent the product matrix for each 
factory. 
The distributor orders a constant number of products 
without regarding the real requirements. Hence he does 
not sell as many products as he orders which results in 
an increasing stock status. As it is shown in Table 3 the 
simple ordering strategy is the most expensive one. 
Table 1 lists the maximum and minimum values of the 
total cost C, the number of delivered products N, and 
the relative costs R.  

 

 C N R 

max 12032 246 58.90 

min 11141 199 45.24 

Table 1. Min and max values of total costs C,  
delivered products N, and relative costs R  
for task a – simple order strategy. 

The following MATLAB code above shows the  
orderStrategyA represented in source code: 

 

 function orderStrategyA(this) 
    this.currentOrderMAT = 
        logical(this.soldMAT).*2; 
     this.currentOrderMAT = 
       this.currentOrderMAT + 
      (sum(this.nextDayOrderMAT,1)); 
    this.nextDayOrderMAT=zeros(1,12); 
    this.soldMAT=zeros(1,12); 
 end 

 

First the current order matrix is calculated. This is done 
on multiplying the number of sold products with two 
within the sold matrix. In addition the orders which 
were not able to be finished the day before are added. 
Afterwards the matrix is set to a zero matrix. 

 
Figure 3. Stock status evolution for distributor 1 

- Task b – On Demand Order Strategy. 

4 Results Task b –  
On Demand Order Strategy  

In Task b the on demand order strategy is used. The 
distributor order as many as needed pieces of products 
every day. Figure 3 shows the stock status over 30 days. 
Due to the ordering mechanism which is adapted to the 
actual wholesaler requirements the stock status remains 
constant.  
The MATLAB code below shows the orderStrategyB 
represented in source code.  

 

 function orderStrategyB(this) 
     this.currentOrderMAT = this.soldMAT; 
     this.currentOrderMAT = 
            this.currentOrderMAT + 
            (sum(this.nextDayOrderMAT,1)); 
 this.nextDayOrderMAT = zeros(1,12);  
 this.soldMAT=zeros(1,12); 
 end 

 

First the current order matrix is calculated. Contrary to 
Task a, this is done on summing up the sold matrix with 
the matrix that contains the unfinished order from the 
day before. 

Table 2 shows that the maximum of costs as well as 
the minimum of costs decreases in comparison with 
Task a. The number of sold products remains constant.  

 C N R 

max 11031 257 55.90 

min 10582 195 41.80 

Table 2. Min and max values of total costs C,  
delivered products N, and relative costs R  
for Task b – On Demand Order Strategy. 



Wastian et al.  Benchmark C14: Object-oriented Approach using MATLAB 
 

 38 SNE 28(1) – 3/2018 

BN
5 Results Task c –  

Minimal Supply Time - Strategy  
The Order Delay Strategy in Task c implies the possi-
bility for the distributors to order at the factory with the 
minimum of inter-arrival time.  

Table 3 shows the minimum and maximum values 
of C, N, and R. Even the stock status is similar to the 
one in task b – see Figure 4 – and the distributors have 
the free choice of factories, the costs increase.  

That is because of the charging of the costs of deliv-
ery which are independent from the number of delivered 
goods. Hence, the distributor pays the same amount of 
money regardless of the number of goods delivered.  

In Task a and Task b the factories are fixed. One dis-
tributor can only order from to specific factories. In 
Task c it is possible that the distributor orders from 
more than two factories in one day. This results in in-
creasing delivery costs and directly influences the total 
costs.  

Below, MATLAB code is shown regarding the order 
strategy of Task c: 

 

 function orderStrategyC(this); 
   calculateStorageCost(this);  
   if max(this.currentOrderMAT(1,:))~=0 
    contactFactories(this,tic); 
 end 

 

The difference to strategy Task b is the contact of facto-
ries for ordering goods. Factories are contacted by get-
ting the factory with the shortest supply time. Therefore 
the supply-time matrix is sorted: 

 

sort(this.supplyTIME) 
 

 
Figure 4. Stock status evolution for distributor 1 

- Task c – Minimal Supply Time - Strategy. 
 

 C N R 

max 11031 257 55.90 

min 10582 195 41.80 

Table 3. Min and max values of total costs C,  
delivered products N, and relative costs R  
for Task c – Minimal Supply Time - Strategy. 

6 Summary 
The simulation is accomplished in MATLAB. The sim-
ulation deals with the advantages and disadvantages of 
the Simple Order Strategy, On Demand Order Strategy, 
and Minimal Supply Time - Strategy. These tasks imply 
a high number of matrices. Hence, the application 
MATLAB is of advantage as it shows high performance 
in matrix calculations.  
Table 4 shows a comparison of the mean and deviation 
values of total cost C, the number of delivered products 
N, and the relative costs R between the three tasks. It is 
shown that the On Demand Order Strategy is the cheap-
est one. Contrary to the Simple Order Strategy, products 
are ordered on demand which results in lower stock 
costs. On the other hand the delivery costs are lower 
than those achieved with the Minimal Supply Time - 
Strategy as the number of factories are limited. Even the 
delivery costs are limited in Task c by choosing the 
factory with the lowest delivery time. Hence the total 
costs get higher than in Task b.   
 

 
Task a 

Mean/ St.Dev 
Task b 

Mean/ St.Dev 
Task c 

Mean/ St.Dev 

C 11357 / 1634.5 10482 / 1949 11983 / 2248 

N 220.9 / 33.6 218.6 /43.2 217.9 /44.1 

R 51.6 / 2.86 48.1 / 3.16 55.3 / 4.4 

Table 4. Comparison between order strategies  
in the three tasks. 


